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Flavor-vacuum entanglement in boson mixing
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Mixing transformations in quantum field theory are nontrivial, since they are intimately related to the unitary
inequivalence between Fock spaces for fields with definite mass and fields with definite flavor. Considering
the superposition of two neutral scalar (spin-0) bosonic fields, we investigate some features of the emerging
condensate structure of the flavor vacuum. In particular, we quantify the flavor vacuum entanglement in terms
of the von Neumann entanglement entropy of the reduced state. Furthermore, in a suitable limit, we show that
the flavor vacuum has a structure akin to the thermal vacuum of thermo field dynamics, with a temperature
dependent on both the mixing angle and the particle mass difference.
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I. INTRODUCTION

The analysis of quantum correlations in the context of
particle physics (and in particular for neutrino and meson
systems) is currently gaining more attention. The initial ob-
servation that flavor mixing and oscillations can be associated
with (single-particle) entanglement [1,2] served as a ba-
sis for several studies [3–11] in which violations of Bell,
Leggett-Garg, and Mermin-Svetchlichny inequalities, nonlo-
cality, gravity- or acceleration degradation effects and other
similar occurrences have been investigated both theoretically
and experimentally.

Most of the above studies have been carried out within
the framework of quantum mechanics (QM). The extension to
quantum field theory (QFT) was later considered in Ref. [12],
thus leading to the discovery of nontrivial properties of the
mixing transformation [13]. Indeed, while in QM such a trans-
formation acts as a simple rotation between flavor and mass
states [14], its QFT counterpart behaves as a rotation nested
into a noncommuting Bogoliubov transformation [13,15]. As
a result, the vacua for fields with definite mass and fields
with definite flavor become orthogonal to each other, the latter
acquiring the structure of a SU(2) coherent state [16] and
turning into a condensate of massive particle-antiparticle pairs
[13,17]. This gives rise to a deeper understanding of parti-
cle mixing, since the Fock spaces for flavor and mass fields
are found to describe unitarily inequivalent representations.
Corrections to the standard QM predictions also appear in the
oscillation probability formula, as shown in Ref. [18].

Originally developed for neutrinos propagating in flat
space-time, the above considerations have been later extended
to bosonic fields [19,20] as well as to nontrivial space-time
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backgrounds (see Refs. [21,22] for more details). Recently,
further evidence for the complex structure of the flavor vac-
uum has been provided in Ref. [23], where it has been
established that the Fock space for flavor fields cannot be
obtained by the direct product of the spaces for massive
fields. Therefore, entanglement connected with flavor mix-
ing appears to be an exquisite concept, boiling down to the
nonfactorizability of the flavor states in terms of those with
definite masses. In other words, it is possible to come across
flavor entanglement already at the level of the vacuum. More
generally, the phenomenon of nonvanishing entanglement
even for free fields is ultimately related to the quotient space
structure of the tensor Hilbert spaces [24].

In fact, the investigation of the properties of the QFT
vacuum is one of the most significant (albeit difficult) tasks
in a wide variety of physical scenarios. For instance, the
Bardeen-Cooper-Schrieffer ground state plays a pivotal role in
condensed matter, being a condensate of Cooper pairs which
underpins the phenomenon of superconductivity [25]. In the
same fashion, vacuum is crucially important to explain the
spontaneous symmetry breaking [26] and the ensuing appear-
ance of Nambu-Jona Lasinio [27], Goldstone [28,29], and
pseudo-Goldstone bosons [30], both in low- and high-energy
regimes. On the other hand, in QFT, vacuum energy is no-
toriously responsible for the existence of the Casimir effect
[31,32], which has been largely studied both in flat [33–37]
and curved [38–43] space-time in recent years. Moreover, the
study of vacua in the presence of gravity leads to the loss of the
absolute concept of particle and the emergence of distinctive
phenomena such as the black-hole radiation [44] and the akin
Unruh effect [45], which find application in many research
areas [46].

Starting from the above premises, in the present work we
analyze some relevant and yet unexplored features of the
flavor vacuum condensate, with a particular focus on its en-
tanglement structure. For this purpose, we consider the case of
mixing of neutral bosonic fields. Besides its intrinsic impor-
tance (i.e., as in the case of meson mixing), this choice allows
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us to avoid unnecessary technicalities related to the spin struc-
ture, so as to render the physical insight of our study as
transparent as possible. We quantify entanglement by comput-
ing the von Neumann entropy of the reduced density matrix of
vacuum in the limit of small mass difference and/or mixing
angle. Specifically, since we are dealing with a pure state of
a bipartite system, the von Neumann entropy is the unique
consistent measure of bipartite entanglement. At a minimal
level, a meaningful quantifier of bipartite entanglement (either
pure or mixed) must satisfy three basic conditions: (i) it must
vanish on separable states; (ii) it must not increase under
local operations and classical communication; and (iii) it must
be invariant under local unitary operations. Any quantifier of
bipartite entanglement that complies with the above properties
is an entanglement monotone. In turn, a bona fide entangle-
ment monotone is further promoted to a full entanglement
measure if some additional requirements are fulfilled, such as,
for instance, the reduction to the von Neumann entropy on
pure states. Prominent examples of mixed-state entanglement
measures endowed with operational meaning and that reduce
to the von Neumann entropy on pure states include the entan-
glement of formation, the entanglement cost and the squashed
entanglement. For further details, the interested reader can
consult the comprehensive reviews [47].

As a next step forward, we compare the properties of the
flavor vacuum with those of the thermal vacuum of thermo
field dynamics (TFD) [48,49], which exhibits the paradig-
matic structure occurring in the case of black holes [50] and
the Unruh effect [45], namely, the doubling of Fock space
and the ensuing correlation between two different sets of
modes (the particle states inside and outside the horizon for
the Hawking-Unruh effect, the physical and auxiliary modes
in TFD). It must be stressed that entanglement in TFD has
been previously discussed in Ref. [51] for both equilibrium
and nonequilibrium states. From the comparison between our
results and those on TFD entanglement, we find that the
condensate in the flavor vacuum is in general richer than that
in TFD because it exhibits all types of contributions, both
thermal and nonthermal. Finally, we determine a suitable limit
in which nonthermal contributions are subdominant, thereby
allowing us to recognize a TFD-like structure in the flavor
vacuum, with an effective temperature proportional to the
mixing angle and the mass difference between the two fields.

The paper is organized as follows: in Sec. II we review the
main aspects of boson field mixing, focusing on the case of
neutral scalar fields. In Sec. III we quantify the entanglement
content of the flavor vacuum by computing the reduced von
Neumann entropy, and we discuss the condensate structure
of this state in connection with the thermal vacuum of TFD.
Conclusions and outlook are provided in Sec. IV. Throughout
the work, we use natural units c = h̄ = 1 while keeping the
Boltzmann constant kB explicit.

II. MIXING OF BOSONIC FIELDS

In this section, we review the crucial aspects associated
with the mixing of two scalar (spin-0) neutral fields. Clearly,
the same considerations can be extended to the case of
three boson generations. Toward this end, we closely follow

Refs. [19,20] and write down the mixing relations between
fields with definite mass and flavor; that is,1

φA(x) = cos θφ1(x) + sin θφ2(x), (1)

φB(x) = − sin θφ1(x) + cos θφ2(x), (2)

with an analogous set of equations for the conjugate momenta
π (x) = ∂tφ(x). The subscripts A and B indicate the fields in
the flavor basis, whereas 1 and 2 indicate those in the mass
basis. Consequently, the expansions for φ1 and φ2 take the
form

φ j (x) =
∫

d3k√
2(2π )3ωk, j

(ak, je
−iωk, j t + a†

−k, je
iωk, j t )eik·x,

j = 1, 2, (3)

where ωk, j = (k2 + m2
j )

1/2 and ak, j (a†
k, j ) are the bosonic an-

nihilation (creation) operators of field quanta with momentum
k and mass mj .

By requiring that the fields and the conjugate momenta
obey the canonical commutation relation (CCR) at equal
times,

[φi(x), π j (x
′)]t=t ′ = iδi jδ(x − x′), (4)

it follows that the only nontrivial commutator between the
ladder operators is

[ak,i, a†
k′, j] = δi jδ(k − k′). (5)

Let us now observe that Eqs. (1) and (2) and those for mo-
menta can also be rewritten as

φσ (x) = G−1
θ (t )φ j (x)Gθ (t ), (6)

πσ (x) = G−1
θ (t )π j (x)Gθ (t ), (7)

where (σ, j) = {(A, 1), (B, 2)} and

Gθ (t ) = exp{θ [S+(t ) − S−(t )]} (8)

is the mixing generator and an element of SU(2), whose
algebra is built with the following operators:

S+(t ) = −i
∫

d3xπ1(x)φ2(x), (9)

S−(t ) = −i
∫

d3xπ2(x)φ1(x), (10)

S3(t ) = − i

2

∫
d3x[π1(x)φ1(x) − π2(x)φ2(x)]. (11)

In light of the above equations, the flavor fields can then be
expressed as

φσ (x) =
∫

d3k√
2(2π )3ωk, j

(ak,σ (t )e−iωk, j t +a†
−k,σ

(t )eiωk, j t)eik·x,

σ = A, B, (12)

1Strictly speaking, in the case of bosons we should refer to the
mixing of some other quantum number, such as the strangeness or the
isospin, rather than the flavor. However, with an abuse of notation,
in the following we keep on denoting such intrinsic properties as
“flavor” and the corresponding mixed fields as “flavor fields.” Fur-
thermore, we work in a simplified two-flavor model.

032434-2



FLAVOR-VACUUM ENTANGLEMENT IN BOSON MIXING PHYSICAL REVIEW A 103, 032434 (2021)

and, with the aid of Eqs. (1) and (2), we recognize the Bo-
goliubov transformation between the flavor and mass ladder
operators

ak,A(t ) = cos θak,1 + sin θ [U ∗
k (t )ak,2 + Vk (t )a†

−k,2], (13)

ak,B(t ) = cos θak,2 − sin θ [Uk (t )ak,1 − Vk (t )a†
−k,1]. (14)

The above relations exhibit the structure of rotations nested
into Bogoliubov transformations with coefficients Uk (t ) and
Vk (t ) given by

Uk (t ) = |Uk|ei(ωk,2−ωk,1 )t , Vk (t ) = |Vk|ei(ωk,1+ωk,2 )t , (15)

|Uk| = 1

2

(√
ωk,1

ωk,2
+

√
ωk,2

ωk,1

)
,

|Vk| = 1

2

(√
ωk,1

ωk,2
−

√
ωk,2

ωk,1

)
. (16)

Accordingly, the flavor vacuum is provided with an SU(2)
coherent-state structure [16]

|00(t )〉A,B = G−1
θ (t )|00〉1,2, (17)

with a condensation density given by

A,B〈00(t )|a†
k, jak, j |00(t )〉A,B = sin2 θ |Vk|2, j = 1, 2. (18)

In the infinite-volume limit [19,20], the two sets of vacua

become orthogonal, namely, 1,2〈00|00(t )〉A,B
V →∞−→ 0 ∀ t , giv-

ing rise to physically inequivalent Fock spaces (i.e., unitarily
inequivalent representations of the canonical commutation re-
lations for fields).

Let us now cast the mixing generator in terms of
mass-definite annihilators and creators. Straightforward cal-
culations lead to

|00(t )〉A,B = exp

{
− θ

∫
d3k[U ∗

k (t )a†
k,1ak,2 − Uk (t )ak,1a†

k,2

+Vk (t )a†
k,1a†

−k,2 − V ∗
k (t )ak,1a−k,2]

}
|00〉1,2.

(19)

Without harming the generality of our results, henceforth
we perform calculations for t = 0. Thus, we have |00(t =
0)〉A,B ≡ |00〉A,B with2

|00〉A,B = exp

{
− θ

∫
d3k[Uk (a†

k,1ak,2 − ak,1a†
k,2)

+Vk (a†
k,1a†

−k,2 − ak,1a−k,2)]

}
|00〉1,2. (20)

Equation (20) allows us to immediately identify the generator
of the rotation (the operator in the brackets which multiplies
Uk) and the one responsible for the Bogoliubov transformation
(the operator in the brackets which multiplies Vk), in complete
agreement with the fermion case [15].

For later convenience, we can now further manipulate
Eq. (20) by considering the case of a discrete set of modes.

2Notice that, for t = 0, Uk (t ) = |Uk | and Vk (t ) = |Vk | [see Eq. (15)].

Apart from an irrelevant numerical factor, Eq. (20) becomes

|00〉A,B = exp

{
− θ

∑
k

[Uk (a†
kbk − akb†

k )

+Vk (a†
kb†

−k − akb−k )]

}
|00〉1,2. (21)

where we have introduced the shorthand notation ak,1 ≡ ak

and ak,2 ≡ bk . In addition, since the transformations (1) and
(2) are valid for any value of the rotation angle, we can focus
on the case of small values of θ to the O(θ2) order, at which
the first nontrivial contribution is expected. In this framework,
we can use Zassenhaus formula

eλ(X+Y ) = eλX eλY e− λ2

2 [X,Y ], (22)

up to O(λ2) to approximate the flavor vacuum in Eq. (21). In
fact, if we identify λ → −θ , X → ∑

k Uk (a†
kbk − akb†

k ) and
Y → ∑

k Vk (a†
kb†

−k − akb−k ), we are led to

|00〉A,B = e−θ
∑

k Uk (a†
k bk−akb†

k )e−θ
∑

k Vk (a†
k b†

−k−akb−k )

× e− θ2

2

∑
k UkVk (a†

k a†
−k−b†

kb†
−k−aka−k+bkb−k )|00〉1,2

= e− θ2

2

∑
k UkVk (a†

k a†
−k−b†

kb†
−k )e−θ

∑
k Uk (a†

k bk−akb†
k )

× e−θ
∑

k Vk (a†
k b†

−k−akb−k )|00〉1,2, (23)

where in the second step we have made use of a simplification
allowed only in the given approximation for θ . Furthermore,
by applying the identity (22) to the two operators in Eq. (23)
that depend on Uk and Vk , we get

|00〉A,B = e− θ2

2

∑
k UkVk (a†

k a†
−k−b†

kb†
−k )e−θ

∑
k Uka†

k bk eθ
∑

k Ukakb†
k

× e
θ2

2

∑
k U 2

k (aka†
k−bkb†

k )

× e−θ
∑

k Vka†
k b†

−k eθ
∑

k Vkakb−k e− θ2

2

∑
k V 2

k (aka†
k+b†

kbk )|00〉1,2


 e− θ2

2

∑
k UkVk (a†

k a†
−k−b†

kb†
−k )e− θ2

2

∑
k

(
V 2

k b†
kbk+U 2

k bkb†
k

)
× e−θ

∑
k Vka†

k b†
−k |00〉1,2. (24)

In performing the second passage, we have omitted an unim-
portant constant factor and we have made use of the current
approximation to streamline the shape of the total operator.
We take advantage of the form (24) of the flavor vacuum in
the next section when we compare the condensate structure
of this state to the one of the thermal vacuum of thermo field
dynamics.

III. ENTANGLEMENT OF THE FLAVOR VACUUM

Let us now quantify the entanglement between the massive
particle states in the flavor vacuum. As said earlier, we con-
sider the case t = 0. For notational convenience, it comes in
handy to rewrite Eq. (20) as

|00〉A,B ≡ |ψ〉 = exp

{
− θ

∫
d3k[Uk (a†

kbk − akb†
k )

+Vk (a†
kb†

−k − akb−k )]

}
|00〉, (25)

where |00〉 ≡ |00〉1,2 and we have used the same notation as
in Eq. (21) for ladder operators. Interestingly, we observe

032434-3



MASSIMO BLASONE et al. PHYSICAL REVIEW A 103, 032434 (2021)

that the above transformation is the result of a simultaneous
coexistence of a beam splitter and a two-mode squeezing
transformation.

As a preliminary analysis, we can perform a first-order
approximation in θ and in the case of small mass differ-
ence, namely, when m1 = m, m2 = m + δm and hence ε ≡
(m2 − m1)/m1 = δm/m � 1. This is in line with many works
regarding flavor mixing, and in particular with Ref. [15], in
which the neutrino flavor vacuum is written up to second order
in θ and ε. Here, we make the same considerations with the
purpose of seeking an analogous result.

Starting from Eq. (25), it is immediate to derive that

|ψ〉 = exp

{
− θ

∫
d3k

[
(a†

kbk − akb†
k )

− ε

2

m2

ω2
k

(a†
kb†

−k − akb−k )

]}
|00〉, (26)

and thus expand the exponential operator as

|ψ〉 =
∞∑

n=0

1

n!

{
− θ

∫
d3k[(a†

kbk − akb†
k )

− ε

2

m2

ω2
k

(a†
kb†

−k − akb−k )]

}n

|00〉. (27)

Since terms of the order O(ε2) are neglected, we observe
that it is possible to identify two recursive formulas in the
expression (27), one in front of the operator a†b† and another
one next to (a†a† − b†b†). The exact computation yields

|ψ〉 =
{

1 + ε

2

[ ∞∑
n=0

(−1)n+1θ2n+24n

(2n + 2)!

]

×
∫

d3k
m2

ω2
k

[a†
ka†

−k − b†
kb†

−k]+ ε

2

[ ∞∑
n=0

(−1)nθ2n+14n

(2n+ 1)!

]

×
∫

d3k
m2

ω2
k

a†
kb†

−k

}
|00〉. (28)

It is straightforward to realize that the series in Eq. (28)
converge to two simple analytic functions:

∞∑
n=0

(−1)n+1θ2n+24n

(2n + 2)!
= − sin2 θ

2
, (29)

∞∑
n=0

(−1)nθ2n+14n

(2n + 1)!
= sin 2θ

2
. (30)

As a result, in the limit of small mass difference the flavor
vacuum takes the form

|ψ〉 =
{

1 − ε

4
sin2 θ

∫
d3k

m2

ω2
k

[a†
ka†

−k − b†
kb†

−k]

+ ε

4
sin 2θ

∫
d3k

m2

ω2
k

a†
kb†

−k

}
|00〉. (31)

Before proceeding with the computation of von Neumann
entropy, we pause to compare the above form of the flavor

vacuum with the thermal vacuum of thermo field dynamics
defined in the Appendix [see in particular Eq. (A9)]. The sim-
ilarity between these two states has its roots in the fact that, in
TFD, there is the need to double the physical Hilbert space by
introducing a dual space (and hence an auxiliary field) whose
excitations are holes from the point of view of the physical
field (a detailed mathematical explanation of these notions
can be found in the Appendix). As a consequence, the thermal
vacuum appears as a condensate of excitations of the physical
and auxiliary fields, which thus resembles the structure of the
flavor vacuum being a condensate of particle-antiparticle pairs
with different masses.

In this vein, we emphasize that a first attempt to perform a
comparison between the flavor and thermal vacua was carried
out in Ref. [52] and later in Ref. [15], arguing that the two
states cannot be exactly matched, since the would-be entropy
operator defined for mixed fields does not possess the same
properties as the one introduced in TFD [see Eq. (A11)]. How-
ever, here we tackle this problem from a different perspective;
indeed, we directly look at the inherent structure of the two
vacua. Even though the result of Ref. [15] remains in general
valid since the thermal state (A9) does not contain terms of the
form a†

ka†
−k , b†

kb†
−k which instead appear in the flavor vacuum

(31), for small values of the mixing angle we can approximate
Eq. (31) to leading order as

|ψ〉 =
{

1 + ε

2
θ

∫
d3k

m2

ω2
k

a†
kb†

−k

}
|00〉. (32)

Then, from comparison with the TFD vacuum in Eq. (A13),

|0(ϑ )〉 
 1 +
∑

k

a†
k ã†

kϑk|0〉,

one can recognize in the state (32) a thermal-like vacuum with
an inverse temperature β = (kBT )−1 given by [up to a scaling
factor due to the conversion of the k integral into a discrete
sum, as viewed in Eq. (21) and following]

β 
 1

ωk
ln

(
2ω2

k

ε2

)
. (33)

Clearly, for θ and/or ε = 0, we have β → ∞, or equiva-
lently T → 0. This is somehow expected since, for vanishing
mixing, the flavor and mass vacua coincide with each other,
which corresponds in TFD language to the case where the
doubling of the degrees of freedom (and thus the temperature)
disappears.

Let us now come back to the quantification of von Neu-
mann entropy of the flavor vacuum. To this aim, we focus on
the k = 0 mode, for which the condensation density reaches
its maximal value in the case of boson mixing [see Eq. (18)]
[20]. Therefore, we expect that the effects of the mixing
transformation are maximally nontrivial in this case. How-
ever, for this purpose we need to go beyond the linear-order
approximation in the mass difference, as it can be easily
shown that the linear term in ε gives a vanishing contribution.
Then, by resorting to Eq. (27) and retaining only the factors
that do not exceed O(ε2), we find a recurrence series of the
form

032434-4



FLAVOR-VACUUM ENTANGLEMENT IN BOSON MIXING PHYSICAL REVIEW A 103, 032434 (2021)

|ψ〉 =
{

1 +
(

ε

2
− ε2

4

)[ ∞∑
n=0

(−1)nθ2n+14n

(2n + 1)!

]
a†b† +

(
ε

2
− ε2

4

)[ ∞∑
n=0

(−1)n+1θ2n+24n

(2n + 2)!

]
[(a†)2 − (b†)2]

+ ε2

4

[ ∞∑
n=0

(−1)nθ2n+24n

(2n + 2)!

]
[(a†)2(b†)2 − 1] + 3ε2

4

{ ∞∑
n=0

[
(−1)n+1θ2n+34n

(2n + 3)!

n∑
m=0

(3
√

2 +
√

6)m

]}
[(a†)3b† − a†(b†)3]

+ 3ε2

4

{ ∞∑
n=0

[
(−1)nθ2n+44n

(2n + 4)!

n∑
m=0

(3
√

2 +
√

6)m

]}
[(a†)4 − 6

√
2(a†)2(b†)2 + (b†)4]

}
|00〉. (34)

The series appearing in Eq. (34) converge to trigonometric functions in θ . More precisely, we have

|ψ〉 =
[

1 − ε2

8
sin2 θ

]
|00〉 −

(
ε

4
− ε2

8

)
sin2 θ (|20〉 − |02〉) +

(
ε

4
− ε2

8

)
sin 2θ |11〉

+ ε2

4

[
sin2 θ

2
− 18

√
2χ (θ )

]
|22〉 + 3ε2

4
χ (θ )(|40〉 + |04〉) + 3ε2

4
ξ (θ )(|31〉 − |13〉), (35)

where

χ (θ ) = (6 + 2
√

3)(1 − cos 2θ ) − √
2
[
1 − cos

(
2

5
4

√
3 + √

3θ
)]

32(3 + √
3)(3

√
2 + √

6 − 1)
, (36)

ξ (θ ) = 2
3
4 sin

(
2

5
4

√
3 + √

3θ
) − 2

√
3 + √

3 sin 2θ

16
√

3 + √
3(3

√
2 + √

6 − 1)
. (37)

The state in Eq. (35) is not normalized, since 〈ψ |ψ〉 = 1. For this reason, before computing the projector ρ = |ψ〉〈ψ |, we must
divide the above state by a suitable normalization factor, which is explicitly given by

N =
√

〈ψ |ψ〉 =
√

1 − ε2

4

[
sin2 θ − sin4 θ

2
− sin2 2θ

4

]
. (38)

Accordingly, the normalized density matrix reads

ρ = |ψ〉〈ψ |
N2

=
[

1 − ε2

8
sin4 θ − ε2

16
sin2 2θ

]
|00〉〈00|

+
(

ε

4
− ε2

8

)
sin 2θ (|00〉〈11| + |11〉〈00|)

−
(

ε

4
− ε2

8

)
sin2 θ (|00〉〈20| − |00〉〈02| + |20〉〈00| − |02〉〈00|) + ε2

16
sin2 2θ |11〉〈11|

+ ε2

4

[
sin2 θ

2
− 18

√
2χ (θ )

]
(|00〉〈22| + |22〉〈00|)

+ 3ε2

4
χ (θ )(|00〉〈40| + |00〉〈04| + |40〉〈00| + |04〉〈00|)

+ ε2

16
sin4 θ (|20〉〈20| − |20〉〈02| − |02〉〈20| + |02〉〈02|)

+ 3ε2

4
ξ (θ )(|00〉〈31| − |00〉〈13| + |31〉〈00| − |13〉〈00|)

− ε2

16
sin2 θ sin 2θ (|20〉〈11| − |02〉〈11| + |11〉〈20| − |11〉〈02|). (39)

By partial tracing ρ with respect to either one of the two subsystems, say S1, we obtain the reduced density matrix

ρ (2)
r = TrS1ρ =

[
1 − ε2

16
sin2 2θ − ε2

16
sin4 θ

]
|0〉〈0| +

(
ε

4
− ε2

8

)
sin2 θ (|0〉〈2| + |2〉〈0|) + ε2

16
sin2 2θ |1〉〈1|

+ 3ε2

4
χ (θ )(|0〉〈4| + |4〉〈0|) + ε2

16
sin4 θ |2〉〈2|, (40)
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with the same result for ρ (1)
r = TrS2ρ. From Eq. (40), we can compute the von Neumann entropy up to O(ε2). Notice that the

matrix ρ (1)
r = ρ (2)

r ≡ ρr , given by

ρr =

⎛
⎜⎜⎜⎜⎝

1 − ε2

16 sin2 2θ − ε2

16 sin4 θ 0
(

ε
4 − ε2

8

)
sin2 θ 3ε2

4 χ (θ )

0 ε2

16 sin2 2θ 0 0(
ε
4 − ε2

8

)
sin2 θ 0 ε2

16 sin4 θ 0
3ε2

4 χ (θ ) 0 0 0

⎞
⎟⎟⎟⎟⎠, (41)

has eigenvalues

λi =
{

O(ε3), O(ε3), 1 − ε2

32
(1 − cos 4θ ),

ε2

16
sin2 2θ

}
. (42)

Therefore, to order ε2, von Neumann entanglement entropy reads

SV = −
∑

i

λi log2 λi = −
[

1 − ε2

32
(1 − cos 4θ )

]
log2

[
1 − ε2

32
(1 − cos 4θ )

]
− ε2

16
sin2 2θ log2

(
ε2

16
sin2 2θ

)
. (43)

As expected, in the limit of either ε → 0 or θ → 0, we recover
SV = 0, as it should correctly be, because in these cases the
flavor vacuum reduces to the tensor product |00〉1,2 = |0〉1 ⊗
|0〉2. In Fig. 1 we report the behavior of von Neumann entropy
as a function of both ε and θ . To better feature the dependence
of SV on the mixing angle, it is also appropriate to exhibit
how it varies by keeping ε fixed. This is done in Fig. 2. In
particular, we can notice that for arbitrary ε the maximum
of SV always occurs at the perfectly balanced mixing angle
θmax = π/4. Increasing ε only results in an upper shift in
the magnitude of SV , with an essentially invariant shape. The
value of θmax is exactly the one that could have been initially
predicted, since π/4 corresponds to maximal mixing.

IV. CONCLUSIONS

In this paper, we have explored some nontrivial features of
the flavor vacuum in the case of mixing of two neutral scalar
fields. A first preliminary analysis has shown that we cannot
quantify entanglement by resorting to a direct comparison
between |00〉A,B and the free thermal vacuum introduced in

FIG. 1. Behavior of von Neumann entanglement entropy SV as a
function of ε ∈ [0, 10−2] and θ ∈ [0, π

2 ]. As explicitly shown by the
level curves, SV monotonically decreases with decreasing ε.

thermo field dynamics, since the nature of the two states is
not exactly the same. Note that this is consistent with the result
found in Ref. [15] in the context of neutrino mixing. A similar
outcome has also been exhibited in Refs. [21], where it has
been shown that the flavor vacuum for an accelerated observer
is not strictly a thermal state, in contrast with the case of the
standard Unruh effect. However, in spite of these differences,
we have found that, in a proper limit, the flavor vacuum can
be identified with the vacuum of TFD, with a temperature
dependent on the mixing angle and the mass difference of the
two mixed fields.

To further investigate the condensate structure of the flavor
vacuum, we have restricted our attention to the mode k = 0,
for which the condensation density in |00〉A,B is maximal. In
this setting, we have quantified the von Neumann entropy for
small values of the mass difference. The shape exhibited in
Fig. 1 is the one derived from our analysis, and the picture of
Fig. 2 shows that there is an angle in correspondence of which
von Neumann entropy is maximal for a given value of the
small mass difference. It is worth observing that such angle
is precisely the one responsible for maximal mixing; namely,
θmax = π/4. Clearly, it would be interesting to go beyond the
single-mode analysis and derive the full expression for the
von Neumann entropy. However, we expect that the result
will exhibit some ultraviolet divergence of the same kind as

FIG. 2. Behavior of von Neumann entanglement entropy SV as a
function of θ ∈ [0, π

2 ] for different values of ε.
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in Ref. [53], where the contribution of the flavor vacuum
energy to the cosmological constant was shown to diverge
only logarithmically, in contrast with the standard asymptotic
behavior of free-field vacuum energy.

It is worth remarking that entanglement entropy and par-
ticle mixing have already been analyzed together in several
papers in recent years [1,2], but only in the context of flavor
transitions and for one-particle flavor states. In this respect, it
is interesting to compare the field-theoretical approach to fla-
vor entanglement developed in the present work with the exact
methods for the quantification of entanglement introduced in
the framework of quantum information and quantum optics of
nonrelativistic continuous variable systems (see for instance
Refs. [54–57] and therein). Such methods revolve around the
transformation of the quadrature operators (namely, position,
and momentum) under a given operation, which in our case is
the mixing transformation. Since at the level of these operators
mixing acts as a mere rotation, we would not achieve the
desired result, thus preventing us from reaching an accurate
evaluation of the entanglement entropy of the flavor vac-
uum via the procedures adopted for quantum optical systems
[54–56].

We emphasize that the present analysis may have several
implications in a broad range of contexts. For instance, once
fully extended to noninertial frames [58–60] and, more gener-
ally, to gravity scenarios [61–71], one could investigate how
the information content of the flavor vacuum is degraded for
increasing values of the acceleration or gravity. A similar
analysis has been carried out in Ref. [72] for the entangle-
ment between two free modes of a scalar field as seen by an
inertial observer detecting one of the modes and a uniformly
accelerated observer detecting the other one. Finally, at a
phenomenological level, one may rely on quantum simulation
experiments, whose relevance in the context of high-energy
physics has been confirmed by a growing body of literature.
Concerning flavor mixing and oscillations, it has been shown
that neutrino phenomenology can be perfectly reproduced by
quantum optical systems, such as the binary waveguide arrays
with an effective refracting index [73] and ultracold atomic
setups as trapped ions [74]. In the former case, it is even
possible to recognize a peculiar behavior of those neutrinos
that become important during the phenomenon of supernova
explosions. Therefore, it is essential to resort to quantum
optical simulation as a powerful tool to probe inaccessible
energy scales and other theoretical aspects of particle mixing,
such as those discussed in the present paper. The study of all
these aspects deserve careful attention and will be performed
elsewhere.
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APPENDIX: THERMO FIELD DYNAMICS

This Appendix is devoted to review the basics of thermo
field dynamics (TFD) [48], which represents one of the ap-
proaches to QFT at finite temperature and density. The reason
for this study lies in the fact the TFD and the formalism of

mixing analyzed in Sec. II exhibit some nontrivial conceptual
similarities, the most prominent being the doubling of the
degrees of freedom of the original system.

To introduce the TFD from a more quantitative point of
view, let us consider the Hamiltonian of a free physical system
written in the usual form

H =
∑

k

εka†
kak . (A1)

We now define a completely identical fictitious system, which
we name the “tilde” system, sharing the same properties of the
physical one. The former can then be written as

H̃ =
∑

k

εkã†
k ãk . (A2)

The above relation allows us to establish a new set of “ther-
mal” operators via the Bogoliubov transformations

ak (ϑ ) = ak cosh ϑk − ã†
k sinh ϑk, (A3)

ãk (ϑ ) = ãk cosh ϑk − a†
k sinh ϑk, (A4)

with θk encoding the information about the original and ther-
mal ladder operators. Notice that the transformations (A3) and
(A4) leave the total Hamiltonian of the system Htot = H − H̃
invariant, provided that the Hamiltonians (A1) and (A2) have
the same spectrum.

The Bogoliubov transformation (A3) and (A4) can also be
recast as

ak (ϑ ) = e−iGakeiG, (A5)

ãk (ϑ ) = e−iGãkeiG, (A6)

with

G = i
∑

k

ϑk (a†
k ã†

k − ãkak ) (A7)

being the generator of the transformation, which is also
a conserved quantity (namely [G, Htot] = 0) since the total
Hamiltonian is conserved under its action. By means of G,
we can now build a new vacuum state for the operators ak (ϑ )
and ãk (ϑ ) defined as [48]

|0(ϑ )〉 = e−iG|0〉, (A8)

where |0〉 is the vacuum associated with ak and ãk . If we
explicitly act with the above operator on |0〉, we are left with

|0(ϑ )〉 =
∏

k

ea†
k ã†

k tanh ϑk

cosh ϑk
|0〉. (A9)

The above expression conveys the idea that the “theta” vac-
uum is actually a condensate of a and ã particles, which
somehow resembles the situation we have already encoun-
tered with mixing. However, in order to construct an effective
comparison with the latter framework, we need to reformulate
Eq. (A9) as

|0(ϑ )〉 = e−K
2 e

∑
k a†

k ã†
k |0〉 = e− K̃

2 e
∑

k a†
k ã†

k |0〉, (A10)

where

K = −
∑

k

(a†
kak ln sinh2 ϑk − aka†

k ln cosh2 ϑk ) (A11)
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is called the entropy operator [48], because its vacuum expec-
tation value multiplied by kB yields precisely the entropy of
the physical system. As a matter of fact, to make contact with
a feasible physical picture and describe QFT for free fields
at finite temperature, it is possible to prove that the arbitrary
factors ϑk should satisfy the relation

βωk = − ln tanh2 ϑk, (A12)

with β = (kBT )−1 being the inverse of the emerging tempera-
ture T of the thermal vacuum |0(ϑ )〉 and ωk = εk − μ, where
μ is the chemical potential. Remarkably, in the limit θk → 0

(i.e., for T small enough), Eq. (A9) reads

|0(ϑ )〉 
 1 +
∑

k

a†
k ã†

kϑk|0〉. (A13)

As a final remark, we notice that the thermal vacuum (A9),
obtained by augmenting the physical Fock space by a fictitious
“tilde” space, has the same condensate structure of the vacuum
perceived by stationary (uniformly accelerating) observers
outside black holes (in Minkowski space-time). Of course, in
that case the dual space can be interpreted in terms of the
particle states on the hidden side of the horizon [45,50] and
the entanglement arises among modes across the horizon.
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