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Recent theoretical and experimental advances have demonstrated advantages of using non-Gaussian optical
resources compared to the Gaussian ones in the context of quantum teleportation (QT), an important quantum
information processing task. From both theoretical and experimental points of view the question of which
attributes of the resources, besides entanglement, render them useful for QT is an important one. In this paper, we
examine the question of whether two well-studied attributes of optical resources, viz., squeezed vacuum affinity
(SVA) and Einstein-Podolsky-Rosen (EPR) correlation are necessary and/or sufficient for QT. The specific class
of non-Gaussian resources that we have considered for this purpose are the two-mode entangled states generated
by mixing nonclassical inputs with vacuum at the beam splitter (BS). Our analytical results show that SVA is not
always nonzero and hence it cannot be considered to be a genuine attribute. Our numerical results show that there
exist some BS-generated entangled states that do not give QT in spite of being EPR correlated, implying that
EPR correlation is not sufficient for QT. In conjunction with the earlier observation in the literature to the effect
that EPR correlation is not necessary for QT, our results lead to the conclusion that in general, EPR correlation
is neither necessary nor sufficient for QT. Our results leave the question open as to what attributes, in general,
may be necessary and/or sufficient for QT.
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I. INTRODUCTION

Quantum teleportation (QT) [1,2] is one of the most im-
portant information processing tasks that serves as a building
block for several other protocols of quantum information tech-
nology [3], such as quantum key distribution, remote state
preparation, etc. Resources yielding QT could be realized in
terms of discrete spin systems [4], continuous variable optical
states [5], as well as hybrid systems [6]. Theoretical and
experimental advances in the last few decades have also led
to practical realizations of QT [7–13].

While earlier studies of QT using optical resources have
dealt with two-mode Gaussian states [14], as these are easy to
characterize theoretically and generate experimentally, recent
studies on non-Gaussian resources [15–29] have indicated
significant improvement in teleportation fidelities over the
Gaussian ones. Generation of non-Gaussian resources has also
become feasible as a result of recent quantum technological
advances [30]. Hence in this context, the systematic charac-
terization of non-Gaussian resources that are suitable for QT
becomes important.

While entanglement is already known to be necessary for
QT with optical resources [31,32], subsequent studies in the
literature have examined the possibility of other attributes of
the resource states that may be either crucial for QT, or aid in
enhancing teleportation fidelities. In this context, Dell’Anno
et al. [17] showed that optimized teleportation fidelities could

*soumyabose@iisermohali.ac.in
†sanjay@bose.res.in

be achieved by tuning entanglement, non-Gaussianity, and
squeezed vacuum affinity (SVA) of the resource states. Later
studies on other classes of resources as well as under realistic
circumstances [19,23–25,28] reveal that although it is neces-
sary, non-Gaussianity does not increase the fidelity linearly.

Besides, other works have pointed out that another attribute
of the resource states, viz., Einstein-Podolsky-Rosen (EPR)
correlation, is crucial for QT [18,27]. In a recent work, Hu
et al. [29] have further made a comparison between EPR cor-
relation and Hillery-Zubairy (HZ) correlation and concluded
that EPR correlation is in fact a better witness of QT than HZ
correlation. On the contrary, Lee et al. [21] and Wang et al.
[26] have pointed out a counterexample, viz., the symmet-
rically photon added two-mode squeezed vacuum (TMSV)
state, and concluded that EPR correlation is not necessary for
QT.

In this background, we examine here the question of which
attribute(s) of the resource states, besides entanglement, may
be necessary and/or sufficient for QT. The specific class of
non-Gaussian resource states that we have considered for this
purpose are the two-mode entangled states generated by mix-
ing nonclassical inputs with vacuum at the beam splitter (BS).
The specific attributes of the resource states we consider are
SVA and EPR correlation.

We find that SVA is not always nonzero. For example, SVA
for the BS-generated state with input at one of the ports being
an m-photon added or subtracted squeezed vacuum state (m
odd) is strictly zero. Clearly hence, SVA cannot be considered
to be a genuine attribute of the resource states in general. Fur-
ther, our numerical results show that most of the BS-generated
states that are EPR correlated do not yield QT, implying that
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EPR correlation is not sufficient for QT. In conjunction with
the earlier observation in the literature [21,26] to the effect
that EPR correlation is not necessary for QT, our results lead
us to the conclusion that in general, EPR correlation is neither
necessary nor sufficient for QT. Our results leave the question
open as to what attributes, in general, may be necessary and/or
sufficient for QT.

This paper is organized as follows. In Sec. II we briefly
describe Braunstein-Kimble (BK) protocol for teleportation
with optical resources and our analytical results on QT with
BS-generated resources. Section III presents a comparative
analysis of SVA and EPR correlation with the results on
teleportation. Here, we provide analytical proof that SVA is
identically zero for most of the resources while EPR cor-
relation is not sufficient for QT in general. In Sec. IV we
summarize and conclude our findings.

II. TELEPORTATION OF A COHERENT STATE
WITH BS-GENERATED RESOURCES

A. BK protocol and QT

The most popular protocol for realizing QT with optical
resources is the BK protocol [5]. In this protocol, two dis-
tant parties, Alice and Bob, transmit quantum information
from one laboratory to another at the cost of their shared
entanglement supplemented by classical communication [33].
In the ideal case, the output of the protocol turns out to be
a perfect replica of the input state (|ψin〉); however, in real
practice, various technical limitations lead to a noisy output
(ρout) that differs from the input state. As a consequence, the
performance of the protocol is measured in terms of the fi-
delity between input and the output states, F = 〈ψin|ρout|ψin〉,
known as the teleportation fidelity [1,2]. Resources are ac-
cordingly categorized as the genuine quantum ones [34]
which yield F beyond the scope of classical physics.

In the BK [2] protocol, the evaluation of F becomes con-
venient in the characteristic function (CF) description [35,36].
The CF of an n-mode quantum optical state ρ is defined as
χρ ({λi}) = Tr[ρD({λi})], where D({λi}) = �n

i=1 exp[λia
†
i −

λ∗
i ai], where ai is the ith mode operator. For any two-mode

state ρAB as a resource, the fidelity of teleportation of an
unknown input state ρin can be expressed as [35,36]

F =
∫

d2λ

π
χin(−λ) χin(λ) χAB(λ, λ∗), (1)

where χin(λ) and χAB(λ, λ∗) are the CFs of ρin and ρAB,
respectively. In the case of a coherent state |α〉 taken as the
unknown input state, Eq. (1) reduces to

F =
∫

d2λ

π
e−λ2

χAB(λ, λ∗). (2)

The maximum fidelity of teleportation of a coherent state
attainable by a separable state in the BK protocol is 1/2
[31,32]. Hence, F > 1/2 is considered as QT. Henceforth, by
teleportation fidelity we refer to Eq. (2) only.

B. QT with BS-generated resources

Here we consider the non-Gaussian entangled resources
generated by mixing at the input of a passive 50:50 BS

nonclassical single-mode state at one port and single-mode
vacuum at the other port. Note that in this setup, BS output
states are guaranteed to be entangled by virtue of the nonclas-
sicality of the input states [37]. The specific input states that
we consider here are the photon-added squeezed vacuum state
(PAS), the photon-subtracted squeezed vacuum state (PSS),
and the squeezed number state (SNS). Several interesting
features of output entangled states, with these nonclassical
states at the input of a BS, were brought out in our earlier
work [38].

The PAS, PSS, and SNS are mathematically described
as

|ψpas〉 = 1√
Nm

pas

a†mS(r)|0〉

|ψpss〉 = 1√
Nm

pss

amS(r)|0〉

|ψsns〉 = S(r)|m〉, (3)

where S(r) = exp[ r
2 (a†2 − a2)] is the single-mode

squeezing operator and the quantities Nm
pas and Nm

pss
are defined by the relations Nm

pas = m!μmPm(μ), Nm
pss =

m!ν2m
∑m

k=0
m!

(m−k)!k! ( −μ

2ν
)k H2

k (0)
k! , μ = cosh r, and ν = sinh r.

Here Pn(x) and Hn(x) are respectively nth-order Legendre and
Hermite polynomials.

We have obtained analytic expressions of F for different
input states as

Fpas = m!(1 + τ )m+1/2μ2m

2m+1 Nm
pas

m∑
k=0

(
m

k

)(−1

2

)k H2
k (0)

k!

Fpss = m!(1 + τ )m+1/2ν2m

2m+1 Nm
pss

m∑
k=0

(
m

k

)(
τ − 2

2τ

)k H2
k (0)

k!

Fsns = (1 + τ )m+1/2

2m+1

m∑
k=0

(
m

k

)(
τ − 1

2(1 + τ )

)k H2
k (0)

k!
, (4)

where μ = cosh r, ν = sinh r, τ = tanh r,
(m

k

)
is the binomial

coefficient, and the subscript of F stands for the correspond-
ing BS input state. In Fig. 1 we plot the dependence of F on
the input state parameters, i.e., squeeze parameter r and the
number of photon addition or subtraction, m.

As is evident from Fig. 1, in the case of all three input
states, the teleportation fidelity F exhibits a rather complex,
in particular a nonmonotonic, dependence on the state param-
eters r and m. In the case of PAS, for small r while F decreases
with increase in m, as r increases the trend reverses. This
might be associated with the nonmonotonic dependence of
corresponding entanglement [38]. In the case of PSS, we ob-
serve an explicit distinction between the even and odd photon
subtraction. While for odd photon subtraction, F decreases
with m, for even photon subtraction F first increases and then
decreases with m. For input SNS, however, F drops monoton-
ically with increase in m. Nonetheless, it is noteworthy that in
all three cases, F increases monotonically with r.
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FIG. 1. Plot of F vs r for m = 0 (black solid line), 1 (yellow
dashed line), 2 (green dotted line), 3 (blue dash-dotted line), and 4
(red dash-double-dotted line) with input states (a) PAS, (b) PSS, and
(c) SNS. The violet long dashed line corresponds to the maximum
“classical” limit, i.e, F = 1/2. Plotted quantities are dimensionless.

III. TELEPORTATION FIDELITY VERSUS SVA
AND EPR CORRELATION

A. SVA is not a genuine resource

Dell’Anno et al. [17] showed that optimized teleportation
fidelities could be achieved by tuning entanglement, non-
Gaussianity, and SVA of the resource states. It turns out that
in the case of the non-Gaussian resource states that Dell’Anno
et al. have considered, viz., states obtained by addition or
subtraction of an equal number of photons on the TMSV
state, SVA is always nonzero. In the light of their results,
while non-Gaussianity is clearly not necessary for QT, one is
tempted to ask if SVA could be considered necessary for QT
in general.

For any two-mode state ρab, η (quantifying SVA) is defined
as its maximal overlap with the TMSV (|ξs〉),

η = max
s

|〈ξs|ρab|ξs〉|, (5)

where |ξs〉 = Sab(s)|0, 0〉 with Sab(s) = exp{s(a†b† − ab}.
However, we notice that η becomes trivially zero for most

of the resources we consider here. This could be explained in
the following way. The state |ξs〉 has a symmetric expansion
in number state basis as |ξs〉 = 1

μs

∑
k τ k

s |k, k〉, where μs =
cosh s and τs = tanh s. Let us now consider a two-mode state
ρ = ∑

m, n
k, l

Ck,l
m,n |m, n〉〈k, l|. The overlap between |ξ (s)〉 and

ρ is given by

overlap = 〈ξ (s)|ρ|ξ (s)〉 = 1

μs

∑
m, n
k, l

Ck,l
m,n τm+k

s δm,n δk,l . (6)

Evidently, in the case of a two-mode state ρ for which the
diagonal elements for all m and k vanish (e.g., Ck,k

m,m = 0), SVA
is identically zero. In other words, for any two-mode state
for which 〈n1, n1|ρ|m1, m1〉 = 0, SVA vanishes identically.
Hence, owing to the fact that SVA is not guaranteed to be
nonzero for all resource states, it cannot be taken to be an
essential attribute for QT.

B. EPR correlation is not sufficient for QT

In their seminal paper [39], Einstein, Podolsky, and Rosen
proposed an ideal bipartite state, known as the EPR state
[40,41], which is a common eigenstate of the relative position
and total momentum of the subsystems. In view of the fact that
the EPR state is a maximally correlated state, in general, for
any bipartite state ρab, one can accordingly define an EPR-
type correlation parameter, known as the EPR uncertainty
�EPR [42], given by

�EPR = 〈δ2(xa − xb)〉 + 〈δ2(pa + pb)〉, (7)

where δnR = (R − 〈R〉)n and {xi, pi} (i = a, b) is the mode
quadrature. EPR uncertainty (�EPR) being less than 2 in-
dicates EPR correlation while �EPR = 0 signifies perfect
correlation between the modes.

Recent work [18,27] has brought out the fact that EPR
correlation of the resource states is crucial for QT. In this
section we carry out a detailed analysis of the role of EPR
correlation in the case the BS-generated resource states that
we have considered with the input states described in Eq. (3).

In the case of the input state |ψ〉, EPR uncertainty for the
corresponding BS output state we denote by �EPR(|ψ〉). Here,
we derive analytic expressions of �EPR for the BS output
states as

�EPR(|ψpas〉) = 2

[
Nm+1

pas

Nm
pas

+ μ2m(m + 2)!

Nm
pas

(μν

2

)

×
m∑

k=0

(
m
k

)(−ν

2μ

)k Hk (0)Hk+2(0)

(k + 2)!

]
,

�EPR(|ψpss〉) = 2

[
1 + Nm+1

pss

Nm
pss

+ ν2m(m + 2)!

Nm
pss

(μν

2

)

×
m∑

k=0

(
m
k

)(−μ

2ν

)k Hk (0)Hk+2(0)

(k + 2)!

]
,

�EPR(|ψsns〉) = 2[1 + m(μ − ν)2 − ν(μ − ν)], (8)

where μ = cosh r, ν = sinh r, and
(m

k

)
is the binomial co-

efficient. In Fig. 2 we plot the dependence of �EPR for the
BS-generated resource states on the corresponding input state
parameters, i.e., r and m.

As is evident from Fig. 2, the dependence of �EPR upon
the state parameters r and m is not monotonic, in general. For
PAS and SNS, �EPR increases with m and decreases with r
monotonically. However, in the case of PSS, we observe a
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FIG. 2. Dependence of �EPR on r for different m = 0 (black
solid line), 1 (yellow dashed line), 2 (green dotted line), 3 (blue dash-
dotted line), and 4 (red dash-double-dotted line) for input (a) PAS,
(b) PSS, and (c) SNS. The long dashed violet line corresponds to
�EPR = 2.0. Plotted quantities are dimensionless.

clear distinction between the even and odd photon subtraction.
While for odd m-PSS EPR correlation exists (�EPR < 2) after
a moderate r, all even m-PSS are always EPR correlated for
all values of r. Nonetheless, both for the even and odd m-PSS,
increase in m decreases �EPR, contrary to the cases of PAS
and SNS.

A cursory glance at the plots of teleportation fidelity
(Fig. 1) and EPR correlation (Fig. 2) suggests that the latter
behaves in line with the former, in the sense that whenever
F increases, �EPR decreases. However, a close inspection
reveals that there exist particular parameter regions where
resource states are EPR correlated (�EPR < 2) yet they do
not yield QT (F > 1/2). To bring out this point explicitly,
we consider the case of input |ψpas〉 with m = 1. It could be
shown easily that

�EPR(|ψpas〉)|m=1 = 2(3μ(μ − ν) − 1),

Fpas|m=1 = (1 + τ )3/2

4
. (9)

It follows from the above equation that the corresponding
BS output state is EPR correlated, i.e., �EPR(|ψpas〉)m=1 < 2

for r > 0.55, while it yields QT, i.e., F (|ψpas〉)m=1 > 1/2 for
r > 0.68. This indicates that in the case of input |ψpas〉 with
m = 1, in the region 0.55 < r < 0.68 we have EPR correla-
tion; however, the resource state does not yield QT. Note that
in the cases of input |ψpss〉 with m = 1, and input |ψsns〉 with
m = 1, too, we can identify ranges of the squeeze parameter r
over which the BS output states are EPR correlated, but do not
yield QT exactly the same as in the case of |ψpas〉 with m = 1.
The reason for this is that for m = 1 all three states can be
shown to be identical [38].

We further note that in the case of input states with higher
order photon addition and subtraction, the parameter regions
over which resource states are EPR correlated but do not lead
to QT become much wider. This leads us to the conclusion
that EPR correlation, in general, is not sufficient for QT. It
then follows, in conjunction with the earlier observation in
the literature [21,26] to the effect that EPR correlation is not
necessary for QT, that in general, EPR correlation is neither
necessary nor sufficient for QT.

IV. DISCUSSION

To summarize, we have critically examined the question of
which attributes of the resource states besides entanglement
may be necessary and/or sufficient for QT. In particular, we
have focused on two such attributes that have been well stud-
ied in the literature, namely, SVA and EPR correlation. To this
end, we have studied, both analytically and numerically, QT
with a class of non-Gaussian resource states that are generated
by a passive balanced BS from three different input single-
mode nonclassical states, viz., photon added and subtracted
squeezed vacuum states and squeezed number states.

We have found that as SVA is not nonzero for a wide range
of states, it hence cannot be regarded as a genuine attribute
of the resource states in general. We have given a com-
plete characterization of the states for which SVA is trivially
zero.

We have further presented numerical and analytical re-
sults on the dependence of QT upon EPR correlation. Our
results lead us to the conclusion that EPR correlation is not
sufficient for QT, in general. In conjunction with the earlier
results [21,26], our analysis leads us to the conclusion that
EPR correlation is neither necessary nor sufficient for QT, in
general. Hence, our results leave the question open as to what
attributes, in general, may be necessary and/or sufficient for
QT.
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