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Quantum computers can be used for supervised learning by treating parametrized quantum circuits as models
that map data inputs to predictions. While a lot of work has been done to investigate the practical implications of
this approach, many important theoretical properties of these models remain unknown. Here, we investigate how
the strategy with which data are encoded into the model influences the expressive power of parametrized quantum
circuits as function approximators. We show that one can naturally write a quantum model as a partial Fourier
series in the data, where the accessible frequencies are determined by the nature of the data-encoding gates in
the circuit. By repeating simple data-encoding gates multiple times, quantum models can access increasingly
rich frequency spectra. We show that there exist quantum models which can realize all possible sets of Fourier
coefficients, and therefore, if the accessible frequency spectrum is asymptotically rich enough, such models are

universal function approximators.
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I. INTRODUCTION

A popular approach to quantum machine learning uses
trainable quantum circuits as machine learning models simi-
lar to neural networks. Quantum gates—the building blocks
of quantum circuits—are used to encode data inputs x =
(x1,...,xy) as well as trainable weights 8 = (0, ..., Oy).
The circuit is measured multiple times to estimate the expec-
tation of some observable, and the result is interpreted as a
prediction. The overall computation implements a “quantum
model function” fy(x), a machine learning model that is based
on quantum computing. This approach is known by differ-
ent names such as variational circuits [1,2], quantum circuit
learning [3], quantum neural networks [4,5], or parametrized
quantum circuits [6].

A lot of work has been done to understand the practical
details of this approach, leading to useful training strategies
[3,7,8] and ways to emulate and extend classical machine
learning methods [2,9-12]. A growing body of literature,
motivated by the dilemma of investigating the performance
of quantum machine learning when only small-scale experi-
ments are physically possible, tries to understand the potential
power of variational circuits from a theoretical perspective
[5,13-15]. Still, only little is known about the actual func-
tion classes that quantum circuits give rise to. Can quantum
models express any function in the input x, or are they limited
to a specific class of functions? Can this class of “learnable
functions” be characterized in a meaningful way, and can the
characterization be used to guide design choices and potential
applications for these quantum models?

In this paper we investigate these questions in a framework
focused on the role of data encoding. We consider standard
models from the literature that consist of multiple “circuit
layers,” each made up of a data-encoding (circuit) block and a
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trainable (circuit) block, and assume that input features x € R
are encoded by gates of the form ¢, where H is an arbitrary
Hamiltonian. Our main tool is the natural representation of
such quantum models as a Fourier-type sum

fo) =Y cu(B)e, ()

weR

where wx is the inner product. We show that the frequency
spectrum © C RY is solely determined by the eigenvalues of
the data-encoding Hamiltonians while the design of the entire
circuit controls the coefficients ¢, that a quantum model can
realize (see Fig. 1). The representation of quantum models as
Fourier-type sums characterizes the function families that a
given class of quantum models can learn via two interrelated
properties. The first property is the frequency spectrum €2,
which determines the functions e/ that the quantum model
“has access to.” The second property is the expressivity of the
coefficients {c,} that a class of quantum models can control,
which determines how the accessible functions can be com-
bined. In many natural settings, the frequencies are integers,
Q C ZV, and the sum becomes a multidimensional partial
Fourier series

fox) =) cal@)e™, )

neQ

where the ¢™ are orthogonal basis functions. We use the
nomenclature partial Fourier series to indicate the fact that
only a subset of the Fourier coefficients is nonzero. The
Fourier series formalism allows us to study quantum models
using the rich techniques developed in Fourier analysis.

First, we consider the popular strategy of encoding an input
into single-qubit rotations, and show that repeating the encod-
ing r times either sequentially or in parallel allows the model
to access frequency spectra €2 consisting of r frequencies.

©2021 American Physical Society
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FIG. 1. Illustration of the main result of this paper, shown for
one-dimensional inputs x € R: Quantum models consisting of lay-
ers of trainable circuit blocks W = W (#) and data-encoding circuit
blocks S(x) can be written as a weighed sum »__ c,e*. The data-
encoding circuit determines the frequencies w, and the remainder
of the circuit architecture determines the coefficients c,. If the w
are integer valued (or integer-valued multiples of a base frequency
ayp), the sum becomes a partial Fourier series, which allows us to
systematically study properties of the function class a given quantum
model can learn.

This places into a broader context an observation made in
Ref. [7], which states that encoding a data feature only once
into the angle of a single-qubit rotation restricts the function
class that quantum models can learn to a simple sine function
(or equivalently, a Fourier series with a single frequency).
Second, we provide bounds for the maximum number of
frequencies and Fourier coefficients a quantum model can
control for more general data-encoding strategies. Finally,
we study the universality of quantum models. We show that
for sufficiently flexible trainable circuit blocks there exists a
quantum model which can realize any possible set of Fourier
coefficients. If, asymptotically, the accessible frequency spec-
trum is rich enough, then such models are universal function
approximators. This follows from the fact that Fourier series
with arbitrary coefficients can approximate any square inte-
grable function on a given interval [16].

A few existing studies are related to our work. For ex-
ample, Pérez-Salinas et al. [17] considered quantum models
with sequentially repeated data encodings and conjectured
that they are universal function approximators under a spe-
cial kind of classical data pre-processing. Killoran et al.
[18] have shown that many neural networks can be natu-
rally emulated on a photonic quantum computer, and point
out that such quantum models therefore inherit universality.
The majority of quantum-machine-learning papers concerned
with questions of expressivity and universality [19-22], how-
ever, interpret these concepts from a quantum information
perspective, which asks whether a circuit can express any
quantum computation, not any function in the inputs. How-
ever, in the context of (supervised) machine learning, quantum

universality does not necessarily imply universal function ap-
proximation; a quantum circuit able to realize arbitrary unitary
evolutions may only be able to express a limited class of
functions f(x).! From the function expressivity viewpoint,
Ref. [23] has investigated the pseudodimension of a particular
class of quantum models, an expressivity metric which allows
one to characterize learnability and generalization power of
the associated model. Also, the essential role of data en-
coding for quantum machine learning has been emphasized
in previous papers. For example, it was remarked that data
encoding determines the features that quantum models repre-
sent [24,25], the decision boundaries they can learn [26], as
well as the measurements that optimally distinguish between
data classes [27]. A central contribution of this paper is to
systematically combine the study of data encoding with that
of the expressivity of quantum models.

We present our results as follows: Section II introduces the
basic idea of writing quantum models as partial Fourier series.
Section III puts the tool to use and analyzes the expressivity of
quantum models, which leads to a proof that quantum models
are universal in Sec. IV. Section V discusses practically rele-
vant implications.

II. QUANTUM MODELS AS PARTIAL FOURIER SERIES

First, we introduce our basic tool: the natural represen-
tation of a quantum model as a partial Fourier series. For
simplicity, the majority of our presentation will focus on the
case of univariate functions with inputs x € R, but we gener-
alize this to multivariate functions in Appendix A, which is
used for the analysis of universality in Sec. I'V.

We define a (univariate) quantum model fy(x) as the ex-
pectation value of some observable with respect to a state
prepared via a parametrized quantum circuit, i.e.,

fox) = 0IUT (x, )MU (x, 6)|0), 3)

where |0) is some initial state of the quantum computer,
U (x, 0) is a quantum circuit that depends on the input x and a
(possibly empty) set of parameters 6, and M is some observ-
able. The prediction of the quantum model at a specific point
x is estimated in practice by running the circuit multiple times
and averaging over the measurement results.”> The quantum
circuit itself is constructed from L layers, each consisting
of a data-encoding circuit block S(x) and a trainable circuit
block W (@) controlled by the parameters 6 (see Fig. 1). The
data-encoding block is the same in every layer and consists of
gates of the form G(x) = =¥, where H is a Hamiltonian that
generates the “time evolution” used to encode the data. Since
we want to focus on the role of the data encoding, and to avoid
further assumptions on how the trainable circuit blocks are

'As an extreme example, consider a parametrized quantum circuit
that encodes the data into gates acting on qubits which are never
entangled with the measured qubits—in which case f(x) is a constant
function, and the resulting machine learning model trivial.

ZNote that the quantum model is a theoretical construction, since
physical measurements will always result in an estimate of the output
expectation, making f a random variable—a complication that we
will ignore here.
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FIG. 2. The general quantum model considered in this paper
includes qubit-based circuits where the encoding subroutine consists
of a single-qubit gate G(x), which is often used in practice. The
picture illustrates two special cases investigated in Sec. III: (a) shows
a circuit where the scalar input feature x is encoded by one single-
qubit gate, which can be repeated » = L > 1 times but always acts
on the same qubit, and (b) repeats the encoding gate r times in
“parallel” using only one layer. Note that the trainable blocks W
(purple rectangles) represent arbitrary unitaries, which in practice
would be implemented as a sequence of local gates (inset).

parametrized, we view the trainable circuit blocks as arbitrary
unitary operations, W(#) = W, and drop the subscript of fy
from here on.> With this assumption, the overall quantum
circuit has the form

Ukx) = W(L+1)S(X)W(L) . W(Z)S(x)W(l). )

Note that the encoding strategy is very natural, since the
physical control parameters of quantum dynamics usually en-
ter as time evolutions of Hamiltonians—the most prominent
example being Pauli rotations. This model includes “parallel
encodings” that repeat the encoding on different subsystems
[28], as well as “data reuploading,” where the encoding is
repeated multiple times in sequence [17] (see Fig. 2). With
a small amount of classical preprocessing this model includes
even many quantum-machine-learning algorithms that are not
based on the principles of parametrized circuits (see also
Sec. VA).
Our goal is to write f as a partial Fourier series

) =" ce™, ®)

neQ

with integer-valued frequencies [if 2 = {—K, ..., K}, then
we call (5) a truncated Fourier series]. The first step is to
note that one can always find an eigenvalue decomposition of

30f course, in realistic near-term settings these unitaries are im-
plemented as short gate sequences and are by no means universal,
and there are many interesting questions around how a specific
parametrization influences the properties of the resulting quantum
model.

the generator Hamiltonian H = VXV where X is a diagonal
operator containing H’s eigenvalues Aq, ..., Ay on its diag-
onal. The data-encoding unitary becomes S(x) = Ve %V,
and we can “absorb” V, VT into the arbitrary unitaries W’ =
VWV, Hence, without loss of generality we will assume that
H is diagonal. This allows us to separate the data-dependent
expressions from the remainder of the circuit in each compo-
nent i of the quantum state U (x)|0),

d
[UI0)]; = Y e @ty 2w,

(6)

For ease of notation we introduce the multi-index j =

{1, ..., jr} € [d]*, where [d]" denotes the set of any L in-

tegers between 1,...,d. We can then denote the sum of

eigenvalues for a given j by Aj = A; +---+ A, and write

Jrji=1

W0, = Y. e WD w@wh ()

Jjr e
jeldi-

To consider the full quantum model from Eq. (3) we need to
take into account the complex conjugation of this expression
as well as the measurement, and get

fx) = Z eMA g (8)
k. jeld]*

where the ai ; contain the terms stemming from the arbitrary
unitaries and measurement,

ag.j = Z W{;CI(I)W* @... W;Zi(lrkl)Mi’l‘r

Jij2
i,i
(L+1) 2) (1)
xWej o Wi Wi )

The second step consists of grouping all terms in the sum (8)
whose basis function ¢/**~4/)¥ has the same frequency w =
Ay — Aj. All frequencies accessible to the quantum model are
contained in its frequency spectrum

Q= {Ax—Aj, k,jeldl"}). (10)
This yields
f@) =) cpe™, (11)
we2

where the coefficients are obtained by summing over all ay;
contributing to the same frequency

Co= D arj. (12)
k,jeld*

Ay — A j=ow
We note that the frequency spectrum 2 has the following
important properties: 0 € €2, and for every frequency w € €,
we have also that —w € Q. Additionally, since ¢, = c* ,
Eq. (11) realizes a real-valued function. We will therefore
denote with K = (|2| — 1)/2 the size of the spectrum, as
it quantifies how many independent nonzero frequencies the
model has access to. The largest available frequency D =
max(€2) is called the degree of the spectrum. Furthermore,
the coefficients ¢, are determined by the arbitrary gates
WO ... WD (which absorbed the V, VT from the encoding
Hamiltonians), as well as by the measurement observable.
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As a consequence, a quantum model’s frequency spectrum
is solely determined by the eigenvalues of the data-encoding
gates, while its Fourier coefficients depend on the entire cir-
cuit, as was claimed in Fig. 1. While so far we have not
imposed restrictions on the frequencies w, one can see that
for integer-valued eigenvalues A, ..., A4, the frequencies in
Q2 are themselves integer valued, and Eq. (11) yields the real-
valued partial Fourier series from Eq. (5). As we will show
in the following section, common data-encoding strategies in
near-term quantum machine learning fulfill the property of an
integer-valued frequency spectrum. Even if the eigenvalues
of the encoding gate generators, and therefore the accessible
frequencies w € €2, are merely integer-valued multiples of
a “base frequency” {njwg, nywo, ...}, the treatment is still
analogous to the integer case (see Appendix B). We therefore
focus much of our analysis on this case.

For both integer or noninteger frequencies, the expressivity
of a quantum model is determined by two different properties:
the frequency spectrum of the quantum model, including its
size and degree, and the expressivity of the coefficients con-
trolled by the model. As we will show in the next section,
these two properties give us insights into the function classes
that different quantum models can learn.

III. THE EXPRESSIVITY OF QUANTUM MODELS

We proceed to use the Fourier series formalism to inves-
tigate the expressivity of quantum models. We start with an
analysis of the popular strategy [3,25,29-34] of using single-
qubit Pauli rotations in the encoding subroutine S(x) in order
to showcase the practical value of the approach. We then
characterize the limits of a quantum model’s expressivity for
a given data-encoding gate in more general terms.

A. A single Pauli-rotation encoding can only learn
a sine function

As a “warm-up” application of the Fourier series formal-
ism, we start by considering a simple quantum model with
L = 1, where we use a single-qubit gate G(x) = e~ to en-
code the input x into the circuit [see also Fig. 2(a) with L = 1],

Ux)=WAGwW. (13)

As a single-qubit gate generator, H has two distinct eigen-
values (A, ). We can without loss of generality always
rescale the energy spectrum to (—y, y) because the global
phase is unobservable. We note that the class of such en-
coding gates includes Pauli rotations, with H = (1/2)o for
o € {oy, 0y, 0.}, for which y = % We aim to show that mod-
els of the type (13) always lead to functions of the form
f(x) =Asin(2yx + B) + C, where A, B, C are constants de-
termined by the nonencoding part of the variational circuit,
which reproduces the prior observation from Ref. [7]. A sine
function can be described by a truncated Fourier series of
degree 1—and in the next section we will go on to show how
one can systematically increase the degree by repeating the
encoding gate.

First, since we can absorb the factor y into the data input
by rescaling it via ¥ = yx, we can assume without loss of

generality that the eigenvalues of H are always Ay = —1, A, =
1. From Eq. (10) we can immediately see that the spectrum of
the quantum model is given by 2 = {—2, 0, 2} [since the pos-
sible differences Ay, — A, for Ay, A; € {—1, 1}are —1 — (1),
—1—(=1),1 = (1),and 1 — (—1)]. The Fourier coefficients
in Eq. (12) become

co = ZMii’(W*)(112)(W*)g)m/(12)w1(11)7 (14)
0= ZMii’(W*)ill)(W*)ii)mg)Wz(ll)’ (15)
cy=0h, (16)

and the quantum model’s frequency spectrum consists of a
single nonzero frequency,

fO) =cae™ +cg+ cre”™
= ¢o + 2|cz| cos[2X — arg(c2)],

where arg(c;) is the complex phase of ¢,. For Pauli rotations,
one has ¥ = yx = 7, and we recover the result of Ref. [7] with
A =2|c;|,B=—m/2 — arg(cy), and C = ¢p. Importantly, we
have not assumed anything about the number of qubits, the
nature of the unitaries W, or the measurement M. This il-
lustrates a key point of this paper: Even with the ability to
implement very wide and deep quantum circuits (which may
even be classically intractable to simulate), the expressivity of
the corresponding quantum model is fundamentally limited by
the data-encoding strategy.

To support this finding, Fig. 3 shows numerical evidence:
Encoding data via a Pauli-X rotation results in a quantum
model that can only learn to fit a Fourier series of a single
frequency—and only if that frequency is exactly matched by
how the data are scaled.

B. Repeated Pauli encodings linearly extend
the frequency spectrum

Given the severe limitations exposed in the previous sec-
tion, a natural question is how we can extend the accessible
frequency spectrum of a quantum model. To this end, we
demonstrate in this section that by using either single-layer
models with L = 1 where the encoding gate is repeated r
times in parallel [as per Fig. 2(b)], or multilayer models with
L > 1 where the encoding gate is effectively repeated » = L
times in series [as per Fig. 2(a)], one can systematically in-
crease the degree of the truncated Fourier series to r. We note
once again that both of these techniques have been utilized
in prior practical applications [3,17,29-32], and as such the
observations we make here offer insight into the properties of
these models.

First, let us consider the case of single-qubit Pauli rotations
repeated in parallel [Fig. 2(b)]. This is a special case of our
base model in Eq. (3), with L = 1, and

Sx) = e 27 Q- Qe 2 (17)
— e—ixH7 (18)

where o; € {0y, 0, 0;}. The fact that all rotation gates com-
mute (as they act on different qubits) allows us to diagonalize
H by diagonalizing each rotation gate individually. Doing this,
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FIG. 3. A parametrized quantum model is trained with data sam-
ples (white circles) to fit a target function g(x) = Z:l=_1 cpe
or gx) = Zi;z cpe” ™ with coefficients cg = 0.1, ¢; = ¢, =
0.15 —0.15i. The variational circuit is of the form f(x)=
(0|UT(x)o.U(x)|0) where |0) is a single qubit, and U =
W®R, (x)W®. The W (round blue symbols) are implemented as
general rotation gates parametrized by three learnable weights each,
and R, (square blue symbols) is a single Pauli-X rotation. The left
panels show the quantum model function f(x) and target function
g(x), g(x), while the right panels show the mean-squared error be-
tween the data sampled from g and f during a typical training run.
Feeding in the input x as is (top row), the quantum model easily
fits the target of degree 1. Rescaling the inputs x — 2x causes a
frequency mismatch, and the model can no longer learn the target
(middle row). However, even with the correct scaling, the variational
circuit cannot fit the target function of degree 2 (bottom row). The
experiments in this paper were all performed using the PennyLane
software library [35].

we find that
S(x) = Ve 2%V @ ... @ Vie 2%V (19)
= Vexp (—i% XI:UZ@)VT (20)
g=1
= Ve Ty, (21)
where GZ(‘I) is the (diagonal) r-qubit operator which acts

nontrivially, via o;, only on the gth qubit. Performing the cal-
culation yields ¥ = diag(Ay, ..., Ayr), with the r + 1 unique
entries

p r—p r
w=(3-5")=r"3

pef0,...,r},

which are all possible sums of r values £1/2. According to
Eq. (10), the frequency spectrum for L = 1 contains differ-
ences of any two of these eigenvalues, and we get

Qpar = {Ae, — Ajy| ki 1€ (1,..., 27} (22)
r / r /
“{(=3)-(=3)lpreo..nfey
:{p_p/|p’p/€{07"'vr}} (24)
={—r—-r—-1),...,0,...,r—1,r}. (25)

Hence, a univariate quantum model with r parallel Pauli-
rotation encodings can be expressed as a truncated Fourier
series of degree .

Interestingly, the same scaling effect is achieved by
a single-qubit Pauli-rotation encoding repeated layerwise
[Fig. 2(a)]. Consider the quantum model in Egs. (3) and
(4), for L =r > 1 layers, where S(x) = exp[—i(x/2)o;] is a
single-qubit Pauli rotation (i.e., o; € {0y, 0y, 0;}) which acts
on the same qubit in each layer. The circuit in Eq. (4) becomes

U(x) = W(L+l)e_i%0"W(L) . W(Z)e_i%mW(l).

Diagonalizing the Pauli rotations as before, then gives us ¥ =
(1/2)0, for all encoding layers. The frequency spectrum from
Eq. (10) is a sum of 2r terms of value 1/2,

Queq = {(hy + -+ 2) = (i + -+,
ki, .oookey jis ..o jr € {12} (26)

After a short calculation, one finds that Q2seq = Qp.r. Again,
a quantum model with r sequential repetitions of the single-
qubit Pauli encoding can be expressed as a truncated Fourier
series of degree r. The growth mechanism of a quantum
model’s frequency spectrum via parallel and sequential repeti-
tions of single-qubit Pauli encodings is numerically illustrated
in Fig. 4.

C. Limits of expressivity

The representation of quantum models as Fourier-type
sums immediately allows us to derive upper bounds on the
expressivity of such quantum models when using L repetitions
of an encoding gate of dimension d (which is at most the size
of the overall Hilbert space). First, let us consider the maxi-
mum spectrum size K (L, d) of a quantum model, quantifying
the number of frequencies it can “support” or “has access
to.” Since the frequency spectrum is defined as 2 = {(A;, +
coo Ay ) — (Aj, + - - 4+ A, )} (where the indices ji, ..., ji,
ki, ..., kr run over all dimensions of the encoding gate, from
1 to d), the frequencies are sums of 2L terms, each having d
potential values. As a result, they can at most realize d2* dis-
tinct values—irrespective of whether the eigenvalues are real
or integer valued. Since the size K counts the pairs —w, w € Q
as one and excludes the “zero frequency,” we get

d2L
K< — -1 (27)
2
As an example, if data are encoded in a single-qubit encoding
gate, we recover the result from the previous sections where

the model has degree 272 — 1 =1. Using L different encod-

. . . 2L
ing gates increases this to 27 — 1. As we have seen, further
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FIG. 4. Fitting a truncated Fourier series of degree 5, g(x) =
23:75 cp,e¥™ with ¢, = 0.05—0.05i forn=1,...,5and ¢y =0,
using a quantum model that repeats the encoding r = 1, 3, 5 times
in sequence (left) and in parallel (right). Increasing r allows for
closer and closer fits until » =5 fits the data almost perfectly in
both cases—illustrating that parallel and sequential repetitions of
Pauli encodings extend the Fourier spectrum in the same manner. All
models were trained with at most 200 steps of an Adam optimizer
with learning rate 0.3 and batch size 25. For the “parallel” simula-
tions, the W are not arbitrary unitaries but implemented by a smaller
ansatz of three layers of parametrized rotations as well as entangling
controlled-NOT (CNOT) gates, as per Ref. [29], which is depicted by
the open rounded gate symbols. The quantum model still easily fitted
the target function, which suggests that the results of this paper are
of relevance for realistic quantum models.

assumptions on the eigenvalues allow us to make this bound
a lot tighter, for example, when the L repetitions use the same
single-qubit encoding gate, K = L.

An interesting question is whether there is a sin-
gle quantum gate which can encode data into a quan-
tum model that supports the frequency spectrum Q. =
{—o0,...,—1,0,1,...,00} of a full Fourier series. The
answer is yes: The ubiquitous phase shifts in continuous-
variable (CV) quantum systems, which correspond to a free
evolution of a harmonic oscillator, have the number operator
n = diag(0, 1, 2, ...) as a generator.

While the frequency spectrum of a quantum model can be
directly derived from the input encoding gates, the flexibility
in the coefficients is a lot harder to investigate systematically
(we will do so for special cases in the universality proofs in
Sec. IV). In principle, every block W, ..., WE+D " ag well
as the measurement observable, contribute to every Fourier
coefficient. This means that only a few degrees of freedom in
the gates may change an exponentially large (or, in the case of
continuous-variable quantum computing, infinite) amount of
Fourier coefficients. However, these Fourier coefficients are
not arbitrary, but functions of the limited degrees of freedom
of the quantum circuit, and a quantum circuit of a certain
structure may only be able to realize a small subset of the

entire set of all possible Fourier coefficients {c,}. To arbitrar-
ily control K + 1 complex Fourier coefficients, we need at
least M > 2K + 1 real degrees of freedom—in other words,
parameters @ = (6, ..., 6y )—in the quantum circuit. As a
special case, we saw that repeating a Pauli encoding L times
supports a spectrum of size L, which means that we need at
least 2L degrees of freedom in the quantum circuit to control
the Fourier coefficients arbitrarily—a scaling that is realistic
for shallow circuits to “utilize the full power” of the frequency
spectrum.

While a systematic analysis of how a parametrized ansatz
for the trainable blocks W impacts the control of a quantum
model’s Fourier coefficients exceeds the scope of this paper,
our simulations suggest that even quantum models with shal-
low trainable circuit blocks W give rise to rich subsets of
Fourier coefficients (see Fig. 5). However, as the figure shows,
an ansatz may structurally set a certain Fourier coefficient to
zero. An interesting further observation is that the variance
of the coefficients decreases with higher orders. Mathemat-
ically, this property stems from the fact that the number of
terms in the sum of Eq. (12) tends to decrease with larger
frequencies, since there are fewer ways to construct those
frequencies by the difference Aj — Ay of sums of encoding
generator eigenvalues. We note that the Fourier coefficients
of square-integrable functions show a similar behavior, which
contributes to the convergence of such series.

IV. QUANTUM MODELS
ARE ASYMPTOTICALLY UNIVERSAL

In the previous sections we have seen, at least for uni-
variate functions, that certain quantum models can be written
as a partial Fourier series, in which the accessible frequen-
cies are fully determined by the spectra of the Hamiltonians
generating the data-encoding gates. Additionally, by using
Pauli rotations as an explicit example, we have shown that
by repeating such encodings, either in parallel (L = 1) or in
a series (L > 1), it is possible to realize a truncated Fourier
series, with the number of accessible frequencies determined
by the number of data-encoding gate repetitions. In light of
these results, it is clear that if we allow for sufficiently many
repetitions of simple data-encoding gates (such as Pauli ro-
tations), or for Hamiltonians with large enough dimension
and suitably nondegenerate spectra, then quantum models can
realize arbitrary frequency spectra.

However, as discussed in the previous section, the expres-
sivity of a quantum model is determined not only by the
accessible frequency spectrum, but also by the flexibility one
has in adjusting the contributions of the frequencies, i.e., with
which flexibility the Fourier coefficients can be chosen. In this
section we show that if one allows for trainable circuit blocks
which are flexible enough to realize arbitrary global unitaries,
then there exists an L = 1 quantum model which can realize
all possible sets of Fourier coefficients. Combined with the
observations from the previous sections, this allows us to show
that such quantum models are asymptotically universal, in the
sense that if we allow the global Hilbert space dimension (or
the number of finite dimensional subsystems) to tend to infin-
ity, then such a quantum model can approximate, to arbitrary
accuracy, any square-integrable function on a suitable domain.

032430-6



EFFECT OF DATA ENCODING ON THE EXPRESSIVE ...

PHYSICAL REVIEW A 103, 032430 (2021)

Co C1 C2 C3 C4 Cs
o o o o o o
t: aoom o@ %@ [} o o
IS
a,
>
o
g
‘&0 o @ @ ] © o
]

o @ ° [ o °

real part

[\:\ [ - number of layers
= in the trainable ansatz
L - number of layers
— in the quantum model
L
E o g1 =P
e = f sl iel
U ehledlleheiedl
J [an} N ‘rl =1~ =6
& | U e e
[ ~ GL GL J; eL Ja

FIG. 5. Real and imaginary parts of the first six Fourier coefficients sampled from 100 randomly initialized L = 1 quantum models. The
models share the same encoding strategy of parallel Pauli-X rotations (square symbols) but vary in the ansatz and number of layers for the
trainable unitaries W. Circuit A uses an ansatz of trainable arbitrary single-qubit rotations and layer-dependent entangling structure proposed
in Ref. [29] and already used in Fig. 4, while circuit B uses trainable Pauli-X rotations with a simple entangling structure. The plots suggest
that the “expressivity” of the trainable circuit block—here represented by increasing the number of times / an ansatz is repeated—has little
influence on the distribution of the Fourier coefficients, as opposed to the type of ansatz.

More specifically, we consider the (multivariate) single-
layer quantum model fy : RV — R defined via

foe) = (0[UT (6, x)MU (8. x)|0), (28)
where
U@, x) =W2O@)sx)w @), (29)
with 81, 9*) C @ and
Sx):=e M @ ...V, (30)

The above model is a natural extension of the univariate L = 1
model we explored in previous sections. In Appendix A we
show that it naturally realizes a multivariate Fourier series,
with the frequency spectrum fully determined by the spectra
of the data-encoding Hamiltonians {H;}, and the Fourier coef-
ficients determined by the remainder of the circuit.

It is important to emphasize that in practical applications
one would typically consider trainable circuit blocks whose
circuit depth scales in a controlled way with respect to the
number of qubits in the circuit. However, we will in this
work assume that the trainable circuit blocks are sufficiently
flexible to realize arbitrary global unitaries, which may re-
quire exponential circuit depth when decomposed into natural
primitive gate sets. Given this, the asymptotic universality of
quantum models with either constant, logarithmic, or polyno-
mial circuit depth trainable blocks remains an interesting open
question.

With this assumption on the trainable circuit blocks, we can
drop the explicit dependence on 6, and by absorbing W into
the initial state |I"), and W® into the observable M, consider
instead the equivalent model

f@) = (TIST@)MS@)|T), €2y

where the universality of W) and W® is reinterpreted as the
assumption that |I") can be an arbitrary state, and M an arbi-
trary observable. In order to simplify things further, we will
also make the additional assumption that all data-encoding
Hamiltonians are equal, i.e., that

Sa)=eg...@e ™ (32)
= Sy (x). (33)

We are interested in a reasonable notion of universality in the
asymptotic regime of infinitely many available subsystems.
To formalize this, we introduce the concept of a Hamiltonian
family {H,, |m € N} where H,, acts on m subsystems of di-
mension d. An explicit example of such a family is a simple
tensor product of Pauli rotations, as studied in Sec. III B,
which corresponds to the Hamiltonian

H,, = Z ol (34)
i=1

As illustrated in Fig. 6, such a Hamiltonian family defines a
family of models {f,,} via

fu(x) = (TIS], )MSp, (x)|T), (35)

where for each m, the measurement M and the state |I") (or
equivalently the unitaries W) and W®) are the learnable
elements of the model.
Now, given some Hamiltonian H,, with eigenvalues
{A1, ..., Agn}, we call
Qy, ={Aj— Al jkefl,...,d"} (36)

m

the frequency spectrum associated with H,,. To achieve uni-
versality, we need a Hamiltonian family whose frequency
spectrum asymptotically contains any integer frequency.
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FIG. 6. Multivariate L = 1 quantum model considered for the
universality theorem. Here, S(x) consists of feature-encoding gates
acting on different subsystems (green boxes). The Hamiltonians that
generate these gates are defined to increase the “richness” of their
spectrum with growing dimension of the subsystems (red arrows).
Since we assume that the circuit depth and structure of the trainable
unitaries W and W® is sufficient to allow for the realization of
arbitrary unitary operations, the trainable circuits grow in dimension
along with the total system size.

We formalize this via the following notion: A Hamiltonian
family {H,,} is a universal Hamiltonian family if it has the
property that for all K € N there exists some m € N such that

Zg =1{-K,....0,.... K} C Qp,. (37)

As we have seen in the previous section, the Hamiltonian
family defined by the Hamiltonians in Eq. (34) is indeed
a universal Hamiltonian family, with m = K. As the possi-
ble number of frequencies grows exponentially, one could
think of more complicated Hamiltonian families in which the
required number of available subsystems only grows loga-
rithmically m = O(log K), at the cost of more complicated,
global Hamiltonian terms. With this setup, we can now state
the following universality result:

Theorem. Let {H,} be a universal Hamiltonian family,
and {f,} the associated quantum model family, defined via
Eq. (35). For all functions g € L,([0, 27]V), and for all € > 0,

there exists some m’ € N, some state |I') € C¢", and some
observable M such that

[1fm — 8&ll2 < €. (38)

A full proof is given in Appendix C, however, in the fol-
lowing we will provide a sketch of the proof in order to give
an outline of the ideas and techniques. The proof begins by
noting that any square-integrable function g on a finite interval
can be approximated by a truncated Fourier series to arbitrary
precision. We therefore reduce the task to finding a quantum
model for this truncated Fourier series. The universality prop-
erty of the Hamiltonian family implies that the multivariate
models we consider can express all necessary frequencies to
perform that approximation. We then show how to use the
freedom in choosing the initial state and the observable to re-
produce the truncated Fourier series of g exactly, leading to an
approximation by a quantum model with arbitrary precision.

Note that the statement that there exists some state |I")
and some observable M is equivalent to the statement that the
target function can be learned by the relevant model (under the
assumption the trainable circuit blocks are sufficiently flexi-
ble). As any frequency spectrum is asymptotically accessible,
due to the assumption of a universal Hamiltonian family, the

universality theorem is essentially equivalent to the statement
that with sufficiently flexible circuit blocks such quantum
models can realize any set of Fourier coefficients.

V. PRACTICAL IMPLICATIONS FOR QUANTUM
MACHINE LEARNING

In this last section, we discuss the scope and practical
relevance of our results for quantum machine learning. First,
we motivate that many quantum models proposed in the
literature that do not immediately fit the base model from
Eq. (3) can still be analyzed within our framework under the
assumption that they encode classically preprocessed features
¢(x) instead of the original features x. Second, we summarize
guidelines that can help with the design of quantum-machine-
learning algorithms.

A. Classical preprocessing

The base model used in this paper makes the assumption
that a data feature is encoded into a subroutine S(x) which
consists of gates G(x) = e, We motivate in this section
that many quantum-machine-learning algorithms which use
other strategies of data encoding actually perform an implicit
preprocessing of the data, and then use the “time-evolution”
encoding studied here. The results of this paper are hence
valid for the different features resulting from the preprocess-
ing step.

For example, the standard encoding procedure of tra-
ditional [36] and some noisy intermediate-scale quantum
(NISQ) [4] quantum algorithms, associates the n-bit binary
representation of each (scalar) input feature x with an n-
qubit basis state, such as x + [01011). The preprocessing
step therefore maps original features x to the angles ¢(x) =
[¢1(x), ..., ¢,(x)] with which the n qubits have to be rotated
to reflect every binary decimal digit of x (i.e., = for |1) or O
for |0)). Our investigation here states that the quantum model
for a single input feature corresponds to a multidimensional
Fourier series in the angles, with a frequency spectrum size
of at most n. In other words, the preprocessing changed the
accessible Fourier spectrum by changing the features.

Another example is so-called “amplitude encoding” (i.e.,
Refs. [28,29]), which associates an input vector x with the
values of the amplitudes of a quantum state. Practically, this
requires S(x) to be an arbitrary state preparation routine that is
parametrized by some angles computed from x. The classical
preprocessing therefore maps the original input to the set of
angles used in the state preparation, x > ¢(x).

Preprocessing is also sometimes used in encoding strate-
gies that directly feed input features into Pauli rotations. One
example was used in Figs. 3 and 4, where we rescaled the
inputs by a classical hyperparameter. In Ref. [17] it has been
proposed to make these hyperparameters trainable (which in
the light of the present analysis would allow for an adaptive
“frequency matching” and may help to increase the expressiv-
ity of small quantum circuits). Another example is to construct
higher-order features that are arithmetic combinations of the
original inputs, such as ¢;(x) = x1x2, ¢2(x) = xpx3, ..., as
used in the quantum feature map proposed in Ref. [25].
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These examples suggest that implicit preprocessing can
extend the function classes that quantum models can learn
even further. However, care needs to be taken when making
theoretical claims about the power of a quantum-machine-
learning algorithm, which is, strictly speaking, a result of the
quantum algorithm plus the specific preprocessing strategy. In
particular, comparisons to classical machine learning models
should identify the preprocessing strategy and consider feed-
ing the same preprocessed features to the classical model.

B. Practical insights

Finally, we want to summarize how the results of this
paper can be used to understand and evaluate different design
decisions of quantum-machine-learning models:

(1) If data are encoded via a Hamiltonian time evolution,
we can naturally describe the class of functions that quantum
models can learn as a partial Fourier series. The Hamiltonian
defines the available frequencies in the series, and the gates
that do not encode data define the Fourier coefficients.

(2) If data are encoded into single-qubit Pauli rotations, the
number of rotations used limits the number of frequencies
that the model has access to. Repeating an encoding gate
can help to increase the frequency spectrum, and thereby the
expressivity of a quantum model.

(3) Quantum models naturally learn periodic functions
in the data. One should therefore consider appropriate data
rescaling strategies, to make sure the data lie within the period
of the function class. The natural representation of quan-
tum models as a Fourier series may suggest that time-series
learning and signal processing tasks are particularly suitable
applications for quantum machine learning. It may also hint
at inherent regularizing properties of quantum models that
exclude higher-order Fourier frequencies.

(4) Classical preprocessing of the data, such as creating
more features, can give small models more expressivity by
enriching the frequency spectrum.

(5) Adjusting the entries of the observable freely was a
key ingredient in proving universality of quantum circuits in
Sec. IV. Fixing the observable in a quantum model therefore
limits its applicability. This fact suggests that parametrizing
the observable itself may be a key ingredient for flexible
quantum models.

Ideally, one would hope that our results could provide con-
crete guidelines for the design of quantum-machine-learning
models. However, in practical settings the process of model
selection should be guided not purely by model expressivity,
but rather through the expected generalization performance
of the model function class, as captured by capacity met-
rics such as the Vapnik-Chervonenkis (VC) dimension or
Rademacher complexity [37]. While such capacities can be
calculated for very simple function classes, calculating such
metrics for more complex model classes, such as the quantum
models studied here, is significantly harder. Additionally, in
modern overparametrized models, which can often fit even
randomized training data perfectly [38], more sophisticated
approaches are necessary to understand the generalization
capacity [39]. In light of this, the insights on how to make
models more expressive should not be misinterpreted as rec-
ommendations for how to design good quantum models—a

question which is much more complex and whose answer
depends strongly on the context.

VI. CONCLUSION

In this paper we presented a systematic mapping between
a large class of quantum-machine-learning models and partial
Fourier series, which has allowed us to explore and quantify
the effect of commonly used data-encoding mechanisms on
the expressivity of these quantum models. We believe that
this framework both lays a foundation for further theoretical
analysis, and can serve as a useful guide in the search for
suitable applications of such models. Additionally, this work
provides a connection between quantum machine learning
and ideas from the classical machine learning literature, such
as neural networks with periodic activation functions [40],
and parametrized Fourier series as an alternative to neural
networks [41,42].

As mentioned throughout the paper, a variety of interesting
questions remain. First, can the framework developed here
help us to understand and quantify the generalization capacity
of quantum models, and therefore guide model selection in
a meaningful way? In particular, by using the representation
of a quantum model as a partial Fourier series, can one cal-
culate meaningful modern generalization measures [39] and
use these for the development of model-selection guidelines?
Second, we have proven our universality result under the as-
sumption of exponential depth trainable circuit blocks (which
provides a reasonable notion of asymptotic universality with
respect to circuit depth). In practical settings, however, one is
interested in trainable circuit blocks with depth restrictions.
Can one prove universality of such quantum models with
either constant, logarithmic, or polynomial depth trainable cir-
cuit blocks? In order to answer this question our toolbox needs
to be developed further to understand how the structure of the
trainable circuit blocks influences the set of accessible Fourier
coefficients. Finally, it is currently unclear for which concrete
applications quantum models may be naturally suited, or offer
any sort of advantage over classical techniques, such as neural
networks. Another question is therefore whether one can use
knowledge of the function class expressed by quantum mod-
els, as developed in this work, to suggest natural applications
for quantum machine learning.

Auxiliary information regarding the CO, emissions related
to this work is supplied in the Supplemental Material [43].

Note added. Recently, we became aware that the connec-
tion between Fourier series and quantum-machine-learning
models with repeated data encoding has already been estab-
lished in Ref. [44]. While there is significant overlap between
this work and ours, we provide a different universality re-
sult, as well as a systematic development of this connection
through practically relevant examples.

Code to reproduce the figures and explore further settings
can be found in the GitHub repository [45].
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APPENDIX A: PARTIAL FOURIER SERIES
REPRESENTATION OF MULTIVARIATE FUNCTIONS

In this Appendix we show how a certain class of L =1
quantum models naturally realize a multivariate Fourier se-
ries. On the one hand, this shows a way in which the univariate
case analyzed in the paper can easily generalize to multivariate
models by encoding the features into different quantum sub-
systems. On the other hand, the multivariate model described
in this Appendix is a quantum model whose asymptotic uni-
versality is stated and discussed in Sec. IV, and proven in
Appendix C.

More specifically, we consider a quantum model of the
form

f@) = WIS @OWPTNMW D S@)WwW 110y, (A1)

where

Sx):=e ™ @ ... Qe WY, (A2)

Without loss of generality, instead of explicitly considering
arbitrary unitaries W and W®, we can “absorb” the uni-
taries into the initial state and measurement and consider the
equivalent model

@) = (TIST(x)MS(x)|T), (A3)

where
2d

Virojy 1) @ - ® |jn) (A4)

) =
j] ..... jN—l

is some arbitrary state, and M is some arbitrary observable.
To simplify the index handling, we introduce the multi-indices
j € [297Y with which we can rewrite

D) =Yyl
J

Additionally, as argued before, we can without loss of gener-
ality assume that all Hamiltonians are diagonal, i.e., that

(AS5)

H = diag(2{", ..., 2). (A6)

With this assumption, we note that S(x) is diagonal with
entries

[S@)]j;=e ™M, (A7)

where we have defined

1 (N)

x,-:(xj] s A )- (A8)

Given this, we see that
f@ =) yiulS @MS@); (A9)

i k&

(A10)

ix-(Ag—A ;
ik

which is indeed a partial multivariate Fourier series, with
the accessible frequencies fully determined by the spectra of

the encoding Hamiltonians {H;}, and the Fourier coefficients
determined by the trainable unitaries (or equivalently, the state
and observable).

APPENDIX B: NONINTEGER FREQUENCIES

In the main text, we put our focus on quantum models
with integer-valued frequency spectra, as they naturally arise
when using Pauli-rotation gates and allow for an analysis
with the techniques of a Fourier series. Here, we will briefly
discuss why many quantum models with non-integer-valued
frequency spectra can be treated similarly.

First, note that we can always decompose functions of the

form * into a Fourier series of integer-valued frequencies,
ie.,
[o.¢] . [e.¢]
. (—=1)"sinwm .
et = E — M™M= E sinc(w — n)e'™,
(w—n)m
n=—0oo n=—00

(BI)

with sinc(z) = sin(mwz)/mz. However, as we can see from this
expression, any noninteger frequency in general “contributes”
to infinitely many Fourier coefficients. It turns out that a rather
general case of quantum models with noninteger frequencies
can be handled equivalently, namely if the frequencies are
integer multiples of some basic frequency wy,

Q= {0, :I:nla)o, :|:n26()0, e } (B2)

This condition is equivalent to all frequencies in €2 being
mutually commensurable, i.e., the ratio of any two frequencies
is a rational number. This is the case in many natural settings,
for example if encodings with noninteger frequencies are re-
peated in parallel alike to the Pauli encodings in Sec. III.

Basis functions of the form e™® are periodic functions
on the interval [0, 27 /wg]. This means that the generated
Fourier-type sum in Eq. (11) can be understood as the partial
Fourier series in Eq. (5), but on a different interval. Alterna-
tively, one can imagine rescaling the data by ¥ = x/wq, with
which

en® = ¢, (B3)

While this strategy could in principle be applied to any
frequency spectrum where the frequencies are mutually com-
mensurable, one has to be aware that wq is as least as small
as the smallest difference between frequencies in 2. If very
close frequencies are present in the spectrum, the data will
have to be rescaled by a very large factor to an interval where
the generated Fourier coefficients may be sparse and the ap-
proximation quality poor.

APPENDIX C: PROOF
OF THE UNIVERSALITY THEOREM

We provide in this Appendix a proof of the universality
theorem stated in Sec. IV, which we restate for completeness:
Theorem. Let {H,} be a universal Hamiltonian family,
and {f,,} the associated quantum model family, defined via
Eq. (35). For all functions g € L, ([0, 2]"), and for all € > 0,

there exists some m’' € N, some state |I') € C*", and some
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observable M such that
[l for — 8ll2 < €. (ChH

Proof. To begin with, we note that we can approximate
any given g € L,([0, 2]V), up to an arbitrarily small error
in Ly norm, by using a truncated Fourier series [46]. More
specifically, for any given € > 0, there exists some K € N and
some set of coefficients {c, |n € Z¥}, with ¢, = c*,, such
that

K K
By = D Y cul™” (C2)

m=-K  ny=—K
= Z cpe™™ (C3)
neZl
satisfies
11§ — gll < €. (C4)

In order to prove the theorem we therefore only need to
show that there exists an m’ € N, some state |I"), and some
observable M so that the associated quantum model f,, gen-
erates the Fourier series g. Recall that the quantum model was
defined as

fun(x) = (LIS}, @)MSy, (x)|T), (Cs)
with
Sy (x) = e M @ ... @ e WHN (C6)

m

In Appendix A, we have seen that we can express the output
of the model as

fm(x) — Z Z Vj*Vij,keix‘(xk_}vj)’ (C7)
ik

where the multi-indices j and k have N entries that iterate over
all 2¢ basis states of the d qubit subsystems. Let Qp_ be the
frequency spectrum of H,,, as defined in Eq. (36). As the {H,,}
form a universal family of Hamiltonians by assumption, we

can choose an m’ € N so that
Zg ={-K,...,0,....,K} S Qy . (C8)

The accessible frequency vectors A; — A; independently con-
tain all possible combinations of the frequencies in Q4 ,. The
vector-valued frequency spectrum for the multivariate case is
therefore the Cartesian product of N copies of Qp ,:

QZQHm/X"'XQHm/- (C9)
—_—
N times

As Zg C Qp,, we naturally have that Z% C Q, which means
that the Fourier series generated by the chosen model contains
all terms that are necessary to construct the Fourier series g.

We can now revisit Eq. (C7) and show that we can leverage
the freedom of choosing both the initial state |I") and the
observable M arbitrarily to adjust all terms in the sum of
Eq. (C7) freely up to the complex-conjugation symmetry that
guarantees that the model output is a real-valued function. To
this end, we first observe that an exchange of the multi-indices
J and k yields the complex conjugate of the original term:

(C10)
(C11)

x-(h—Aj ix-(Lj—A
[V;J/ij,kglx( R = yk*ij;f’ke“( ih)

= Vi yMy e ).

Other than that, the coefficients can be freely chosen. To this
end, we fix our initial state as the equal superposition state
which can be prepared by applying a Hadamard gate to every

qubit in the system. This gives y; = 1/+/2V¢ and results in the

model
S @) =27V "N M e M),
ik

With this choice, we see that the coefficients are directly pro-
portional to the different entries of the observable M. Recall
that our initial goal was to construct the Fourier series g with
coefficients {c,} where n € Z¥. We already argued that all
those are accessible in the frequency spectrum of our model
because of the universal nature of the Hamiltonian family
{H,}. As any frequency corresponds to one or more pairings
of multi-indices j and k, we can always select a set of these
multi-indices such that it is in one-to-one correspondence with
the frequencies present in the Fourier series g:

(C12)

I ={(j, k) e 271" x [271V[for all n € Z¥
x there is exactly one pair (j, k) so that A; — Ax = n}.
(C13)

With this it is now straightforward to use the freedom to
choose our observable to fix f,; = g by choosing the diagonal
and upper-triangular elements of M via

M

Nd . L _ .
j’k:{Z cpifAj —Ag=nand (j, k) el, (C14)

0 otherwise,

after which the lower-triangular elements are fixed by the
constraint that the observable is Hermitian. [ |
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