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Quantifying coherence with respect to general quantum measurements
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Coherence is a cornerstone of quantum theory and a prerequisite for the advantage of quantum technologies.
In recent work, the notion of coherence with respect to a general quantum measurement, i.e., positive operator-
valued measure (POVM), was introduced and embedded into a resource-theoretic framework that generalizes
the standard resource theory of coherence. In particular, POVM-incoherent (free) states and operations were
established. In this work, we explore features of this framework which arise due to the rich structure of POVMs
compared to projective measurements. Moreover, we introduce a rigorous, probabilisitic framework for POVM-
based coherence measures and free operations. This leads to the introduction of strongly monotonic resource
measures that neatly generalize well-known standard coherence measures. Finally, we show that the relative
entropy of POVM coherence is equal to the cryptographic randomness gain, providing an important operational
meaning to the concept of coherence with respect to a general measurement.
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I. INTRODUCTION

In quantum technologies, particular properties of quan-
tum states and channels become valuable resources for the
application. For example, quantum entanglement enables su-
perior performance in nonlocal games compared to classical
resources, which can be utilized for the device-independent
distribution of a secret key [1,2]. Quantum resource theo-
ries (QRTs) [3–5] provide a versatile, application-independent
methodology for the quantitative analysis of resources. The
QRT framework has been applied to different quantum phe-
nomena such as entanglement [6,7], purity [8], asymmetry
[9,10], thermodynamics [11], and coherence [12–14]. In re-
cent years, the core common structure of QRTs has been
identified [15,16]. In physical setups, the feasible quantum
operations are usually constrained, either due to practical
limitations or fundamental physical laws such as energy con-
servation. Consequently, only a subclass of operations can be
(easily) realized, which are called free operations. Properties
of quantum states that cannot be created by free operations
are considered a resource. States without resource content
are called free states. Building on these basic notions, it is
possible to develop a rigorous quantitative framework which
yields insights into the different means of quantifying a re-
source, the optimal distillation and dilution of the resource,
and the possibility of interconversion of resource states under
the given constraints.

Quantum coherence [14], i.e., the feature of quantum sys-
tems to be in a superposition of different states, is at the
core of quantum mechanics. In particular, coherence underlies
quantum entanglement [17], which plays a central role in
quantum communication and computing. The resource theory
of coherence is formulated with respect to a distinguished
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basis of a Hilbert space, the incoherent basis {|i〉}, which
defines free states as the states that are diagonal in this basis.
For instance, in quantum thermodynamics, {|i〉} is the energy
eigenbasis and work can be extracted by a thermal process
which removes the off-diagonal entries of the state of the sys-
tem [18]. Equivalently, coherence can be defined with respect
to the von Neumann measurement P = {|i〉〈i|} such that free
states arise as postmeasurement states of P.

However, coherence as an intrinsic property of quantum
states should be defined with respect to the most gen-
eral quantum measurements, namely, positive operator-valued
measures (POVMs). This is because POVMs describe the
most general type of quantum observable and can have a real
operational advantage compared to any projective measure-
ment; see, e.g., [19]. A notion of coherence with respect to
a general measurement is meaningful if (i) it can be em-
bedded in a consistent resource theory and (ii) POVM-based
coherence measures have interesting operational interpreta-
tions, i.e., they quantify the advantage of states in a quantum
information protocol. Recently, a resource theory of quantum
state coherence with respect to an arbitrary POVM was in-
troduced and studied [20]. Here, we develop this framework
further by discussing selected features that are distinct from
standard coherence theory. In particular, we answer point (ii)
by providing an important operational interpretation of the
most fundamental POVM-coherence measure. Moreover, we
introduce further operational restrictions on the class of free
operations in conjunction with useful measures of POVM
coherence. We expect that our findings will help to clarify
the role of coherence in all quantum technologies employing
nonprojective measurements.

The structure of our work is as follows. In Sec. I B, we
briefly recapitulate the resource theory of POVM-based co-
herence [20]. Section II discusses a particular one-parameter
POVM, which describes how standard coherence turns into
POVM-based coherence, highlighting features of minimally
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coherent states and the measurement map. In Sec. III, we show
that the relative entropy of POVM-based coherence quantifies
the cryptographic randomness of the measurement outcomes
in relation to an eavesdropper who has side information about
the measured state. This provides an operational interpretation
of the resource theory. Subsequently, in Sec. IV, we define and
study free Kraus operators as well as selective free operations.
Finally, in Sec. V, we introduce strongly monotonic POVM-
coherence measures and find relations among them.

A. Resource theory of block coherence

The resource theory of POVM-based coherence is derived
from the framework of block coherence,1 introduced by Åberg
[21]. In the latter resource theory, the Hilbert space H = ⊕iπi

is partitioned into orthogonal subspaces πi. If we denote the
projector on the ith subspace by Pi, the set P = {Pi} constitutes
a projective measurement on H. Block-incoherent (BI, free)
states are defined as states of the form

ρBI = �[σ ], σ ∈ S, (1)

�[σ ] =
∑

i

PiσPi, (2)

where S is the set of quantum states and � denotes the block-
dephasing operation, which sets all entries except the blocks
on the diagonal to zero. In other words, block-incoherent
states do not possess “outer” coherence across the subspaces
πi. Note that the convex set of block-incoherent states I is
equal to the set of U(1)-symmetric states in the resource
theory of asymmetry with the symmetry group {U (θ ) =
e−iθ

∑
k kPk } [22]. A further ingredient of the resource the-

ory is maximally block-incoherent (MBI) operations �MBI.
These are channels (i.e., completely positive trace-preserving
maps) that preserve the set of block-incoherent states,2 that is,
�MBI[I] ⊆ I. Finally, the block-coherence content of states
can be quantified by suitable measures [21]. The standard ex-
ample for a measure is the relative entropy of block coherence,
which has the form

Crel(ρ, P) = S(�[ρ]) − S(ρ), (3)

where S denotes the von Neumann entropy S(ρ) =
−tr(ρ log2 ρ). The quantity Crel satisfies the following prop-
erties, which we view as minimal requirements for a
block-coherence measure [20]:

(B1) Faithfulness: C(ρ, P) � 0 with equality iff ρ = ρBI.
(B2) Monotonicity: C(�MBI[ρ], P) � C(ρ, P) for any

MBI map.

1In Åberg’s work, block coherence is called superposition. How-
ever, since block coherence is a generalization of coherence with very
similar structure, we find this name more suitable from the current
literature perspective.

2In the resource theory of asymmetry, the free operations usually
considered in the literature [9,10,23,24] are the group-covariant oper-
ations, i.e., channels that commute with all unitary channels obtained
from the symmetry group. In the language of coherence theory, these
operations are the translationally invariant operations [24], which
form a strict subset of the maximal set of free operations MBI that
we consider here [25].

(B3) Convexity: C(
∑

i piρi, P) � ∑
i piC(ρi, P) for all

states {ρi}, and probabilities pi � 0,
∑

i pi = 1.
Note that the concepts explained so far coincide with their

counterparts in the standard resource theory of coherence if
all Pi have rank one.

B. Resource theory of coherence based on POVMs

A much broader generalization of standard coherence is
provided by the POVM-based resource theory of coherence
[20]. POVMs describe the most general type of quantum
measurement, namely, a collection of n positive operators
E = {Ei � 0}n

i=1 that sum to the identity
∑

i Ei = 1. We will
also use the corresponding measurement operators, defined
as Ai = Ui

√
Ei. Here,

√
Ei denotes the unique positive square

root of Ei and Ui is an arbitrary unitary. Thus, A†
i Ai = Ei holds.

Let E be a POVM on a d-dimensional Hilbert space H.
The main idea to define POVM-based coherence theory is to
link it to the resource theory of block coherence specified by
the Naimark extension P of E. The Naimark extension is a
projective measurement with the following property: if the
POVM is embedded into a subspace of a higher-dimensional
Hilbert space H′ of suitable dimension d ′ � d , P extends E
to the whole space. We denote by E an (isometric) embedding
channel, mapping operators on H to operators on H′. Conse-
quently, it holds that

tr(Eiρ) = tr(PiE[ρ]) for all ρ ∈ S, (4)

that is, P has the same expectation values for any embedded
state E[ρ] as E for ρ. Therefore, it is natural to define the
coherence of a state ρ with respect to a POVM E as the block
coherence of E[ρ] with respect to the Naimark extension P of
E, namely,

C(ρ, E) := C(E[ρ], P), (5)

where the function C on the right denotes any unitarily co-
variant block-coherence measure [20]. Note that the Naimark
extension of a POVM E, in particular its dimension d ′, is not
unique.3 Therefore, one should ensure that the right side of
Eq. (5) does not depend on the choice of Naimark extension
P. This property was shown in [20] for the case of C(ρ ′, P) =
Crel(ρ ′, P) from Eq. (3). One obtains the relative entropy of
POVM-based coherence,

Crel(ρ, E) = H ({pi(ρ)}) +
∑

i

pi(ρ)S(ρi ) − S(ρ), (6)

with pi(ρ) = tr(Eiρ), ρi = AiρA†
i /pi, Ai = √

Ei, and the
Shannon entropy H ({pi(ρ)}) = −∑

i pi log2 pi. In the special
case of E being a von Neumann measurement, Ei = |i〉〈i|,
Crel(ρ, E) corresponds to the standard relative entropy of co-
herence. From Eq. (5), it follows that for some POVMs, the
set of states with zero coherence (POVM-incoherent states
ρPI) is empty [20]. The generalization of incoherent states
are states with minimal coherence ρmin, which form a set
M that has similar properties as the standard incoherent set:

3For instance, given any Naimark extension, one can always
increase the dimension of each effect by adding projections on ad-
ditional degrees of freedom.

032429-2



QUANTIFYING COHERENCE WITH RESPECT TO GENERAL … PHYSICAL REVIEW A 103, 032429 (2021)

it is nonempty, convex, and closed under POVM-incoherent
operations, which are defined below.

POVM-incoherent (free) operations can be derived from
block-incoherent operations on the enlarged space. Let �′

MBI
be a block-incoherent map on states ρ ′ ∈ S ′ on the Naimark
space with the additional property that the set of embedded
states {E[ρ] ∈ S ′ : ρ ∈ S} is closed under �′

MBI. Then, the
following channel is called a (maximally) POVM-incoherent
(MPI) operation [20]:

�MPI[ρ] = E−1 ◦ �′
MBI ◦ E[ρ]. (7)

POVM-coherence measures and MPI maps are the main con-
stituents of the resource theory of quantum state coherence
based on POVMs. Crucially, these two concepts are consistent
with each other by construction, as any POVM-based coher-
ence measure (5) satisfies the following:

(P1) Faithfulness: C(ρ, E) � 0 with equality iff ρ = ρPI.
(P2) Monotonicity: C(�MPI[ρ], E) � C(ρ, E) for any

MPI map with respect to E.
(P3) Convexity: C(ρ, E) is convex in ρ.
See Ref. [20] for a detailed discussion of the concepts.

The question of whether POVM-coherence measures satisfy
strong monotonicity is an open problem that will be addressed
and answered in Sec. IV. Even though the concept of POVM
coherence is a generalization of the usual theory of coherence,
some concepts are distinct. For POVMs, incoherent bases may
not exist and there is no generic state, like the maximally
mixed state in coherence theory, that is in general POVM
incoherent. For many POVMs, there do not exist POVM in-
coherent states (see Sec. II).

II. MINIMALLY COHERENT STATES AND THE
MEASUREMENT MAP

In this section, we examine a one-parameter POVM to
illustrate how standard coherence theory turns into POVM-
based coherence. Moreover, this example sheds light on two
natural questions in the context of the generalized notion of
coherence: (i) does the maximally mixed state always contain
the lowest amount of coherence and (ii) is the measure-
ment map �E[ρ] = ∑

i

√
Eiρ

√
Ei POVM incoherent for any

POVM? In standard coherence theory, both questions can be
answered in the affirmative. However, our example shows that
this does not hold in general for POVM-based coherence.

To illustrate the amount of POVM-based coherence in
states, we discuss a POVM representing the continuous distor-
tion from a von Neumann measurement into a nonprojective
POVM. Concretely, we consider E(δ) = {Ei(δ)}3

i=1, which co-
incides for δ = 0 with the qubit Y measurement, and for δ = 1
with the qubit trine POVM, whose measurement directions

mi form an equilateral triangle on the xy plane of the Bloch
sphere. With the Bloch representation of qubit POVMs,

Ei = αi(1 + 
mi · 
σ ) with αi � 0,∑
i

αi = 1,
∑

i

αi 
mi = 0, (8)

the POVM elements Ei(δ) are given by the parameters

α1 = δ

3
, α2 = α3 = 1

2

(
1 − δ

3

)
,

FIG. 1. The relative entropy of POVM-based coherence plot-
ted for selected states with respect to the POVM E(δ) defined in
Eq. (9) for all values of the distortion parameter δ. The states
ψx, ψy, ψz denote the +1 eigenstates of the Pauli matrices σx, σy, σz,
respectively. The dotted line corresponds to the maximally mixed
state. The dashed lines indicate the achievable minimal and maxi-
mal coherence, respectively, which were obtained analytically (by
Karush-Kuhn-Tucker conditions [20]).


m1 = (1, 0, 0)T , and with t := δ

3 − δ
,


m2 = (−t,
√

1 − t2, 0)T ,


m3 = (−t,−
√

1 − t2, 0)T . (9)

The effects Ei(δ) are linearly independent (except for δ = 0)
as the measurement directions form a triangle [26]. Moreover,
since | 
mi| = 1, the effects have rank one, except for δ = 0
where the first effect has rank zero. Thus, E(δ) is an extremal
POVM for any δ, i.e., it cannot be written as a mixture of
two other POVMs, and in this sense does not contain clas-
sical noise. In Fig. 1, we plot the POVM-based coherence
of selected states, as well as the minimally and maximally
achievable coherence for all values of δ. Interestingly, the
figure shows that for 0 < δ < 1, the state with minimal coher-
ence is distinct from the maximally mixed state. We abstain
from stating the explicit form of ρmin(δ) in the range 0 <

δ < 1 as it is too cumbersome. However, we report that
in this interval, the maximal eigenvalue takes values 0.5 <

||ρmin(δ)||∞ � 0.6. The difference in coherence between the
maximally mixed state and the state with minimal coherence
is not necessarily small. Consider, e.g., the POVM En =
{|0〉〈0| + 1

2 |1〉〈1|, 1
2 |1〉〈1|} for which Crel(|0〉〈0|, En) = 0

and Crel(12 , En) = 1
2 .

This property can be utilized to show that the measurement
map of the POVM E, defined as

�E[ρ] =
∑

i

√
Eiρ

√
Ei, (10)

which is unital, �E[1] = 1, is not incoherent in general.
A counterexample is provided by the POVM E(δ): Table I
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TABLE I. POVM-based coherence of states with respect to E(δ)
for selected values of δ. For δ ∈ {0, 1}, the maximally mixed state
1/2 is a state ρmin of minimal coherence. Moreover, the measurement
map �E is incoherent in these cases and thus does not increase the
coherence of ρmin. For 0 < δ < 1, the maximally mixed state 1/2
does not have minimal coherence and �E increases the coherence of
ρmin.

δ Crel (ρmin ) Crel (�E[ρmin]) Crel (1/2)

0 0 0 0
0.4 0.412 0.427 0.433
0.5 0.462 0.476 0.483
0.6 0.503 0.514 0.522
1 0.585 0.585 0.585

shows, for selected parameters of δ, that �E increases the
coherence of ρmin for 0 < δ < 1. However, note that �E from
Eq. (10) is POVM incoherent for any projective measurement,
but also for certain nonprojective measurements such as the
qubit trine POVM [20].

III. POVM-BASED COHERENCE AND PRIVATE
RANDOMNESS

In Ref. [20], the relative entropy of POVM-based coher-
ence Crel(ρ, E) from Eq. (6) was established as a measure of
coherence with respect to general measurements. However, in
the previous work, the operational meaning of this measure
was left open. In this section, we show that Crel(ρ, E) quan-
tifies the private randomness generated by the POVM E on
the state ρ with respect to an eavesdropper holding optimal
side information about the measured state. This is a relevant
result for quantum randomness generation and cryptography,
which generalizes the findings from Refs. [27,28], where it
was shown that the standard relative entropy of coherence
corresponds to the quantum randomness of a von Neumann
measurement.

We consider a POVM F = {Fi} that is measured on a
state ρA on a quantum system A, such that the measure-
ment outcomes i are stored in the register X ; see Fig. 2. An
eavesdropper holds maximal side information about ρA, i.e.,
all degrees of freedom correlated with A in the form of a
purifying system E such that |ψ〉AE with ρA = trE (|ψ〉〈ψ |AE )
describes the joint pure state. After the measurement F, the
joint state is given by

ρ̃XAE =
∑

i

pi|i〉〈i|X ⊗ |ψ̃i〉〈ψ̃i|AE , (11)

where pi = tr(FiρA) denotes the probability to obtain out-
come i. The pure postmeasurement states |ψ̃i〉AE = 1√

pi
(Ai ⊗

1)|ψ〉AE are defined by the measurement operators Ai that
implement the POVM, that is, Fi = A†

i Ai.
Let S(X |E )ρ = S(ρXE ) − S(ρE ) denote the conditional

von Neumann entropy of X given E on the state ρ. We define
the randomness contained in the random variable X = (i, pi )
of the measurement outcomes of F as

RX |E (ρA) = min
|ψ〉AE

S(X |E )ρ̃ , (12)

FIG. 2. The relation between private randomness and POVM-
based coherence. The eavesdropper Eve has maximal side informa-
tion about the state ρA, namely, a purification |ψ〉AE . Nonetheless, if
ρA possesses coherence with respect to the POVM F, the measure-
ment outcomes X = i contain secrecy with respect to Eve. That is,
the asymptotic randomness generation rate is given by RX |E (ρA) =
Crel (ρA, F), with the relative entropy of POVM-based coherence de-
fined in Eq. (6).

where ρ̃ = ρ̃XE is obtained from Eq. (11) by tracing out A
and the minimum is taken over all purifications |ψ〉AE of
ρA. This choice of randomness quantification is relevant in
practice, as it describes the asymptotic private randomness,
i.e., unpredictability of the measurement outcomes. Indeed,
for an eavesdropper employing an independent and iden-
tically distributed (iid) attack in an n-round protocol, the
single-round von Neumann entropy is related by the quantum
asymptotic equipartition property [29] to the smooth quantum
min-entropy H ε

min(X n|En) of all n rounds. The latter quantity
has been proven to quantify composable security in quantum
randomness generation and cryptography. More precisely,
H ε

min(X n|En) is equal to the minimal number of bits needed
to reconstruct X n from En, except with probability of order ε

[2,30].
Proposition 1. Let Eve hold a purification of ρA. The private

randomness generation rate is equal to the relative entropy
of POVM-based coherence, RX |E (ρA) = Crel(ρA, F), for any
possible POVM F measured on ρA generating the outcome
random variable X .

Proof. First, note that the local measurement F on A leaves
the state ρE = trA(|ψ〉〈ψ |AE ) invariant, i.e., ρ̃E = ρE . More-
over, it holds that S(ρE ) = S(ρA) since ρAE = |ψ〉〈ψ |AE is
pure, and likewise S(ρ̃A|i ) = S(ρ̃E |i ) since ρ̃AE |i = |ψ̃i〉〈ψ̃i|AE

is pure. This argument is a direct consequence of the
Schmidt decomposition of pure states [31]. Therefore, it
holds that

RX |E (ρA) = min
|ψ〉AE

{
S

(∑
i

pi|i〉〈i|X ⊗ ρ̃E |i

)
− S(ρ̃E )

}

= min
|ψ〉AE

{
H ({pi}) +

∑
i

piS(ρ̃E |i ) − S(ρE )

}

= H ({pi}) +
∑

i

piS(ρ̃A|i ) − S(ρA). (13)
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In the first line, we inserted the state ρ̃XE from Eq. (11)
into Eq. (12). In the second equation, we employed the joint
entropy theorem [31]. The minimization can be dropped in
the last step, as all quantities are independent of the choice
of purification |ψ〉AE . By inspecting Eq. (6), we see that the
expression in the last line is equal to Crel(ρA, F). �

This result explains why noisy POVMs typically lead to
higher values of POVM-based coherence than projective mea-
surements. The noise injects randomness into the outcomes
X , which cannot be predicted by an eavesdropper with side
information about the measured state. It is crucial that the
eavesdropper does not have access to the measurement device,
i.e., any noise in the measurement device is trusted. However,
if the POVM E is extremal, the results of Refs. [32–35] show
that an eavesdropper cannot get additional knowledge about
the measurement outcomes by preprogramming the measure-
ment device. Extremal measurements such as the qubit trine
POVM are thought to possess intrinsic quantum noise [26],
explaining why even the maximally mixed state can generate
nonzero trusted randomness. The POVM E(δ) from Eq. (9)
is extremal for any δ ∈ [0, 1]. Thus, Fig. 1 shows the gen-
erated private randomness RX |E (ρ) for selected states ρ and
the advantage of POVMs over projective measurements. In
particular, for δ � 1

2 , E(δ) yields up to log2(3) ≈ 1.58 private
random bits per measurement, compared to maximally one bit
for qubit projective measurements.

IV. PROBABILISTICALLY FREE OPERATIONS AND
STRONG MONOTONICITY

POVM-incoherent operations as defined in Eq. (7) form
the set MPI, that is, the largest class of channels that cannot
create POVM-based coherence. Thus, MPI generalizes the set
of maximally incoherent operations (MIOs) [14]. However,
in practice, it is useful to also have a notion of selective
POVM-incoherent operations, which we introduce in this
section. These operations cannot create coherence, not even
probabilistically, when a particular outcome of the channel is
selected. This stronger notion of incoherent operations was
introduced in Ref. [12] for the standard resource theory of
coherence under the name of incoherent operations (IO). It
holds that incoherent operations are strictly included in the
maximal set, IO ⊂ MIO.

A. Block-incoherent Kraus operators

As a first building block, we need to introduce Kraus
operators that cannot create block coherence. Let P be any
projective measurement defining the Hilbert space partition
H′ = ⊕iπi, where πi = imPi, where im is the image. In
Sec. I B, we have introduced the block-dephasing operation �

and block-incoherent states in Eq. (1). Consequently, block-
incoherent pure states are element of the set {|ϕi〉}i, where |ϕi〉
denotes any normalized state vector such that

|ϕi〉 ∈ imPi. (14)

Note that if dim Pi � 2, the above set is not finite as superpo-
sitions within imPi are allowed.

Let {K ′
l } be a set of Kraus operators on H′, that is, the

operators satisfy the normalization condition
∑

l (K
′
l )†K ′

l = 1.

We call a Kraus operator block incoherent if

K ′
l |ϕi〉 ∝ |ϕ j〉 (15)

holds for all block-incoherent pure states |ϕi〉. Note that in
analogy to the case in standard coherence theory [13], block-
incoherent Kraus operators have the form

K ′
l =

∑
i

Pf (i)ClPi, (16)

where f is some index function, which has to be chosen
together with the complex matrix Cl on H′ such that nor-
malization holds. We call a Kraus operator K ′

l strictly block
incoherent if f is invertible, that is, an index permutation. In
this case,(K ′

l )† is also block incoherent.

B. POVM-incoherent Kraus operators

Next, we construct Kraus operators that cannot create
POVM coherence in analogy to the construction of MPI op-
erations (7). We consider a POVM E on the d-dimensional
space H and any Naimark extension P of it, defined on the
d ′-dimensional space H′. The (Naimark) embedding of H into
H′ is given by H ⊕ 0HE , which is a choice we make for the
sake of concreteness without loss of generality. Define the
operator

T =
(
1

0

)
, (17)

where 0 denotes the zero matrix of size (d ′ − d ) × d . Conse-
quently, operators X on H are transformed to Naimark space
operators by the isometric channel E[X ] = T XT †. It holds
that T †T = 1 and T T † = 1 ⊕ 0E .

Let {K ′
l } be a set of block-incoherent Kraus operators (15)

on H′, where any operator additionally satisfies

K ′
l E = EK ′

l E . (18)

In other words, K ′
l maps the embedded original space H ⊕ 0

to itself, which we call the subspace-preserving property. It is
fulfilled if and only if all Kraus operators are of the form

K ′
l =

(∗ ∗
0 ∗

)
, (19)

where 0 denotes the zero matrix of size (d ′ − d ) × d and
where ∗ represents matrices of suitable dimension.

Definition 1. We call the following operator on H a POVM-
incoherent (PI) Kraus operator:

Kl = T †K ′
l T, (20)

where T is given in (17) and K ′
l satisfies (15), (18), and

normalization.
In Eq. (20), the operators T † and T extract the upper left

d × d block of the d ′ × d ′-matrix K ′
l . One can readily check

that a POVM-incoherent (PI) set {Kl} satisfies normalization
by construction. At this point, we need to ensure that the above
definition is not ambiguous.

Proposition 2. The set containing all POVM-incoherent
(PI) Kraus operators Kl does not depend on the choice of
Naimark extension used to define it; see Eq. (20).

The proof can be found in Appendix A. In the special case
of a von Neumann measurement, E can be chosen as its own
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Naimark extension such that d ′ = d . Thus, in this case, Def.
1 and Prop. 2 imply that PI Kraus operators are equivalent to
standard incoherent Kraus operators.

C. Selective free operations and strong monotonicity

Building on the previous section, we are ready to define
two classes of probabilistically free channels. These have the
property that even when we postselect outcomes of the opera-
tion, POVM coherence cannot be created from an incoherent
input state. We call a channel � a selective POVM-incoherent
(PI) operation if it admits a Kraus decomposition �[X ] =∑

l KlXK†
l such that all operators Kl are POVM incoherent

(20). Moreover, we call � strictly POVM incoherent (SPI)
if, additionally, all adjoint operators (Kl )† are POVM in-
coherent. These definitions clearly generalize the classes of
incoherent operations (IOs) and strictly incoherent operations
(SIOs) [14], respectively. We obtain the following hierarchy
of POVM-incoherent operations:

SPI ⊆ PI ⊆ MPI, (21)

where MPI denotes the maximal set of POVM-incoherent
operations from Eq. (7).

This leads to the following definitions, which extends the
requirements on a POVM-coherence measure C(ρ, E) from
Sec. I B. It guarantees that free operations cannot create coher-
ence on average when the observer has access to measurement
results.

(P2s) Strong monotonicity of POVM-coherence measure:
C(ρ, E) does not increase on average under selective POVM-
incoherent operations PI, i.e.,∑

l

plC(ρl , E) � C(ρ, E), (22)

for any set of POVM-incoherent Kraus operators Kl defin-
ing probabilities pl = tr(KlρK†

l ) and postmeasurement states
ρl = KlρK†

l /pl .
(B2s) Strong monotonicity of block-coherence measure:

Same as (P2s) for the special case of projective measurements
E = P and selective block-incoherent operations BI.

Note that as a consequence of convexity, any measure that
obeys (P2s) also satisfies (P2) for the class of PI operations,
in analogy to, e.g., [12]. As in Ref. [20], we can show that
POVM-coherence measures, by construction, inherit the prop-
erties of the underlying block-coherence measure.

Proposition 3. Let C(ρ, E) be a POVM-based coherence
measure derived via (5) from a block-coherence measure
C(ρ ′, P) that obeys strong monotonicity (B2s). Then, C(ρ, E)
obeys strong monotonicity (P2s) with respect to PI operations.

Proof. In the following, we make use of the construc-
tions from Sec. IV B. Let {Kl} be a set of POVM-incoherent
Kraus operators, leading to the postmeasurement states ρl =
KlρK†

l /pl . Embedding these yields Naimark space operators,
given by

plE[ρl ] = T KlρK†
l T † = T T †K ′

l T ρT †(K ′
l )†T T †

= EK ′
lE[ρ](K ′

l )†E, (23)

where we have used E[ρ] = T ρT †, Eq. (20), and E = T T †.
Since E[ρ] = EE[ρ]E , we employ Eq. (18) twice to obtain

the following simplification:

EK ′
lE[ρ](K ′

l )†E = EK ′
l EE[ρ]E (K ′

l )†E

= K ′
lE[ρ](K ′

l )†. (24)

Thus, we have shown that plE[ρl ] = K ′
lE[ρ](K ′

l )†, which im-
mediately implies the desired relation,∑

l

plC(ρl , E) =
∑

l

plC(E[ρl ], P)

=
∑

l

plC(K ′
lE[ρ](K ′

l )†/pl , P)

� C(E[ρ], P) = C(ρ, E). (25)

In the first and last lines, we have used Eq. (5) and the inequal-
ity holds since C(ρ ′, P) is, by assumption, strongly monotonic
(B2s) with respect to block-incoherent Kraus operators K ′

l . �
An example is given by the relative entropy of block co-

herence Crel(ρ ′, P), which satisfies (B2s), as one can prove
analogously to Ref. [12] for the standard coherence measure.
Thus, Prop. 3 implies that the POVM-coherence measure
Crel(ρ, E) from Eq. (6) is strongly monotonic.

V. MORE MEASURES OF POVM-BASED COHERENCE

So far, the relative-entropy-based quantifier introduced
in Ref. [20] is the only known well-defined measure of
POVM-based coherence. In this section, we introduce fur-
ther POVM-coherence measures, which are generalizations of
standard coherence measures known in the literature [14]. As
before, E is a POVM on H and P is any Naimark extension
of it on the space H′. We denote by S (S ′) the set of density
matrices on H (H′).

First, we discuss distance-based block-coherence quanti-
fiers, which are defined as

C(ρ ′, P) = inf
σ∈S ′

D(ρ ′,�[σ ]), (26)

where D � 0 is a distance such that D(ρ, σ ) = 0 ⇔ ρ = σ

and � is the block-dephasing operation from Eq. (2). The
infimum runs over quantum states σ ∈ S ′. In Ref. [20], it
was shown that a distance-based quantifier satisfies mono-
tonicity (B2) (see Sec. I A) if D is contractive under quantum
operations, that is, D(�[ρ],�[σ ]) � D(ρ, σ ) holds for any
channel �.

Distance-based POVM-coherence measures C(ρ, E) are
derived from the measures C(ρ ′, P) (26) via Eq. (5). We
show below that this class of measures is independent of the
choice of Naimark extension. Importantly, this implies that
the POVM-coherence measure coincides, for von Neumann
measurements, with the corresponding standard coherence
measure [14].

Observation 1. Let C(ρ, E) be a POVM-based coherence
measure that is well defined, i.e., it is invariant under the
choice of Naimark extension P in Eq. (5). Then, in the spe-
cial case of orthogonal rank-1 (von Neumann) measurements,
C(ρ, E) is equal to its counterpart in standard coherence
theory.

Proof. The assertion holds because for the POVM Ei =
|i〉〈i|, the Naimark extension can be chosen as P = E and
the embedding can be chosen trivial, E[ρ] = ρ. Thus, the
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independence property together with Eq. (5) guarantee that the
POVM-based measure generalizes the standard measure. Note
that the same argument holds for projective measurements,
where Ei = Pi. �

Proposition 4. Any distance-based POVM-coherence mea-
sure C(ρ, E) defined via Eqs. (5) and (26) is invariant under
the choice of Naimark extension if the distance is contractive.

Proof. Let P, P̂ be two Naimark extensions of the
same POVM E such that rankP̂i � rankPi. The correspond-
ing block-dephasing operations are denoted �, �̂. We need
to show that C(E[ρ], P) = C(E[ρ], P̂). In Appendix A, we
show that there exists a channel (completely positive trace-
preserving map) N which satisfies N ◦ E = E and N ◦ � =
�̂ ◦ N [20].

Let C(ρ ′, P) = D(ρ ′,�[σ ∗]) be a distance-based block co-
herence measure, where σ ∗ denotes a state that achieves the
minimum. Then, it holds that

C(E[ρ], P) = D(E[ρ],�[σ ∗])

� D(N ◦ E[ρ],N ◦ �[σ ∗])

= D(E[ρ], �̂ ◦ N [σ ∗])

= D(E[ρ], �̂[σ̂ ]) � C(E[ρ], P̂), (27)

where we have defined σ̂ := N [σ ∗]. In the first inequality,
we have used the contractivity of D. The reverse inequal-
ity C(E[ρ], P) � C(E[ρ], P̂) follows from similar arguments
but is more straightforward: the optimal state �̂[σ̂ ∗] on
the smaller Naimark space can be embedded in the larger
Naimark space and suitably rotated such that it is incoherent
with respect to �. This is achieved by the channel N̂ :=
U† ◦ Q, which satisfies N̂ ◦ E = E and N̂ ◦ �̂ = � ◦ N̂ ; see
Appendix A. �

Example. Consider the distance measure Dgeo(ρ, σ ) =
1 − F 2(ρ, σ ), where the fidelity F (ρ, σ ) = tr

√√
ρσ

√
ρ

quantifies how close two quantum states ρ, σ are. We de-
fine the geometric POVM-based coherence Cgeo(ρ, E) via
Eqs. (5) and (26) for the distance Dgeo. The fidelity satisfies
F 2(�[ρ],�[σ ]) � F 2(ρ, σ ) for any quantum operation �

[31], from which follows that Cgeo(ρ, E) obeys monotonicity
(P2). Observation 1 implies that this measure generalizes the
standard geometric coherence [17].

In the following, we introduce and study the robustness of
POVM-based coherence which generalizes the measure from
[36]. This quantity is derived from the robustness of block co-
herence, which is equal to the robustness of asymmetry from
Ref. [22] for the U(1) symmetry group {U (θ ) = e−iθ

∑
k kPk }.

Let P be a projective measurement and � the corresponding
dephasing operator (2). We define the robustness of block
coherence of a quantum state ρ as

Crob(ρ, P) = min
τ,δ∈S

{
s � 0 :

ρ + sτ

1 + s
= �[δ]

}
(28)

= min
δ∈S

{s � 0 : ρ � (1 + s)�[δ]}. (29)

In other words, Crob(ρ, P) is the minimal mixing weight
s required to make ρ block incoherent. It is clear that
the measure satisfies faithfulness (B1). Moreover, the argu-
ments from Ref. [22] imply that Crob(ρ, P) satisfies convexity
(B3), and strong monotonicity (B2s) under selective block-

incoherent operations. Interestingly, the robustness measure
can be related to the maximum relative entropy of block coher-
ence, which we define as Cmax(ρ, P) = minδ∈S{λ � 0 : ρ �
2λ�[δ]} [37]. By comparison with Eq. (29), we infer that
Cmax(ρ, P) = log2[1 + Crob(ρ, E)]. A further characterization
of Crob is given in Appendix B.

Now, let E be a POVM and P any Naimark extension of it.
We employ the standard construction from Eq. (5) to define
the robustness of POVM-based coherence as

Crob(ρ, E) := Crob(E[ρ], P). (30)

The following result establishes Crob(ρ, E) as a proper mea-
sure of POVM coherence.

Proposition 5. The robustness of POVM-based coherence
Crob(ρ, E) is well defined and a POVM-coherence measure
that satisfies strong monotonicity (P2s). It admits the follow-
ing form:

Crob(ρ, E) = min
τ∈S ′

{s � 0 : sτi, j = −AiρA†
j ∀i �= j}, (31)

where τ = ∑
i, j τi, j ⊗ |i〉〈 j| and Ai = √

Ei.
Observation 1 implies that in the special case of von Neu-

mann measurements E = {|i〉〈i|}, Crob(ρ, E) coincides with
the standard robustness of coherence [36]. The evaluation of
Crob in Eq. (31) is a semidefinite program (SDP). It can be
simplified to the following form suited for numerical com-
putation, for example, via the open-source MATLAB-based
toolbox YALMIP [38]:

Crob(ρ, E) = min
∑

i

tr(σi,i )

so that σi �= j, j = −AiρA†
j ,

∑
i, j

σi, j ⊗ |i〉〈 j| � 0. (32)

This form is obtained from Prop. 5 by setting σ = sτ .
Proof of Prop. 5. First, we prove that the definition of

Crob(ρ, E) is not ambiguous as it leads to the same quantity for
any Naimark extension P of E. Let P, P̂ be two Naimark ex-
tensions of the same POVM E such that rankP̂i � rankPi. The
corresponding block-dephasing operations are denoted �̂,�.
It is clear that Crob(E[ρ], P) � Crob(E[ρ], P̂) since the optimal
state �̂[δ̂∗] in Eq. (29) on the smaller Naimark space can be
embedded in the larger Naimark space and suitably rotated
such that it is incoherent with respect to �. We proceed to
prove the reverse inequality by employing the channel N from
the proof of Prop. 4. Take Eq. (29) with optimal quantities
s∗, δ∗ and apply N to both sides of the constraint,

E[ρ] � (1 + s∗)�[δ∗] ⇒ N ◦ E[ρ] � (1 + s∗)N ◦ �[δ∗]

⇔ E[ρ] � (1 + s∗)�̂[δ̂], (33)

where we have defined δ̂ = N [δ∗]. Thus, Crob(E[ρ], P̂) �
s∗ = Crob(E[ρ], P). Altogether, we conclude that Crob(ρ, E)
is independent of the Naimark extension choice. Moreover,
Crob satisfies strong monotonicity (P2s) because of Prop. 3 and
Property 2 in Ref. [22].

In order to prove Eq. (31), we use the following result
established as Prop. 4 in Ref. [20]. Any POVM-coherence
measure can be written as

C(ρ, E) = C(EV [ρ], {1 ⊗ |i〉〈i|}), (34)
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FIG. 3. POVM-coherence measures in relation to the generalized robustness of coherence, s := Crob(ρ, E), for the qubit trine POVM
E(δ = 1) (9). Left: The blue (gray) line indicates the bound Crel (ρ, E) � log2(1 + s) from Eq. (38). Red (gray) [yellow (light-gray)] dots
represent randomly sampled pure [mixed] states. Similar to standard coherence theory [40], the upper bound is not tight. Right: The blue
(gray) straight line indicates the graph of C�1 (ρ, E) = s, on which all pure states lie [red (gray) dots]. The yellow (light-gray) dots represent
mixed states for which C�1 (ρ, E) � s holds (37).

with the embedding EV [ρ] = V ρ ⊗ |1〉〈1|V † = ∑
i, j AiρA†

j ⊗
|i〉〈 j| containing an interaction isometry V , and the Naimark
extension {1 ⊗ |i〉〈i|}. By using that, in this formulation, δ ∈
I ⇔ δ = ∑

i δi ⊗ |i〉〈i| and employing the parametrization
τ = ∑

i, j τi, j ⊗ |i〉〈 j|, we obtain

Crob(ρ, E) = min
τ,δ∈S ′

{
s � 0 :

∑
i, j

(AiρA†
j + sτi, j ) ⊗ |i〉〈 j|

= (1 + s)
∑

i

δi ⊗ |i〉〈i|
}

= min
τ∈S ′

{s � 0 : sτi, j = −AiρA†
j ∀i �= j}. (35)

Note that the constraint for i = j was neglected in the last line
since for any s and state τ satisfying the last line, we can define
δi = (AiρA†

i + sτi,i )/(1 + s), which directly implies that δ �
0 and trδ = 1. �

We also define the following quantifier, i.e., the �1-norm
of POVM-based coherence: C�1 (ρ, E) = ∑

i �= j ||PiE[ρ]Pj ||1,

where ||X ||1 = tr(
√

X †X ) denotes the trace norm. By making
use of Eq. (34) and that ||X ⊗ Y ||1 = ||X ||1||Y ||1 holds for
operators X,Y , it is straightforward to show that a simplified,
local expression holds,

C�1 (ρ, E) =
∑
i �= j

||AiρA†
j ||1. (36)

This generalized coherence quantifier satisfies faithfulness
(P1); see Prop. 5 in [20], and convexity (P3). Since, for a
von Neumann measurement, C�1 (ρ, E) reduces to the standard
�1-norm of coherence, we can infer that the measure does
not satisfy monotonicity (P2) for the class MPI in general;
see Ref. [39]. However, C�1 satisfies (P2) under MPI for any
two-outcome POVM E = {Ei}2

i=1, which follows from Prop.
9 of Ref. [21], together with Prop. 3. We leave open for future
work whether C�1 (ρ, E) satisfies strong monotonicity (P2s)
under PI, which holds for von Neumann measurements [12].

For completeness, we show that C�1 (ρ, E) is invariant un-
der the choice of Naimark extension and unambiguously given
by Eq. (36). Given two Naimark extensions P, P̂, we utilize

the isometry Q from Appendix A satisfying PiQ = QP̂i. Fur-
ther, we employ the unitary U on the larger Naimark space
with properties UPi = PiU and UE = QE , where E is
the projector onto the embedded original space HE . Since
the trace norm is invariant under multiplication by isometries
V,W , ||X ||1 = ||V XW †||1, we have

||P̂iE[ρ]P̂j ||1 = ||U †QP̂iE[ρ]P̂jQ
†U ||1

= ||PiU
†QE[ρ]Q†UPj ||1 = ||PiE[ρ]Pj ||1.

The following result establishes general relations between
POVM-coherence measures that are visualized in Fig. 3.
These findings generalize results from Ref. [40].

Proposition 6. Given an n-outcome POVM E, the following
inequalities hold for the measures from Eqs. (6), (31), and
(36):

Crob(ρ, E) � C�1 (ρ, E) � n − 1, (37)

Crel(ρ, E) � log2[1 + Crob(ρ, E)]. (38)

Moreover, Crob(ψ, E) = C�1 (ψ, E) holds for any pure state ψ .
Proof. First, we prove Crob(ρ, E) � n − 1 by showing that

Crob(ρ ′, P) � n − 1 for any n-outcome projective measure-
ment P and any state ρ ′ ∈ S ′. For that, define Ki, j = (Pi −
Pj )/

√
2 and consider the expression∑

i, j

Ki, jρK†
i, j = 1

2

∑
i, j

(Pi − Pj )ρ(Pi − Pj )

=
∑
i, j

PiρPi −
∑
i, j

PiρPj

= n
∑

i

PiρPi −
∑
i, j

PiρPj = (n� − id)[ρ].

(39)

Consequently, the map (n� − id) admits a Kraus decom-
position and is thus completely positive. This implies that
n�[ρ ′] − ρ ′ � 0 holds for any quantum state ρ ′. Hence, we
obtained ρ ′ � n�[ρ ′] and, by comparison with Eq. (29), we
conclude that Crob(ρ ′, P) = s � n − 1.
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The relation C�1 (ρ, E) � n − 1 can be shown by evaluat-
ing the underlying block-coherence measure for a maximally
coherent state. The latter is given by |�m〉 = 1√

n

∑
i |ϕi〉 with

pure block-incoherent states |ϕi〉 defined in Eq. (14). This
leads to

C�1 (|�m〉, P) = 1

n

∑
i �= j

||
∑
k,l

Pi|ϕk〉〈ϕl |Pj ||1

= 1

n

∑
i �= j

|| |ϕi〉〈ϕ j | ||1

= 1

n

∑
i �= j

1 = 1

n
n(n − 1) = n − 1. (40)

In Appendix B, we show a further SDP characterization
of the robustness of POVM-based coherence. Moreover, this
form is used to show that Crob(ψ, E) = C�1 (ψ, E) for pure
states and Crob(ρ, E) � C�1 (ρ, E) in general.

Finally, we show Eq. (38) similar to Ref. [40]. Let s∗, δ∗
be the the optimal quantities for Crob(ρ, E) = Crob(E[ρ], P)
in Eq. (29). Using the abbreviation ρE = E[ρ], it holds that
Crel(ρE, P) = S(ρE ||�[ρE]) � S(ρE ||�[δ∗]). Moreover,

S(ρE ||�[δ∗]) = tr

[
ρE

(
log2 ρE − log2

(1 + s∗)�[δ∗]

(1 + s∗)

)]

= log2(1 + s∗) + tr(ρE{log2 ρE

− log2(1 + s∗)�[δ∗]}), (41)

where we have used the definition of the relative entropy
S(ρ||σ ) = tr[ρ(log2 ρ − log2 σ )]. On the other hand, Eq. (29)
implies that ρE � (1 + s∗)�[δ∗]. The latter relation together
with the fact that the logarithm is operator monotone yields
that the second term in (41) (last line) is nonpositive. We
conclude that Crel(ρ, E) � S(ρE ||�[δ∗]) � log2(1 + s∗), im-
plying the desired relation. �

VI. CONCLUSION AND OUTLOOK

We presented several results on the resource-theoretical
concept of coherence with respect to a general quantum mea-
surement. We expect these advances to clarify the role of
quantum coherence in information technologies employing
nonprojective measurements. In particular, we discussed se-
lected features of POVM-based coherence theory that are
distinct from the standard resource theory of coherence.
Moreover, we established a probabilistic framework of free
transformations in conjunction with resource measures. This
led to the introduction of strongly monotonic POVM-based
coherence measures that generalize well-known coherence
measures. We also established relations among these mea-
sures. Finally, we showed that the relative-entropy-based
resource measure is equal to the cryptographic randomness
gain, providing an important operational meaning to the con-
cept of coherence with respect to a measurement.

Together with Ref. [20], we have paved the way for a
detailed operational analysis of POVM-based coherence as
a resource, akin to what has been achieved in the standard
resource theory of coherence [13,41–43]. The operational
analysis includes the investigation of resource distillation and
dilution in the asymptotic and single-shot regime; see [44–46].

In particular, it is open whether our theory is reversible,
or there are bound resources for a given class of POVM-
incoherent operations [47,48]. An important step towards this
goal would consist in a possible simplification of our con-
structions, e.g., of the MPI and PI operations. Moreover, we
expect that virtually all known coherence measures and chan-
nel classes [14] can be generalized to POVMs. It is likely
that more operational interpretations of POVM-based coher-
ence measures can be found which link the resource theory
to interesting applications in quantum information science.
Finally, future work should address the connection of POVM-
based coherence with other notions of nonclassicality such as
entanglement and purity [17,49].
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APPENDIX A: RELATING NAIMARK EXTENSIONS
OF A POVM

In the Supplemental Material of Ref. [20], several relations
between Naimark extensions of a POVM were established. In
this section, we provide an overview of these results which
are used to show that the constituents of our POVM-based
coherence theory do not depend on the choice of Naimark
extension. In particular, we prove Prop. 2 at the end of this
section.

Let P, P̂ be two Naimark extensions of the same n-outcome
POVM E such that rankP̂i � rankPi. There exists an isometry
Q : Ĥ → H′ from the smaller Naimark spacer to the larger
Naimark space such that

PiQ = QP̂i, (A1)

Q ◦ �̂ = � ◦ Q, (A2)

where we have defined the isometric channel Q[X ] = QXQ†,
and �̂[X ] = ∑

i P̂iX P̂i denotes the block-dephasing operator.
Moreover, it was shown that there exists a unitary U on the

larger Naimark space such that [20]

QE = UE, (A3)

Q ◦ E = U ◦ E, (A4)

where E[X ] = T XT † = X ⊕ 0 denotes the embedding oper-
ation; see Sec. I B. This unitary can be chosen to be block
diagonal such that it commutes with the Naimark extension
effects,

UPi = PiU, (A5)

� ◦ U = U ◦ �. (A6)

The channel Q†[ρ] = Q†ρQ is completely positive, but not
trace preserving in general. Define the projector S := QQ† and
its complement S⊥ = 1 − S for which it holds that S⊥Q = 0.
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We define the completely positive map,

T [ρ] := tr(S⊥ρ)1/dmin, (A7)

which has Kraus operators

Lâ,b = 1√
dmin

|â〉〈b|S⊥, (A8)

where {|â〉} ({|b〉}) denotes an orthonormal basis of the smaller
(larger) Naimark space. We choose, as output basis, |â〉 ∈ Ĥ,
an incoherent basis with respect to P̂i. Consequently, Lâ,b

cannot create coherence for any input. Define the operators

Rm =
{

Q† for m = 0
Lâ,b for m � 1,

(A9)

where the index m for m � 1 runs over all combinations of
(â, b). The set {Rm} is a set of Kraus operators for the channel

R = Q† + T . (A10)

It holds that R ◦ Q = id, i.e., R is a reversal channel of
the isometric channel Q. One can show that the following
equation holds [20]:

�̂ ◦ R = R ◦ �. (A11)

In addition, it holds that T ◦ E[ρ] = tr(S⊥E[ρ])1/dmin = 0
and, therefore,

R ◦ E = Q† ◦ E . (A12)

Finally, we define the following channel from operators on
the larger Naimark space to operators on the smaller Naimark
space:

N := R ◦ U , (A13)

which satisfies

N ◦ E = E, N ◦ � = �̂ ◦ N . (A14)

The first equality follows from N ◦ E = R ◦ U ◦ E = R ◦
Q ◦ E = E . The second equality follows from N ◦ � = R ◦
U ◦ � = �̂ ◦ R ◦ U = �̂ ◦ N .

Proof of Proposition 2

Proposition 2. The set containing all POVM-incoherent
(PI) Kraus operators Kl does not depend on the choice of
Naimark extension used to define it; see Eq. (20).

Proof. Let P, P̂ be two Naimark extensions of the same
POVM E such that rankP̂i � rankPi. Let {Kl = T †K ′

l T } be the
set of POVM-incoherent Kraus operators defined via incoher-
ent operators {K ′

l } of the “larger” Naimark extension P; see
Eq. (20). Consider the MBI channel �[ρ ′] = ∑

l K ′
l ρ

′(K ′
l )†

on the larger Naimark space. The channel �̂ := R ◦ U ◦ � ◦
U† ◦ Q is a MBI channel on the smaller Naimark space,
which leads to the same (local) MPI operation �MPI [20]. We
consider the following Kraus decomposition of the channel:

�̂[ρ̂] =
∑
m,l

RmUK ′
lU

†Qρ̂Q†U (K ′
l )†U †R†

m

=
∑
m,l

K̂m,l ρ̂K̂†
m,l ,

K̂m,l := RmUK ′
lU

†Q, (A15)

where Rm was defined in Eq. (A9).

We proceed to show that the set {K̂m,l}
(i) satisfies

∑
m,l K̂†

m,l K̂m,l = 1,
(ii) has the property that each element is incoherent with

respect to P̂, and
(iii) leads to the previous set of PI Kraus operators, more

precisely, T †K̂m,l T = δm,0Kl .
The first claim holds since {K̂m,l} is a set of Kraus operators

of �̂, which is a completely positive trace-preserving map
[20].

For the second claim, consider a block-incoherent pure
state |ϕi〉 = P̂i|ϕi〉, for which the following holds:

K̂m,l |ϕi〉 = K̂m,l P̂i|ϕi〉
= RmUK ′

l PiU
†Q|ϕi〉

= RmUPf (i)K
′
l PiU

†Q|ϕi〉
= RmPf (i)UK ′

l PiU
†Q|ϕi〉

=
{

P̂f (i)Q†UK ′
l PiU †Q|ϕi〉 for m = 0

Lâ,bPj(i)UK ′
l PiU †Q|ϕi〉 else.

(A16)

The second equation makes use of (A1) and (A5). In the third
line, we have used that for an incoherent input, the output of
K ′

l is incoherent (16). Finally, the last equation follows from
the definition of Rm (A9). Note that in any case, the output of
the Kraus operator in (A16) is incoherent; see (A8).

For the third claim, we evaluate

T †K̂m,l T = T †RmUK ′
lU

†QT

= T †RmUK ′
l T

= T †RmUEK ′
l T

= T †RmQEK ′
l T

= δm,0T †K ′
l T = δm,0Kl . (A17)

In the first line, the definition of K̂m,l (A15) was inserted. The
second and fourth lines utilize the relations UT = QT and
E = T T †. In the third line, we have used that K ′

l is subspace
preserving (18). Finally, for the last line, note that according
to (A9), R0Q = Q†Q = 1, and RmQ = 0 for m � 1. �

APPENDIX B: ALTERNATIVE SDP FOR GENERALIZED
ROBUSTNESS MEASURE

In Ref. [22], it was shown that the robustness of block
coherence (asymmetry) can be expressed by the following
SDP:

Crob(ρ, P) = max tr(Xρ) − 1,

with X � 0, �[X ] = 1, (B1)

where �[X ] = ∑
i PiXPi denotes the block-dephasing

operation. Consider the POVM-coherence measure
Crob(ρ, E) = Crob(EV [ρ], P), where Pi = 1 ⊗ |i〉〈i| and
EV [ρ] = ∑

i, j AiρA†
j ⊗ |i〉〈 j|; see Eq. (34). If we write
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X = ∑
i, j Xi, j ⊗ |i〉〈 j|, we directly obtain the SDP,

Crob(ρ, E) = max tr
(∑

i, j

Xj,iAiρA†
j

) − 1

so that
∑
i, j

Xi, j ⊗ |i〉〈 j| � 0, Xi,i = 1. (B2)

Employing this form, we are able to show that Crob(ρ, E) �
C�1 (ρ, E) as follows:

Crob(ρ, E) = max
X�0,Xi,i=1

∑
i, j

tr(Xj,iAiρA†
j ) − 1

= max
X�0,Xi,i=1

∑
i �= j

tr(Xj,iAiρA†
j )

= max
X�0,Xi,i=1

2
∑
i< j

Re tr(Xj,iAiρA†
j )

� max
X�0,Xi,i=1

2
∑
i< j

|tr(Xj,iAiρA†
j )|

� 2
∑
i< j

max
‖Xi, j‖∞�1

|tr(Xj,iAiρA†
j )|

= 2
∑
i< j

||AiρA†
j ||1 = C�1 (ρ, E). (B3)

For the second inequality, we have used that X � 0, Xi,i =
1 implies ||Xi, j ||∞ � 1, where ||X ||∞ denotes the largest
singular value of X . Then, we employed the variational char-
acterization of the trace norm, ||R||1 = max||L||∞�1 |tr(L†R)|,
which follows from the duality property of the Schatten norms
[50].

We proceed to show that Crob(ψ, E) = C�1 (ψ, E) holds for
any pure state ψ := |ψ〉〈ψ |. For indices i, j, consider the
rank-one operator Ai|ψ〉〈ψ |A†

j = √
pi p j |φi〉〈φ j |, with pi :=

〈ψ |A†
i Ai|ψ〉 � 1. The vectors |φi〉 = 1√

pi
Ai|ψ〉 are normalized

and not necessarily orthogonal. Evaluating C�1 (ψ, E) yields

C�1 (ψ, E) =
∑
i �= j

||Ai|ψ〉〈ψ |A†
j ||1

=
∑
i �= j

√
pi p j || |φi〉〈φ j | ||1

=
∑
i �= j

√
pi p j . (B4)

We define the Hermitian operator X̃ = ∑
i, j X̃i, j ⊗ |i〉〈 j| as

X̃ =
∑
i, j

|φi〉〈φ j | ⊗ |i〉〈 j| +
∑

i

(1 − |φi〉〈φi|) ⊗ |i〉〈i|. (B5)

It holds that X̃ � 0 since the first term can be written
as |�〉〈�| � 0 with |�〉 = ∑

i |φi〉 ⊗ |i〉, while the second
term is in spectral decomposition form and apparently pos-
itive semidefinite. Moreover, the diagonal blocks of X̃ are
equal to the identity, X̃i,i = 1. Thus, X̃ is an element of
the feasible set of operators X used to obtain Crob(ψ, E) =
maxX�0,Xi,i=1

∑
i �= j tr(Xj,iAi|ψ〉〈ψ |A†

j ). Hence, it follows that

Crob(ψ, E) �
∑
i �= j

tr(X̃ j,iAi|ψ〉〈ψ |A†
j )

=
∑
i �= j

√
pi p j tr(|φ j〉〈φi| |φi〉〈φ j |)

=
∑
i �= j

√
pi p j . (B6)

By comparing (B4) and (B6), we infer that Crob(ψ, E) �
C�1 (ψ, E) holds for any pure state ψ . Combining this with
the inequality Crob(ρ, E) � C�1 (ρ, E) for general states ρ,
we conclude that Crob = C�1 holds for pure states and any
POVM. �
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