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Conversion from W to Greenberger-Horne-Zeilinger states in the Rydberg-blockade regime of
neutral-atom systems: Dynamical-symmetry-based approach
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Institut für Angewandte Physik, Technical University of Darmstadt, D-64289 Darmstadt, Germany

(Received 30 December 2020; accepted 8 March 2021; published 22 March 2021)

We investigate the possibilities for a deterministic conversion between two important types of maximally
entangled multiqubit states, namely, W and Greenberger-Horne-Zeilinger (GHZ) states, in the Rydberg-blockade
regime of a neutral-atom system where each atom is subject to four external laser pulses. Such interconversions
between W states and their GHZ counterparts have quite recently been addressed using the method of shortcuts
to adiabaticity, more precisely techniques based on Lewis-Riesenfeld invariants [R.-H. Zheng et al., Phys. Rev. A
101, 012345 (2020)]. Motivated in part by this recent work, we revisit the W to GHZ state-conversion problem
using a fundamentally different approach, which is based on the dynamical symmetries of the system and a
Lie-algebraic parametrization of its permissible evolutions. In contrast to the previously used invariant-based
approach, which leads to a state-conversion protocol characterized by strongly time-dependent Rabi frequencies
of external lasers, ours can also yield one with time-independent Rabi frequencies. This feature makes our
protocol more easily applicable experimentally, with the added advantage that it allows the desired state
conversion to be carried out in a significantly shorter time with the same total laser pulse energy used.
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I. INTRODUCTION

Recent years have witnessed considerable progress in
quantum-state engineering in a variety of physical systems
[1–3], this being one of the essential prerequisites for the
development of future quantum technologies [4,5]. In par-
ticular, the recent milestones pertaining to the scalability
of neutral-atom arrays trapped in optical tweezers [6–11]
have reinvigorated interest in quantum-state engineering in
ensembles of Rydberg atoms [12,13]. These developments
[14–19], in turn, bode well for future progress in the realm
of quantum-information processing (QIP) with this class of
atomic systems [20,21], a research direction whose overarch-
ing goal is the realization of a neutral-atom quantum computer
[22,23]. High-fidelity state preparation and readout, quantum
logic gates, and controlled quantum dynamics of more than 50
qubits have already been demonstrated in those systems, with
the prospect of reliable QIP with hundreds of qubits being
within reach [24].

Maximally entangled multiqubit states are of particular im-
portance for QIP, regardless of the specific physical platform.
Prominent ones among them are W [25] and Greenberger-
Horne-Zeilinger (GHZ) [26] states, two classes of states that
cannot be transformed into each other through local oper-
ations and classical communication (LOCC inequivalence
[27]). Owing to their favorable properties, both classes have
proven useful in various QIP protocols [28–30], which trig-
gered a large number of proposals for the preparation of W
[31–39] and GHZ states [2,40–43] in various systems.

Aside from tailored schemes for the preparation of W or
GHZ states, which typically involve a simple product state as
their point of departure [16], the interconversion between a W

state and its GHZ counterpart represents another interesting
problem of quantum-state engineering. The earliest attempt in
this direction pertained to a photonic system and was proba-
bilistic in nature [44]. This pioneering study was followed by
a further work with photons [45] and a study of analogous
interconversions in a spin system [46]. Finally, irreversible
conversions of a W state into a GHZ state were also proposed
in the realm of atomic systems [47,48].

Quite recently, deterministic interconversions between W
and GHZ states have been investigated in the Rydberg-
blockade (RB) regime [49,50] of a neutral-atom system
subject to four external laser pulses [17]. Each atom in this
system was assumed to represent an effective two-level sys-
tem, with the two relevant states (ground and a Rydberg state)
playing the roles of logical qubit states. This recent work
was based on the method of shortcuts to adiabaticity (STA)
[51]. More specifically yet, it utilizes the concept of Lewis-
Riesenfeld invariants [52], in this case applied to an effective
four-level Hamiltonian of the system. RB, the phenomenon
whereby the van der Waals (vdW) interaction prevents simul-
taneous Rydberg excitation of more than one atom within a
certain radius, represents the enabling physical mechanism
for QIP with neutral atoms [22] as it engenders a conditional
logic that permits the realization of entangling two-qubit gates
[53–55]. From the point of view of quantum-state engineer-
ing, the most important implication of RB is that it leads to
the creation of coherent superpositions with a single Ryd-
berg excitation being shared among all atoms in an ensemble
[54]. Such superpositions are maximally entangled states of
W type [56].

In this paper, we study the conversion of an initial W
state into a GHZ state in the same physical setting as
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Ref. [17], i.e., the RB regime of a system of neutral atoms
interacting through vdW interactions. However, we employ
a fundamentally different approach than that of Ref. [17].
Namely, our approach entails the use of the dynamical sym-
metries [57,58] of the system under consideration and is
mathematically framed using the language of Lie algebras.
Another important technical ingredient of our approach is
a particular parametrization of all the unitary transforma-
tions connecting arbitrary two states of the four-dimensional
representation of the Lie algebra so(4) [59]. We utilize
this parametrization to describe the dynamics correspond-
ing to the effective system Hamiltonian that depends on
the aforementioned Rabi frequencies. We then single out
specific unitary evolutions of the system that connect the
initial and final states (W and GHZ, respectively) in the
quantum-state control problem at hand. This allows us to de-
termine the corresponding Rabi frequencies of external laser
pulses.

In contrast to the STA-based approach of Ref. [17],
which results in a state-conversion protocol characterized
by time-dependent Rabi frequencies with a rather complex
time dependence, our approach can also yield one with
constant (i.e., time-independent) Rabi frequencies. Impor-
tantly, this last feature makes our resulting protocol more
easily applicable experimentally than that of Ref. [17],
with the added benefit that it allows the desired state
conversion to be carried out in a significantly shorter
time.

The remaining part of this work is organized in the follow-
ing manner. In Sec. II we introduce the Rydberg-atom system
under consideration, specifying at the same time the notation
and conventions to be used throughout the paper. In Sec. III
we lay the groundwork for our dynamical-symmetry-based
approach, with emphasis on its Lie-algebraic description.
Section IV is concerned with the Hamiltonian dynamics, first
in the most general case and then under the constraints inher-
ent to the model used. In Sec. V we first discuss the specific
unitary evolutions of the system that are required for carrying
out the desired state conversion. We then determine the corre-
sponding Rabi frequencies. Finally, we compare our resulting
state-conversion protocol with the one obtained in Ref. [17],
with emphasis on the robustness of those protocols against
decoherence effects. We close in Sec. VI with a summary
of the results and questions for future work. Some involved
mathematical details are relegated to Appendices A and B.

II. SYSTEM AND EFFECTIVE HAMILTONIAN

We consider a system that consists of three equidistant and
identical neutral atoms in the RB regime [for an illustration,
see Fig. 1(a)]. All three atoms are subject to the same four ex-
ternal laser pulses, with their corresponding Rabi frequencies
being denoted by �r0, �r1, �r2, and �r3. These pulses, with
frequencies ωi (i ∈ {0, 1, 2, 3}), are close to being resonant
with only a single internal (electronic) transition |g〉 ↔ |r〉.
Thus, each atom can effectively be treated as a two-level
system with its electronic ground state |g〉 and a highly excited
Rydberg state |r〉. These states encode the logical |0〉 and |1〉
qubit states, respectively. Therefore, from the QIP standpoint
this is a system of neutral-atom qubits of the ground-Rydberg
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FIG. 1. (a) Schematic of the system under consideration: Three
identical neutral atoms with internal states |g〉 and |r〉 (gr-type qubits)
and constant vdW interaction energy h̄V , which are subject to four
external laser pulses. (b) Pictorial illustration of the effective Hamil-
tonian Heff in Eq. (3).

(gr) type [24]. Note that the typical energy splitting of such
qubits in frequency units is (900–1500) THz (depending on
the choice of atomic species and the Rydberg states used),
thus in practice gr-qubit manipulations entail either an ultra-
violet laser or a combination of visible and infrared lasers
in a ladder configuration. Owing to their relatively straight-
forward initialization, manipulation, and measurement, as
compared to other kinds of neutral-atom qubits, gr qubits
currently represent the preferred qubit type for fast (�100 ns)
and high-fidelity entangling operations [21], as well as for
quantum-state engineering [16].

The interaction-picture Hamiltonian of the system is given
by

HI(t )/h̄ =
3∑

k=1

3∑
i=0

�ri(t )e−i(δi+�i )t |r〉kk〈g| + H.c.

+
∑
p<q

V |rr〉pq〈rr|. (1)

Here, the laser frequencies are slightly detuned from the
atomic transition frequency, i.e., ωi = (Er − Eg)/h̄ + �i + δi

with i ∈ {0, 1, 2, 3}. The Rabi frequencies �r1, �r2, and �r3

are time dependent and real valued, while �r0 is time inde-
pendent and plays the role of inducing appropriate quadratic
Stark shifts. h̄V is the constant vdW interatomic interaction
energy. The interatomic interaction between each pair of ex-
cited Rydberg atoms is described approximately by an energy
shift of magnitude h̄V according to lowest-order perturbation
theory.

As shown in Ref. [17], by choosing the detunings δi and
�i appropriately, the system Hamiltonian can be reduced via
perturbation theory to an effective Hamiltonian defined in the
manifold of four three-particle states |ggg〉, |W 〉 = (|rgg〉 +
|grg〉 + |ggr〉)/

√
3, |W ′〉 = (|rrg〉 + |grr〉 + |rgr〉)/

√
3, and

|rrr〉. To be more specific, choosing the detunings such that
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δ0 = 0, �1 = 0, �2 = V , �3 = 2V , and

δ1 = − 6�2
r0

�0
+ 4�2

r0

�0 − V
,

δ2 =3�2
r0

�0
− 8�2

r0

�0 − V
+ 3�2

r0

�0 − 2V
,

δ3 = 4�2
r0

�0 − V
− 6�2

r0

�0 − 2V
(2)

yields the effective Hamiltonian

Heff(t )/h̄ = �1(t )|ggg〉〈W | + �2(t )|W 〉〈W ′|
+ �3(t )|W ′〉〈rrr| + H.c., (3)

where �1(t ) = √
3 �r1(t ), �2(t ) = 2�r2(t ), and �3(t ) =√

3�r3(t ).
In addition to the two-level approximation a sufficient

set of conditions for the validity of this effective Hamil-
tonian requires sufficiently long interaction times Tint, i.e.,
min{|�0|, |V |}Tint � 1, and |�0|, |V | � |�r0|, min{|δi|; i =
1, 2, 3} � max{|�ri(t )|; i = 1, 2, 3}.

It is pertinent to comment at this point on the realm of
applicability of the last effective Hamiltonian, as well as
the ensuing state-conversion scheme, with regard to the RB
regime, as the latter represents the regime of primary interest
for QIP with neutral atoms [22]. In this context it is useful
to recall that the RB regime is defined as the one in which
the interaction-induced energy shift h̄V is much larger than
the Fourier-limited width of the laser pulses involved (i.e.,
|V |Tint � 1, where Tint is the pulse duration). Because this last
condition is satisfied for all the laser pulses envisioned to be
used in our present state-conversion scheme, we can identify
the RB regime as the domain of applicability of our approach.

In the following, it is demonstrated that just on the basis of
the so(4) dynamical symmetry of the last effective Hamilto-
nian alone, i.e. without invoking the Lewis-Riesenfeld method
of Ref. [17], a simpler and more time-efficient protocol for the
desired conversion of W states into their GHZ counterparts
can be found.

III. DYNAMICAL SYMMETRIES

In what follows, the su(2) ⊕ su(2) ∼= so(4) dynamical
symmetry of the effective Hamiltonian in Eq. (3) is investi-
gated. It is shown that under the assumption of real-valued
Rabi frequencies �i(t ) (i = 1, 2, 3) this last Hamiltonian de-
scribes the quantum dynamics of two constrained pseudospin-
1
2 degrees of freedom.

To begin with, we map the orthonormal basis states in the
Hamiltonian of Eq. (3) onto column vectors according to

|ggg〉 →

⎛
⎜⎝

1
0
0
0

⎞
⎟⎠, |W 〉 →

⎛
⎜⎝

0
1
0
0

⎞
⎟⎠,

|W ′〉 →

⎛
⎜⎝

0
0
1
0

⎞
⎟⎠, |rrr〉 →

⎛
⎜⎝

0
0
0
1

⎞
⎟⎠. (4)

Within this notation the six matrices

S1 = 1

2

⎛
⎜⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎠, T1 = 1

2

⎛
⎜⎝

0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

⎞
⎟⎠,

S2 = 1

2

⎛
⎜⎝

0 0 0 −1
0 0 1 0
0 1 0 0

−1 0 0 0

⎞
⎟⎠, T2 = 1

2

⎛
⎜⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎠,

S3 = 1

2

⎛
⎜⎝

0 0 −i 0
0 0 0 i
i 0 0 0
0 −i 0 0

⎞
⎟⎠, T3 = 1

2

⎛
⎜⎝

0 0 −i 0
0 0 0 −i
i 0 0 0
0 i 0 0

⎞
⎟⎠,

(5)

with Lie brackets

[Si, S j] = iεi jkSk,

[Ti, Tj] = iεi jkTk,

[Si, Tj] = 0, (6)

constitute a four-dimensional representation of the Lie alge-
bra su(2) ⊕ su(2) ∼= so(4) and thus describe two independent
angular momenta. From the relevant Casimir operators

I =
3∑

i=1

(
S2

i + T 2
i

) = 3

2
, J =

3∑
i=1

(
S2

i − T 2
i

) = 0 (7)

it is apparent that the (dimensionless) two angular momen-
tum operators with Cartesian components {Si} and {Ti} (i ∈
{1, 2, 3}) describe two independent spin- 1

2 degrees of freedom
or pseudospins because

∑
i S2

i = ∑
i T 2

i = s(s + 1) with s =
1
2 . Furthermore, the matrices of the representation [cf. Eq. (5)]
fulfill the additional relations

(2Sl )(2Sk ) = iεlkm(2Sm) + δlk, l, k, m ∈ {1, 2, 3}
(2Tl )(2Tk ) = iεlkm(2Tm) + δlk (8)

in analogy to two commuting sets of Pauli spin matrices.
Provided the Rabi frequencies �i(t ) are real valued the

Hamiltonian of Eq. (3) is a linear combination of these angular
momentum operators, i.e.,

Heff(t )/h̄ = �1(t )(S1 + T1) + �2(t )(S2 + T2)

+�3(t )(S1 − T1). (9)

This explicitly exhibits the Lie algebra su(2) ⊕ su(2) as the
dynamical symmetry of this Hamiltonian [57,58]. However, it
is also apparent that this effective Hamiltonian is not the most
general real-valued linear combination of the six independent
operators Si and Ti (i ∈ {1, 2, 3}). It is constrained by the
fact that some operators, such S2 − T2, do not appear in this
Hamiltonian.

In view of the su(2) ⊕ su(2) symmetry of the Hamiltonian
(3) it is convenient to use the eigenstates of the spin operators
of the two independent pseudospins as an orthonormal basis
of the Hilbert space. These states can straightforwardly be
constructed by starting from the common eigenvector of the
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operator S3 + T3 with the largest eigenvalue, i.e.,

|↑↑〉 → 1√
2

⎛
⎜⎝

−i
0
1
0

⎞
⎟⎠ (10)

with (S3 + T3)|↑↑〉 = |↑↑〉. By applying the lowering op-
erators S1 − iS2 and T1 − iT2 onto |↑↑〉 the remaining
orthonormal states of the independent pseudospins are ob-
tained, namely,

|↑↓〉 → 1√
2

⎛
⎜⎝

0
−i
0

−1

⎞
⎟⎠, |↓↑〉 → 1√

2

⎛
⎜⎝

0
−i
0
1

⎞
⎟⎠,

|↓↓〉 → 1√
2

⎛
⎜⎝

−i
0

−1
0

⎞
⎟⎠. (11)

In this basis the angular momentum operators Si (Ti) act
on the first (second) pseudospin only. Therefore, these or-
thonormal basis states transform under an arbitrary unitary
transformation in a simple way. In view of [Si, Tj] = 0, i, j ∈
{1, 2, 3}, the most general unitary transformation generated by
these commuting angular momenta can be written in the form

U (α,β) = e−iα·Se−iβ·T . (12)

Explicit expressions for the transformed pseudospin states of
Eqs. (10) and (11) are given in Appendix A.

IV. UNITARY TRANSFORMATIONS AND
TIME-DEPENDENT HAMILTONIANS

In this section, basic properties of time-dependent unitary
operators are discussed which are induced by time-dependent
curves in the parameter space of the Lie algebra su(2) ⊕
su(2). Via the time-dependent Schrödinger equation their
local properties are characterized by corresponding time-
dependent Hamiltonians.

Let us consider a general time-dependent unitary transfor-
mation U [α(t ),β(t )] as defined by Eq. (12) which is induced
by a time-dependent (differentiable) curve, say γ : t −→
{α(t ),β(t )} with t ∈ [0, T ], in the parameter space of the Lie
algebra su(2) ⊕ su(2). Via the time-dependent Schrödinger
equation such a time-dependent unitary transformation de-
fines the corresponding time-dependent Hamiltonian H (t ),
i.e.,

ih̄
d

dt
U [α(t ),β(t )] = H (t )U [α(t ),β(t )]. (13)

This Hamiltonian H (t ) characterizes the local properties
of this time evolution and is determined completely by
the su(2) ⊕ su(2) commutation relations of Eq. (6). It can
be determined in a straightforward way from Eq. (A1) of
Appendix A, thus yielding the result

H (t )/h̄ = ω[α(t )] · S + ω[β(t )] · T (14)

with the time-dependent (vectorial) Rabi frequency

ω[α(t )] = sin |α(t )|
|α(t )| α̇(t ) + 2 sin2 |α(t )|

2

|α(t )|2 [α(t ) × α̇(t )]

+|α(t )| − sin |α(t )|
|α(t )|3 [α(t ) · α̇(t )]α(t ) (15)

and with ω[β(t )] defined in an analogous fashion. [Note that
here α̇(t ) denotes the time derivative of α(t )].

According to Eq. (14) each time-dependent (differentiable)
curve γ induces a time-dependent curve in the space of
unitary transformations U [α(t ),β(t )] whose associated time-
dependent Hamiltonian H (t ) has the Lie algebra su(2) ⊕
su(2) as its dynamical symmetry. In general, this time-
dependent Hamiltonian H (t ) is a linear combination of all
angular momenta of this Lie algebra. In the Hilbert space of
the two pseudospins any pure quantum state, say |ψ (0)〉, can
be converted into any other pure quantum state, say |ψ (T )〉,
by the time-dependent Hamiltonian H (t ) of Eq. (14) provided
a curve γ can be found with

U [α(0),β(0)]|ψ (0)〉 = ei	0 |ψ (0)〉,
U [α(T ),β(T )]|ψ (0)〉 = ei	T |ψ (T )〉. (16)

[Note that nonzero phases 	0,	T are possible in Eq. (16)
because pure quantum states are described by rays in Hilbert
space]. If the form of the time-dependent Rabi frequencies of
Eq. (15) is constrained by additional boundary conditions the
possible curves γ in the parameter space of the Lie algebra
su(2) ⊕ su(2) may be restricted so that particular quantum-
state conversions are no longer possible.

A typical example of a Hamiltonian with additional con-
straints is the effective time-dependent Hamiltonian of Eq. (3).
Comparing Eqs. (9) and (14) these constraints are explicitly
given by

ω3[α(t )] = 0,

ω3[β(t )] = 0,

ω2[α(t )] − ω2[β(t )] = 0 (17)

and by the following relations:

�1(t ) = ω1[α(t )] + ω1[β(t )]

2
,

�3(t ) = ω1[α(t )] − ω1[β(t )]

2
,

�2(t ) = ω2[α(t )] + ω2[β(t )]

2
(18)

which relate the components of the (vectorial) Rabi frequen-
cies to the time-dependent parameters of Eq. (9). In particular,
the relations (17) are anholonomic constraints that have to be
fulfilled by all curves in the parameter space of the Lie algebra
su(2) ⊕ su(2) which enable a pure state conversion with the
aid of the effective Hamiltonian (3).

V. W TO GHZ QUANTUM-STATE CONVERSION

In this section we address the question as to which effective
state conversions between a W and a GHZ state are possible
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by appropriate choices of the time-dependent Rabi frequen-
cies in the effective Hamiltonian of Eq. (3). In particular,
it is demonstrated below that the su(2) ⊕ su(2)-based Lie-
algebraic approach allows one to determine quantum-state
conversions which are significantly faster than the previously
proposed STA-based protocol [17].

We are looking for time-dependent Rabi frequencies �i(t )
(i = 1, 2, 3) of the Hamiltonian [cf. Eq. (3)] that allow the
conversion of an initially prepared W state into a GHZ state
as described by Eq. (16) with

|ψ (0)〉 = |W 〉,
|ψ (T )〉 = |GHZ〉 = (|ggg〉 + eiϕ |rrr〉)

1√
2
, ϕ ∈ [0, 2π ).

(19)

For this purpose we have to find an appropriate curve γ

in the parameter space of the Lie algebra su(2) ⊕ su(2) as
described in Sec. IV whose induced unitary transformation
U [α(t ),β(t )] acts onto the initial state like the unit trans-
formation at t = 0 and yields the final GHZ state at t = T .
As this state conversion has to be achieved by the effective
Hamiltonian (3), the time-dependent Rabi frequencies have to
fulfill the constraints (17) and the relations (18).

Let us first of all determine curves γ in the parameter
space of su(2) ⊕ su(2) which fulfill the constraints (17). For
the sake of simplicity we restrict our subsequent discussion
to curves γ which fulfill the additional requirement that
|α(t )| = |β(t )| = π . In addition, expressing the vectorial pa-
rameters α(t ) and β(t ) in spherical coordinates, i.e., α1(t ) =
π sin θα (t ) cos φα (t ), α2(t ) = π sin θα (t ) sin φα (t ), α3(t ) =
π cos θα (t ) and analogously for β(t ), the anholonomic con-
straints of Eq. (17) simplify to the relations

0 = sin2 (θα (t ))φ̇α (t ), (20)

0 = sin2 (θβ (t ))φ̇β (t ), (21)

0 = θ̇α (t ) cos φα (t ) − θ̇β (t ) cos φβ (t ) (22)

with 0 � θα (t ), θβ (t ) � π , 0 � φα (t ), φβ (t ) < 2π . The con-
straints imposed by Eqs. (20) and (21) can be fulfilled by
choosing φ̇α (t ) = φ̇β (t ) = 0 so that the general solution of
Eq. (22) is given by

θβ (t ) = θβ (0) + cos φα (0)

cos φβ (0)

∫ T

0
dt θ̇α (t ). (23)

Apart from being integrable, the function θ̇α (t ) can be chosen
arbitrarily. According to Eqs. (18), the time dependencies of
the Rabi frequencies are given by

�1(t ) = −θ̇α (t )(sin φα + cos φα tan φβ ),

�2(t ) = 2θ̇α (t ) cos φα,

�3(t ) = −θ̇α (t )(sin φα − cos φα tan φβ ). (24)

As the next step, we proceed to determine the initial and
final values of the curve γ , i.e., {α(0),β(0)} and {α(T ),β(T )}.
As the initially prepared W state is an eigenstate of S3 + T3

and |α(t )| = |β(t )| = π we can choose α3(0) = β3(0) = π .
Alternatively, also the choice α3(0) = β3(0) = −π would

have been possible. The final values of the curve γ at t = T
can be determined from the transformation properties explic-
itly worked out in Appendix A. For |α(t )| = |β(t )| = π they
reduce to the conditions

π2

√
2

= |α3(T )β2(T ) + α2(T )β3(T )|,

0 = α1(T )β1(T ) + α2(T )β2(T ) − α3(T )β3(T ),

0 = α1(T )β3(T ) + α3(T )β1(T ),

π2

√
2

= |α2(T )β1(T ) − α1(T )β2(T )|. (25)

Numerical solutions of these equations, which are consistent
with the anholonomic boundary condition of Eq. (23), are
presented in Table I of Appendix B. For completeness, let us
mention that the inverse conversion from a GHZ to a W state
is easily realized through a time reversal of the curve γ . Such
a time reversal formally corresponds to interchanging t = 0
and T in Eq. (23) and can practically be achieved using Rabi
frequencies of the same magnitude as those in Eq. (24), but
with the opposite sign.

Depending on the choice of the function θ̇α (t ) in Eq. (23)
different time-dependent Rabi frequencies of the Hamiltonian
(3) can enable the desired quantum-state conversion from a
W to a GHZ state. One of the simplest choices for θ̇α (t ) is a
constant function which yields

θα (t ) = t
θα (T )

T
, t ∈ [0, T ] (26)

where in writing the last equation use has been made of
the fact that θα (0) = 0. According to Eqs. (24) it gives rise
to time-independent Rabi frequencies corresponding to an
instantaneous turn on and turn off of the laser pulses induc-
ing these Rabi frequencies at t = 0 and T . Another possible
choice for θ̇α (t ) is

θ̇α (t ) = θα (T )

T (1 − τ )

⎧⎨
⎩

t/(τT ), 0 � t � τT
1, τT � t � T − τT
(T − t )/(τT ), T − τT � t � T

(27)

which yields (continuous) Rabi frequencies vanishing at t = 0
and at t = T and being turned on and off during a time interval
of duration τT .

In Figs. 2 and 3 characteristic features of the quantum-state
conversion from a W to a GHZ state resulting from these two
types of time-dependent Rabi frequencies are compared with
the corresponding results of the recently proposed STA-based
scheme of Ref. [17] which is based on the Lewis-Riesenfeld
(LR) theory. For this comparison the Rabi frequencies of these
different quantum-state conversion schemes are normalized
such that their total squared pulse areas, i.e.,

A(t ) =
∫ t

0

3∑
i=3

�2
i (t ′)dt ′, (28)

are equal for times t that correspond to the total pulse du-
rations (t = Tmin and TLR, respectively). This implies that
in all these schemes the same (time-averaged) laser energy
is required for achieving the quantum-state conversion. In
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(a)

(b)
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Ω
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T
L
R

A
/

A
L
R

FIG. 2. (a) Time evolution of Rabi frequencies for converting a
W to a GHZ state, compared to the pulse sequences of the LR scheme
of Ref. [17]. (b) Total squared pulse areas A(t ) [cf. Eq. (28)] for
different pulse sequences: TLR is the time required for the desired
W to GHZ state conversion in the LR scheme, while Tmin is the
corresponding time in the case of time-independent Rabi frequencies
(τ = 0).

particular, we elect to normalize them to the total squared
pulse area ALR corresponding to the LR scheme [cf.
Fig. 2(b)].

The time evolution of the three Rabi frequencies capable
of converting a W state to a GHZ state according to Eq. (27)
with parameters θα (T ) = 1.924 23, θβ (T ) = 0.906 373, q1 =
q3 = 1, q2 = −1 are depicted by the solid lines in Fig. 2(a).
In this example the relative turn-on and turn-off time τ [cf.
Eq. (27)] of these time-dependent Rabi frequencies has been
chosen as one third of the total pulse duration (i.e., τ = 1

3 ).
These time-dependent Rabi frequencies are compared with
the recently proposed pulse sequences resulting from a LR
invariant [17] (dashed lines). All Rabi frequencies, in both
our approach and in that of Ref. [17], are assumed to vanish

τ = 0

τ = 1/3

LR

Tmin 0. 15

0

0.5

1

t / TLR

F
G

H
Z

FIG. 3. Time evolution of the GHZ-state fidelity FGHZ =
|〈GHZ|ψ (t )〉| for the pulse sequences displayed in Fig. 2.

outside of their respective time interval [0, T ]. Time is plotted
in units of the time TLR which is required to complete the state
conversion |W 〉 → |GHZ〉 in the LR scheme. It is apparent
from Fig. 3 that the time-dependent Rabi frequencies resulting
from Eq. (27) are capable of completing the quantum-state
conversion in a significantly shorter time close to Tmin than
the ones based on the LR scheme. The minimal conversion
time Tmin is achieved with time-independent Rabi frequencies
(τ = 0) described by Eq. (26). The time evolutions of the
GHZ-state fidelites FGHZ = |〈GHZ|ψ (t )〉| corresponding to
the pulse sequences shown in Fig. 2 are depicted in Fig. 3.
Again, the total squared pulse areas are equal for all three
cases shown, namely, the case of constant Rabi frequencies
(τ = 0), Rabi frequencies turned on and off during one third
of the pulse duration (τ = 1

3 ), and the Rabi frequencies of the
LR scheme from Ref. [17].

In the system at hand, as usual for optical experiments in
general, deleterious effects of decoherence are unavoidable.
For instance, laser manipulation of atomic states leads to
phases that depend on atomic positions. Therefore, atomic
motion inevitably gives rise to dephasing. Another impor-
tant effect in the presence of laser excitation is spontaneous
emission, which represents a major relaxation channel in the
system under consideration. In what follows, we briefly dis-
cuss these decoherence processes within the framework of
a Lindblad master equation [60]. We show that, for realistic
values of the parameters that describe them, such imperfec-
tions have only a small effect on the fidelities of GHZ states
resulting from our proposed state-conversion protocol.

In order to describe spontaneous emission originating from
radiative decay, for example, the Lindblad operator

LSp =
√

�

N∑
n=1

|g〉nn〈r| (29)

is used. It describes the spontaneous decay of individual atoms
from the Rydberg to the ground state, with � being the corre-
sponding decay rate. Analogously, the operator

LDe = √
γ

N∑
n=1

(|g〉nn〈g| − |r〉nn〈r|) (30)

describes dephasing of Rydberg and ground states with the
dephasing rate γ . Using the full interaction Hamiltonian of
the system [cf. Eq. (1)] and taking ρ(0) = |W 〉〈W | as the
initial state of the system at t = 0, we solve the corresponding
Lindblad master equation numerically [61] and evaluate the
resulting (open-system) fidelity with respect to the GHZ state

|GHZ〉Int = 1√
2

(|ggg〉 + ei(ϕ−�Et/h̄)|rrr〉) (31)

with

�E/h̄ = 3V −
(

3�2
r0

�0
+ 3�2

r0

�0 − 2V

)
. (32)

The time-dependent phase involving �E compensates for the
fact that the GHZ state defined in Eq. (19) and the effective
Hamiltonian of Eq. (3) refer to an interaction picture in which
the energy shifts originating from the interatomic interaction
and from the strong laser field with Rabi frequency �r0 have
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FIG. 4. Time evolution of the GHZ-state fidelity FGHZ in the
open-system approach for our time-independent pulse sequences and
for the pulse sequences of the LR scheme of Ref. [17].

been taken into account whereas the Hamiltonian of Eq. (1)
and the GHZ state of Eq. (31) refer to an interaction picture
without these energy shifts.

To demonstrate the robustness of our state-conversion pro-
tocol against decoherence (for an illustration, see Fig. 4), we
investigate the open-system dynamics for the case of rather
strong decoherence and dissipation with parameters � = γ =
0.1/TLR, TLR�r0 = 500, TLRV = 2π × 1000, and TLR�0 =
−2π × 3000. Figure 4 compares the obtained GHZ-state fi-
delities for our time-independent scheme (τ = 0) and the
one of Ref. [17] (LR), showing at the same time the results
obtained in the closed-system scenario (� = γ = 0) for both
of these schemes. Because our scheme allows one to carry
out the desired state conversion in a significantly shorter time,
its corresponding GHZ-state fidelity is much less affected by
decoherence, as its deleterious effects accumulate over time.
Even with the above values for the decoherence and dissipa-
tion rates � and γ , our scheme still preserves a fidelity that
exceeds 96% for t ≈ Tmin. [Note that the broadening of the
lines in Fig. 4 is a consequence of small oscillations, which
are not taken into account in the rotating-wave approximation
used for the derivation of the effective Hamiltonian of Eq. (3)
and which could be minimized by choosing an even larger
detuning �0].

Owing to the advanced experimental capabilities currently
available, even an application of complex time-dependent
laser pulses of the kind obtained in Ref. [17] is in principle
feasible. Yet, our scheme, with its resulting time-independent
Rabi frequencies, is more easily applicable experimentally,
especially from the standpoint of scaling to larger systems. As
can be inferred from Fig. 3, an important additional advantage
of our scheme, compared to that of Ref. [17], is that the time
Tmin it requires for the conversion of a W state into its GHZ
counterpart is significantly shorter than the corresponding
time TLR in Ref. [17].

VI. SUMMARY AND CONCLUSIONS

To summarize, in this paper we addressed the problem of
W to GHZ state conversion in the Rydberg-blockade regime
of a neutral-atom system in which each atom is driven by four

external laser pulses. While the same problem has recently
been investigated using shortcuts to adiabaticity, more pre-
cisely, techniques based on Lewis-Riesenfeld invariants [17],
we have treated it using a completely different, Lie-algebraic
approach based on the dynamical symmetries of the underly-
ing system.

Because it employs Lie-algebraic techniques in the con-
text of quantum-state control, our work makes a significant
contribution from the methodological standpoint. Namely, the
use of Lie-algebraic concepts in the realm of quantum control
has heretofore been almost exclusively confined to the realm
of quantum operator control [62,63], typically in the context
of quantum-gate optimization [64,65], where they provide
the mathematical underpinnings of the concept of complete
controllability [62,66].

Most importantly, our resulting state-conversion protocol
has two principal advantages compared to that of Ref. [17].
First, unlike the latter work, which leads to a state-conversion
protocol involving strongly time-dependent Rabi frequen-
cies of external lasers, our approach results in a signficantly
simpler one, which even allows for time-independent Rabi fre-
quencies. Second, our approach allows the sought-after W to
GHZ state conversion to be carried out significantly faster than
that of Ref. [17]. Both of these advantages also speak in favor
of an easier experimental implementation of our protocol, as
well as its better scalability.

With minor modifications, our approach can be gener-
alized, not only to other state-conversion problems in the
Rydberg-atom system under consideration, but also to sys-
tems belonging to other QIP platforms. An experimental
implementation of our state-conversion protocol is keenly an-
ticipated.
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APPENDIX A: UNITARY TRANSFORMATIONS OF THE
PSEUDOSPIN STATES IN EQS. (10) AND (11)

We consider a general unitary transformation as defined
by Eq. (12). From the four-dimensional representation of the
angular-momentum operators Si and Ti [cf. Eq. (5)], it is
straightforward to obtain the relations

e−iα·S = cos
|α|
2

− 2i sin
α · S
|α| sin

|α|
2

,

e−iβ·T = cos
|β|
2

− 2i sin
β · T
|β| sin

|β|
2

. (A1)

For the pseudospin states of Eqs. (10) and (11) the last two
relations imply that

e−iα·S|↑ν〉 = M++(α)|↑ν〉 + M+−(α)|↓ν〉,
e−iα·S|↓ν〉 = −M∗

+−(α)|↑ν〉 + M∗
++(α)|↓ν〉, (A2)
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where ν ∈ {↑,↓} and

M++(α) = cos
|α|
2

− i
α3

|α| sin
|α|
2

,

M+−(α) = (−iα1 + α2)

|α| sin
|α|
2

. (A3)

In deriving the last results, use has been made of the fact that
the angular-momentum operators Si act on the first pseudospin
only. Because |M++(α)|2 + |M+−(α)|2 = 1, for α ∈ R3, these
unitary transformations belong to the group SL(2,C).

By applying an additional unitary transformation generated
by the angular-momentum operators Tj , which commute with
Si (i, j ∈ {1, 2, 3}) and act on the second pseudospin only, we
finally obtain the following relations:

e−iα·Se−iβ·T |↑↑〉

−→ 1√
2

⎛
⎜⎜⎜⎝

−iM++(α)M++(β) − iM+−(α)M+−(β)

−iM++(α)M+−(β) − iM+−(α)M++(β)

M++(α)M++(β) − M+−(α)M+−(β)

−M++(α)M+−(β) + M+−(α)M++(β)

⎞
⎟⎟⎟⎠,

e−iα·Se−iβ·T |↓↑〉

−→ 1√
2

⎛
⎜⎜⎜⎝

−iM∗
++(α)M+−(β) + iM∗

+−(α)M++(β)

−iM∗
++(α)M++(β) + iM∗

+−(α)M+−(β)

−M∗
++(α)M+−(β) − M∗

+−(α)M++(β)

M∗
++(α)M++(β) + M∗

+−(α)M+−(β)

⎞
⎟⎟⎟⎠,

e−iα·Se−iβ·T |↑↓〉

−→ 1√
2

⎛
⎜⎜⎜⎝

iM++(α)M∗
+−(β) − iM+−(α)M∗

++(β)

−iM++(α)M∗
++(β) + iM+−(α)M∗

+−(β)

−M++(α)M∗
+−(β) − M+−(α)M∗

++(β)

−M++(α)M∗
++(β) − M+−(α)M∗

+−(β)

⎞
⎟⎟⎟⎠,

e−iα·Se−iβ·T |↓↓〉

−→ 1√
2

⎛
⎜⎜⎜⎝

−iM∗
++(α)M∗

++(β) − iM∗
+−(α)M∗

+−(β)

+iM∗
++(α)M∗

+−(β) + iM∗
+−(α)M∗

++(β)

−M∗
++(α)M∗

++(β) + M∗
+−(α)M∗

+−(β)

−M∗
++(α)M∗

+−(β) + M∗
+−(α)M∗

++(β)

⎞
⎟⎟⎟⎠.

(A4)

APPENDIX B: PARAMETERS DESCRIBING GHZ STATES

In order to determine the parameters {α(T ),β(T )} which
describe a GHZ state [as defined by Eq. (19)], we start from its
expansion in terms of the orthonormal basis states of Eqs. (10)
and (11), i.e.,

|GHZ〉 = 1
2 (i|↑↑〉 + i|↓↓〉 + eiϕ |↓↑〉 − eiϕ |↑↓〉). (B1)

With the aid of Eqs. (A4) we obtain the relations

± 1√
2

= −Im[M++(α(T ))M∗
+−(β(T ))]

+ Im[M+−(α(T ))M∗
++(β(T ))],

TABLE I. Spherical coordinates in the parameter space of the Lie
algebra su(2) ⊕ su(2) describing GHZ states as defined by Eq. (19).

θα (T ) θβ (T ) φα (0) φβ (0) q1 q2 q3

1.92423 0.906373 4.33454 2.47062 +1 −1 +1
1.92423 0.906373 1.94864 3.81256 +1 +1 +1
1.92423 0.906373 1.19295 5.61221 −1 +1 +1
1.92423 0.906373 5.09024 0.670972 −1 −1 +1
0.906373 1.92423 2.47062 4.33454 −1 +1 −1
0.906373 1.92423 3.81256 1.94864 −1 −1 −1
0.906373 1.92423 5.61221 1.19295 −1 −1 −1
0.906373 1.92423 0.670972 5.09024 +1 +1 −1

0 = Re[M++(α(T ))M∗
++(β(T ))]

− Re[M+−(α(T ))M∗
+−(β(T ))],

0 = Re[M++(α(T ))M∗
+−(β(T ))]

+ Re[M+−(α(T ))M∗
++(β(T ))],

± 1√
2

= Im[M++(α(T ))M∗
++(β(T ))]

+ Im[M+−(α(T ))M∗
+−(β(T ))] (B2)

for the parameters of a GHZ state, where Re (Im) denotes the
real (imaginary) part of a complex quantity.

In the special case of |α(T )| = |β(T )| = π these relations
reduce to Eqs. (25), whose general solutions are given by

α(T ) −→

⎛
⎜⎝

q1α3

q2

√
π2 − 2α2

3

α3

⎞
⎟⎠,

β(T ) −→

⎛
⎜⎜⎝

−q1q3

√
π2 − 2α2

3

2q2q3α3

q3

√
π2 − 2α2

3

⎞
⎟⎟⎠ (B3)

with −π/
√

2 � α3 � π/
√

2 and q1, q2, q3 ∈ {−1,+1}. In-
troducing spherical coordinates yields the relations

cos φα (0) = q1 cot θα (T ),

cos φβ (0) = −q1 cot θβ (T ),

cos2 θα (T ) + cos2 θβ (T ) = 1
2 (B4)

which have to be fulfilled necessarily by the spherical coor-
dinates of a GHZ state. In addition, these coordinates have
to fulfill the anholonomic boundary conditions of Eq. (23)
relating θβ (T ) and θα (T ). This leads to a unique set of spher-
ical coordinates for each combination of q1, q2, q3 describing
the desired state conversion. These sets are given explicitly in
Table I.
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[38] V. M. Stojanović, Phys. Rev. Lett. 124, 190504 (2020).
[39] S. Bugu, F. Ozaydin, T. Ferrus, and T. Kodera, Sci. Rep. 10,

3481 (2020).
[40] A. S. Coelho, F. A. S. Barbosa, K. N. Cassemiro, A. S. Villar,

M. Martinelli, and P. Nussenzveig, Science 326, 823 (2009).
[41] M. Erhard, M. Malik, M. Krenn, and A. Zeilinger, Nat.

Photonics 12, 759 (2018).
[42] V. Macrì, F. Nori, and A. F. Kockum, Phys. Rev. A 98, 062327

(2018).
[43] R.-H. Zheng, Y.-H. Kang, Z.-C. Shi, and Y. Xia, Ann. Phys.

(Berlin) 531, 1800447 (2019).
[44] P. Walther, K. J. Resch, and A. Zeilinger, Phys. Rev. Lett. 94,

240501 (2005).
[45] W. X. Cui, S. Hu, H. F. Wang, A. D. Zhu, and S. Zhang, Opt.

Express 24, 15319 (2016).
[46] Y. H. Kang, Z. C. Shi, B. H. Huang, J. Song, and Y. Xia, Phys.

Rev. A 100, 012332 (2019).
[47] J. Song, X. D. Sun, Q. X. Mu, L. L. Zhang, Y. Xia, and H. S.

Song, Phys. Rev. A 88, 024305 (2013).
[48] G. Y. Wang, D. Y. Wang, W. X. Cui, H. F. Wang, A. D. Zhu,

and S. Zhang, J. Phys. B: At., Mol. Opt. Phys. 49, 065501
(2016).

[49] D. Tong, S. M. Farooqi, J. Stanojevic, S. Krishnan, Y. P. Zhang,
R. Côté, E. E. Eyler, and P. L. Gould, Phys. Rev. Lett. 93,
063001 (2004); K. Singer, M. Reetz-Lamour, T. Amthor, L. G.
Marcassa, and M. Weidemüller, ibid. 93, 163001 (2004).

[50] E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D. Yavuz,
T. G. Walker, and M. Saffman, Nat. Phys. 5, 110 (2009); A.
Gaëtan, Y. Miroshnychenko, T. Wilk, A. Chotia, M. Viteau, D.
Comparat, P. Pillet, A. Browaeys, and P. Grangier, ibid. 5, 115
(2009).

[51] D. Guery-Odelin, A. Ruschhaupt, A. Kiely, E. Torrontegui, S.
Martinez-Garaot, and J. G. Muga, Rev. Mod. Phys. 91, 045001
(2019).

[52] H. R. Lewis and W. B. Riesenfeld, J. Math. Phys. 10, 1458
(1969).

[53] M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan, D. Jaksch,
J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 87, 037901 (2001).

[54] T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko,
P. Grangier, and A. Browaeys, Phys. Rev. Lett. 104, 010502
(2010).

032427-9

https://doi.org/10.1126/science.1248905
https://doi.org/10.1103/PhysRevLett.119.180511
https://doi.org/10.1103/PhysRevX.8.021012
https://doi.org/10.1098/rsta.2003.1227
https://doi.org/10.1007/s00340-016-6353-8
https://doi.org/10.1126/science.aah3778
https://doi.org/10.1038/nature24622
https://doi.org/10.1038/s41586-018-0450-2
https://doi.org/10.1103/PhysRevX.9.011057
https://doi.org/10.1103/PhysRevLett.122.203601
https://doi.org/10.1103/PhysRevA.102.063107
https://doi.org/10.1088/1361-6455/ab52ef
https://doi.org/10.1103/PhysRevA.95.013403
https://doi.org/10.1088/1367-2630/aa983e
https://doi.org/10.1126/science.aax9743
https://doi.org/10.1103/PhysRevA.101.012345
https://doi.org/10.1103/PhysRevLett.125.203603
https://doi.org/10.1103/PhysRevA.103.022410
https://doi.org/10.1103/PhysRevA.94.032306
https://doi.org/10.1103/PhysRevLett.121.123603
https://doi.org/10.1103/RevModPhys.82.2313
https://doi.org/10.1088/0953-4075/49/20/202001
http://arxiv.org/abs/arXiv:2011.03031
https://doi.org/10.1103/PhysRevA.62.062314
https://doi.org/10.1103/PhysRevLett.83.436
https://doi.org/10.1088/1367-2630/5/1/136
https://doi.org/10.1038/srep17449
https://doi.org/10.1103/PhysRevA.98.052320
https://doi.org/10.1103/PhysRevA.77.030302
https://doi.org/10.1103/PhysRevLett.103.140501
https://doi.org/10.1103/PhysRevA.81.042327
https://doi.org/10.1103/PhysRevX.3.031009
https://doi.org/10.1103/PhysRevA.91.062104
https://doi.org/10.1103/PhysRevA.94.052311
https://doi.org/10.1038/srep36737
https://doi.org/10.1103/PhysRevLett.123.070508
https://doi.org/10.1103/PhysRevLett.124.190504
https://doi.org/10.1038/s41598-020-60299-6
https://doi.org/10.1126/science.1178683
https://doi.org/10.1038/s41566-018-0257-6
https://doi.org/10.1103/PhysRevA.98.062327
https://doi.org/10.1002/andp.201800447
https://doi.org/10.1103/PhysRevLett.94.240501
https://doi.org/10.1364/OE.24.015319
https://doi.org/10.1103/PhysRevA.100.012332
https://doi.org/10.1103/PhysRevA.88.024305
https://doi.org/10.1088/0953-4075/49/6/065501
https://doi.org/10.1103/PhysRevLett.93.063001
https://doi.org/10.1103/PhysRevLett.93.163001
https://doi.org/10.1038/nphys1178
https://doi.org/10.1038/nphys1183
https://doi.org/10.1103/RevModPhys.91.045001
https://doi.org/10.1063/1.1664991
https://doi.org/10.1103/PhysRevLett.87.037901
https://doi.org/10.1103/PhysRevLett.104.010502


HAASE, ALBER, AND STOJANOVIĆ PHYSICAL REVIEW A 103, 032427 (2021)

[55] L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage,
T. A. Johnson, T. G. Walker, and M. Saffman, Phys. Rev. Lett.
104, 010503 (2010).

[56] M. Saffman and K. Mølmer, Phys. Rev. Lett. 102, 240502
(2009).

[57] A. O. Barut, Dynamical Groups and Generalized Symmetries
in Quantum Theory (with Applications in Atomic and Par-
ticle Physics) (University of Canterbury, Christchurch, New
Zealand, 1971).

[58] See, e.g., A. R. P. Rau and G. Alber, J. Phys. B: At., Mol. Opt.
Phys. 50, 242001 (2017).

[59] R. D. Richtmyer, Principles of Advanced Mathematical Physics,
Vol. II (Springer, New York, 1981).

[60] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum
Systems (Oxford University Press, Oxford, 2002).

[61] J. R. Johansson, P. D. Nation, and F. Nori, Comput. Phys.
Commun. 183, 1760 (2012); 184, 1234 (2013).

[62] V. Ramakrishna and H. Rabitz, Phys. Rev. A 54, 1715
(1996).

[63] R. Heule, C. Bruder, D. Burgarth, and V. M. Stojanović, Phys.
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