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A simple expression to compute the quantum discord between two orbitals in fermion systems is derived
using the parity superselection rule. As the correlation between orbitals depends on the basis chosen, we discuss
a special orbital basis, the natural one. We show that quantum correlations between natural orbital pairs disappear
when the pairing tensor is zero, i.e., the particle number symmetry is preserved. The Hartree-Fock orbitals within
a Slater determinant state, Hartree-Fock-Bogoliubov quasiparticle orbitals in a quasiparticle vacuum, or the
ground state of a Hamiltonian with particle symmetry and their corresponding natural orbitals are some relevant
examples of natural bases and their corresponding states. Since natural orbitals have that special property, we
seek the quantum discord in non-natural orbital bases. We analyze our findings in the context of the Lipkin-
Meshkov-Glick and Agassi models.

DOI: 10.1103/PhysRevA.103.032426

I. INTRODUCTION

Quantum correlations have been a central field of research
since the inception of quantum mechanics [1,2]. They are a
fundamental feature of the quantum theory and give rise to
many interesting phenomena such as those observed in the
fields of quantum cryptography [3–6], quantum teleportation
[7–9], and quantum phase transitions in many-body systems
[10–12].

Quantum correlations can be studied from different points
of view. For instance, from a many-body perspective it is
known that if we solve a many-body Hamiltonian through
mean-field techniques, such as the Hartree-Fock or Hartree-
Fock-Bogoliubov method, the ground state in general will
not preserve the symmetries of the Hamiltonian [13]. This
spontaneous breaking of symmetries is interpreted as a way
to catch important correlations of the exact ground state while
preserving the simple mean-field picture. From a quantum in-
formation point of view, quantum correlations show up when
we analyze the state of a given partition in a quantum system.
For instance, if we have a pure state existing in a Hilbert space
with some tensor product structure, we can use the von Neu-
mann entropy of one of the marginals in order to quantify the
amount of entanglement between parties [3]. However, when
we try to join both perspectives, some subtleties arise. For ex-
ample, when we try to quantify quantum correlations through
partial traces, we usually need a Hilbert space with a tensor
product structure. Nonetheless, in dealing with many-body
systems it is customary to deal with identical fermionic par-
ticles, and due to the antisymmetrization principle, the tensor
structure is lost [14]. Moreover, as it is physically impossible
to distinguish among identical particles, it is inconsistent to
compute correlations between them through, for example, the
von Neumann entropy of the marginals. While it is true that
those subtleties are solved by defining a fermionic partial
trace [15] or quantifying the particle entanglement through

the one-body entropy [16], in general quantum information
concepts are not directly applicable in fermionic many-body
systems. Some efforts with heliumlike systems have been
made in [17,18] and references therein. Moreover, concepts
such as the multipartite concurrence in the context of identical
particles [19], the Lo Franco–Compagno approach [20,21],
and antisymmetric negativity [22] have been proposed, among
others.

A very powerful measure of quantum correlations is the
so-called quantum discord [23]. It quantifies all quantum cor-
relations beyond entanglement and allows us to differentiate
between classical and quantum correlations [23]. However,
its calculation requires one to perform arbitrary projective
measurements in one of the subsystems and therefore it im-
plicitly requires the existence of a tensor product structure.
Moreover, it is in general hard to compute, both analytically
and numerically, due to the variational process implicit in its
definition [24,25].

In this work we aim to study correlations in many-body
fermionic systems from a quantum information perspective
through the analysis of quantum discord. Specifically, we de-
rive a very simple expression in order to compute the quantum
discord between two fermionic orbitals in a arbitrary mixed
state and we apply it to the characterization of some well
known benchmarking models. The paper is structured as fol-
lows. In Sec. II we briefly introduce the concept of quantum
discord. We refer to [26,27] for a complete review of the
quantum discord concept and quantum correlations. In Sec. III
we derive an expression to compute the quantum discord
between a pair of orbitals in fermion systems. In Secs. IV and
V we discuss some properties of quantum discord related to
the orbital basis. In Sec. VI we compute it in the context of
the Agassi and Lipkin-Meshkov-Glick models. In Sec. VII
we summarize the results obtained and in the Appendixes
we discuss some connections with other results in the
literature.
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II. QUANTUM DISCORD

Given the Hilbert space H of a quantum system, let
us assume there exists a bipartition H = H(A) ⊗ H(B). The
quantum discord, introduced by Ollivier and Zurek [23], is
a measure of the purely quantum correlations beyond en-
tanglement between both parts A and B. It is defined as
the discrepancy between two classically equivalent measures
I (A, B) and J (A, B) of the mutual information

δ(A, B) = I (A, B) − J (A, B).

They are given by

I (A, B) = S(ρ (A) ) + S(ρ (B) ) − S(ρ (A,B) ) (1)

and

J (A, B) = max
{�(B)

k }
S(ρ (A) ) − S(ρ (A,B)

∣∣{�(B)
k

})
. (2)

While I (A, B) is a measure of all kinds of correlations, J (A, B)
quantifies the classical part. The measurement-based condi-
tional entropy entering the definition of J (A, B) is defined as

S
(
ρ (A,B)|{�(B)

k

}) =
∑

k

pkS
(
ρ

(A,B)
k

)
,

where ρ
(A,B)
k = 1

pk
�

(B)
k ρ (A,B)�

(B)
k is the measured-projected

state and pk = tr(�(B)
k ρ (A,B)�

(B)
k ) is the associated probabil-

ity. The measurement and the associated projector �
(B)
k are

defined only in the sector B of the bipartition.
Due to the variational process involved in Eq. (2), the quan-

tum discord is hard to compute in general either analytically
[24] or numerically [25]. Some results exist for two-qubit
systems [28,29] and qubit-qudit systems [30] and there is also
some work related to the quantum discord in fermionic sys-
tems [12,31–33]. The calculation is simplified (that is, there
is no variational process involved) if in the model considered
some kind of selection rule exists that reduces drastically the
variational space (i.e., the set of valid projective measure-
ments in B). In this work we derive a very simple expression
for the two-orbital quantum discord in a general fermionic
system by using a number-parity selection rule and we apply
it in the context of the Agassi model. We note that similar
equations were obtained in [34] considering the information
loss due to a measurement of a single mode in a fermion
system.

III. TWO-ORBITAL FERMIONIC SYSTEM

Consider a system formed by � orbitals occupied by
fermions where the number-parity symmetry [35] is preserved
and can be considered as a selection rule (NPSR).1 Since we
are dealing with fermions, the single-orbital occupation may
be 0 (if there is no fermion in the orbital) or 1 (if there is a
single fermion in the orbital). We divide the system into three
subsystems: A, B, and C; A (B) corresponds to the ith ( jth)
orbital and C corresponds to the orthogonal complement of
AB. Since all pure and mixed states must fulfill the NPSR, the

1Wave functions mixing configurations with even and odd numbers
of fermions are not allowed.

density matrix corresponding to the AB subsystem will have
the structure in the occupation basis

ρ (A,B) =

⎛
⎜⎜⎜⎝

ρ1 0 0 α

0 ρ2 γ 0

0 γ ∗ ρ3 0

α∗ 0 0 ρ4

⎞
⎟⎟⎟⎠, (3)

with
∑4

i=1 ρi = 1. Now we must find a complete set of projec-
tors in the B subspace. For this purpose, one would be tempted
to follow the path as in [28], this is, performing U(2) rotations
on the two “computational” local projectors. Nonetheless, as
the NPSR must be fulfilled, a projective measurement that
mixes the occupied and unoccupied states of just one orbital
would be unphysical. In fact, a self-adjoint operator must
commute with the superselection rule in order to be an observ-
able. A measurement that does not respect the superselection
rule cannot be related to any observable, so it would be unre-
alizable. Indeed, ignoring superselection rules, in the context
of fermionic quantum information measures, could lead to a
vast overestimation of the correlation or entanglement of the
system [36,37]. Then the only possible projectors in the jth
orbital’s occupation space are

�0 = a ja
†
j , �1 = a†

j a j . (4)

Since the set of possible projective measurements for part B
has just one pair of elements instead of an infinite number, no
optimization process is involved in Eq. (2) and quantum dis-
cord can be easily computed. The measured-projected states
will be

ρ
(A,B)
0 = 1

ρ1 + ρ3

⎛
⎜⎜⎜⎝

ρ1 0 0 0

0 0 0 0

0 0 ρ3 0

0 0 0 0

⎞
⎟⎟⎟⎠,

ρ
(A,B)
1 = 1

ρ2 + ρ4

⎛
⎜⎜⎜⎝

0 0 0 0

0 ρ2 0 0

0 0 0 0

0 0 0 ρ4

⎞
⎟⎟⎟⎠

and, straightforwardly, the conditional entropy can be written
as

S(ρ (A,B)|{�(B)
k

}) = S(Z (ρ (A,B) )) − S(ρ (B) ),

where Z (ρ) is the dephasing channel, i.e., the quantum chan-
nel that destroys the off-diagonal elements of ρ. Finally, the
quantum discord can be written as

δ(A, B) = S(Z (ρ (A,B) )) − S(ρ (A,B) ) (5)

or, more explicitly, in terms of the two-orbital reduced matrix
elements

δ(A, B) =
∑

k

λk ln λk − ρk ln ρk,

with

λ0 = ρ1 + ρ4

2
+

√(
ρ1 − ρ4

2

)2

+ |α|2,
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λ1 = ρ1 + ρ4

2
−

√(
ρ1 − ρ4

2

)2

+ |α|2,

λ2 = ρ2 + ρ3

2
+

√(
ρ2 − ρ3

2

)2

+ |γ |2,

λ3 = ρ2 + ρ3

2
−

√(
ρ2 − ρ3

2

)2

+ |γ |2. (6)

The quantum discord between the i and j orbitals grows with
the off-diagonal matrix elements of ρ (A,B) in Eq. (3), whose
value reflects the amount of quantum coherence of the state.
This fact can be easily seen if we write a pair of diagonal
elements, i.e., ρ1 and ρ4 (the same discussion applies to ρ2

and ρ3), as ρ1 = 1
4 + ε and ρ4 = 1

4 − ε, with ε ∈ [0, 1
4 ]. This

corresponds to the case in which S(Z (ρ (A,B) )) is maximum,
and we perturb it via the parameter ε. The eigenvalues are,
in this case, λ0 = 1

4 +
√

ε2 + |α|2 and λ1 = 1
4 −

√
ε2 + |α|2.

For all allowed values of ε, S(ρ (A,B) ) � S(Z (ρ (A,B) )) with
equality when the off-diagonal elements are zero (in this case,
α = 0). If α increases, then the quantum discord increases too,
revealing that the exclusively quantum correlations increase as
the coherence grows, which is an expected and intuitive result.

IV. QUANTUM DISCORD AND NATURAL ORBITALS

The two-orbital reduced density matrix ρ (A,B) can be writ-
ten in terms of three well known quantities in many-body
theory: the one-body density matrix, the two-body density ma-
trix, and the pairing tensor, defined as γi, j = 〈a†

j ai〉, γi, j,i, j =
〈a†

i a†
j a jai〉, and κi, j = 〈a jai〉, respectively. It has the same

structure as Eq. (3), with

ρ1 = 1 − γi,i − γ j, j + γi, j,i, j,

ρ2 = γ j, j − γi, j,i, j,

ρ3 = γi,i − γi, j,i, j,

ρ4 = γi, j,i, j,

α = κ∗
j,i,

γ = γ j,i. (7)

Together with Eq. (5), we see that the off-diagonal elements of
the one-body density matrix and the pairing tensor are directly
related to the quantum discord between i and j orbitals: If at
least one of them is nonzero, there exist quantum correlations
between i and j. Inversely, it can be easily seen that there
are two conditions for the quantum discord to be zero for all
pairs of orbitals: γ j,i = 0 and κ j,i = 0. According to the results
obtained in [34], the first condition γ j,i = 0 is fulfilled for all i
and j if and only if the orbitals are the natural ones, i.e., those
that diagonalize the one-body density matrix. Additionally, if
the state commutes with the particle number operator, then
κ j,i = 0 for all i and j. Thus, the two conditions for the
vanishing of quantum discord between all orbital pairs are as
follows.

(i) The orbital basis is the natural one.
(ii) The state commutes with the particle number operator.

Additionally, it is known that the natural orbitals are the
ones that minimize the overall entropy, defined as the sum of
all the one-orbital entropies [38]. Since this quantity is used
to quantify the amount of total correlation in a state (the total
entanglement if the state is pure) [39], then, if the number
of particles is well defined and the state is pure, a nonzero
overall entropy implies that all correlations between pairs of
natural orbitals will be purely classical (if they exist) and the
entanglement must be manifested between three orbitals or
more.

V. GENERAL ORBITAL BASIS

It is important to remark that the quantum discord is mea-
sured between orbitals and not between particles. For this
reason, a change in the orbital basis may induce a change in
the correlations between them. So, in order to study the quan-
tum discord of a state, it is fundamental to specify properly the
orbital basis. A natural orbital basis of a state which commutes
with the particle number operator implies that those orbitals
are constructed so that they can keep the intrinsic quantum
correlation of the state without needing quantum correlation
by pairs between them (this will be clearer in Sec. VI B).
Therefore, the following question arises: What is the value of
the quantum discord of a given state in a general orbital basis?

Suppose that we have a general orbital basis and the natural
orbital basis (of the given state), related by the most general
linear canonical transformation between creation and annihi-
lation operators (Bogoliubov transformation [13])

β
†
k =

∑
l

Ul,kc†
l + Vl,kcl ,

where {β†
k } are the fermionic creation operators for the general

basis and {c†
l } are the fermionic creation operators for the nat-

ural basis. The relations between the Bogoliubov amplitudes
U and V ,

U †U + V †V = UU † + V ∗V T = I,

U T V + V T U = UV † + V ∗U T = 0, (8)

hold. Then the one-body matrix and the pairing tensor ele-
ments read [13]

γk,k′ =
∑

l

V †
k,lVl,k′ + (U †

k,lUl,k′ − V †
k,lVl,k′ )pl ,

κk,k′ =
∑

l

V †
k,lU

∗
l,k′ + (U †

k,lV
∗

l,k′ − V †
k,lU

∗
l,k′ )pl ,

where pl = 〈c†
l cl〉. In this general case, the quantum discord

will be nonzero and orbital dependent except for the case
pl = 1

2 ∀ l . This can be checked using the relations in (8).
Since

∑
l pl = N , where N is the number of particles, this

case can only exist when the number of particles is exactly
half the number of orbitals. Less restrictive is the case of a
transformation among particles, i.e., V = 0. Again, the quan-
tum discord will be nonzero except for the case pl = N

�
∀ l ,

where � is the number of orbitals. In both cases, the quantum
discord will be zero and orbital independent if the occupation
of the system in the natural orbital basis is equally distributed.
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A common measure of entanglement among particles is the
entanglement entropy of the one-body density matrix, defined
as S(γ ) = −γ ln γ = −∑

l pl ln pl [16]. It is interesting to
note that the orbital-independent zero discord case in general
corresponds to the maximum S(γ ), which is indeed related
to the overall entropy in the natural orbital basis since Snat

ov =
−∑

l pl ln pl − ∑
l (1 − pl ) ln(1 − pl ) [38], and it reaches its

maximum value when pl = 1
2 . In other words, for a pure sys-

tem with half filling, i.e., � = 2N , if the particles are equally
distributed between all natural orbitals, the entanglement is
maximum but there are no quantum correlations between or-
bital pairs.

VI. RESULTS

As an example of how the quantum discord between
pairs of fermionic orbitals can be used to characterize the
correlations in the system, we apply the previous concepts
to the Hartree-Fock-Bogoliubov (HFB) ground state of the
Agassi model and the exact ground state of the Lipkin-
Meshkov-Glick (LMG) model. Both models are composed of
a two-level fermionic system, each having an �-fold degener-
acy. The difference between them lies in the interaction terms
of their respective Hamiltonians.

The LMG model [40] has been widely used over the years
as a benchmark in the characterization of different approxima-
tions to the many-body problem. The model is simple enough
to be exactly solvable and at the same time is sufficiently rich
to catch some nontrivial properties of many-body systems,
mainly, the quantum phase transition to a “deformed” state
through a spontaneous symmetry breaking of the mean-field
approximation. As we will see, its Hamiltonian is com-
posed of two terms: the noninteracting one and the so-called
monopole-monopole interaction, which mixes the high- and
low-lying orbitals of the same degeneracy. The model is very
well known in the nuclear physics literature; see Ref [41] for a
study of a model adequate for the present purposes. Also, their
entanglement properties have been widely studied [42,43],
as well as their correlation properties in a finite-temperature
context [44] and the solution in the thermodynamical limit
[45,46].

The Agassi model [47] is an extension of the LMG one
where a separable pairing interaction has been added. The
pairing interaction induces the creation and annihilation of
particles by pairs with the same (and different) energies. When
treated at the mean-field level, the Agassi model contains a
superfluid phase [treated using the Bardeen-Cooper-Schrieffer
(BCS) theory of superconductivity] as well as a deformed one
where the broken symmetry is parity (see [41] for a thorough
discussion). The model can also be solved exactly using group
theory techniques and it is also often used as a benchmark of
different approximations in the context of nuclear physics.

A. The HFB ground state of the Agassi model as a benchmark

The Agassi model [47] is a two-level system, each of them
with a degeneracy � (even). The system is filled with N = �

fermions and the Hamiltonian is given by

H = εJ0 − g
∑
σ,σ ′

A†
σ Aσ ′ − 1

2
V [(J+)2 + (J−)2], (9)

with

J0 = 1

2

∑
σ,m

σc†
σ,mcσ,m,

J+ = (J−)† =
∑

m

c†
1,mc−1,m,

Aσ =
∑
m>0

cσ,−mcσ,m, (10)

where σ = ±1 labels the upper or lower level, m =
±1,±2, . . . ,±�

2 labels the states within a level, and c†
σ,m

is the fermionic creation operator of the single-particle state
labeled by (σ, m).2 This model is exactly solvable using group
theory methods [48], and the HFB ground-state solution can
be easily obtained. For this reason, we are going to analyze
the quantum correlation properties of the HFB ground state
as a benchmark of the proposed measure of quantum discord
between pairs of fermionic orbitals [Eq. (5)].

Following Ref. [48], the one-body density matrix and the
pairing tensor of the HFB ground state can be written as

γσm,σ ′m′ = γσ,σ ′δm,m′ ,

κσm,σ ′m′ = sgn(m) 1
2 sin αδσ,σ ′δm,−m′ , (11)

with

γσ,σ = 1
2 (1 − σ cos φ cos α),

γσ,−σ = − 1
2 sin φ cos α. (12)

The values of φ and α depend on the parameters of the Hamil-
tonian, that is,

φ = α = 0 if χ,�0 < 1,

cos φ = 1

χ
, α = 0 if χ > �0,

φ = 0, cos α = 1

�0
if χ < �0,

with χ = (�−1)V
ε

, � = (�−1)g
ε

, and �0 = � + V
ε

. As can be
seen, there are three differentiated regions in the parameters
space: the Hartree-Fock (HF) spherical phase, the HF de-
formed phase, and the BCS phase. The first one corresponds
to the conditions χ,�0 < 1, and the HFB ground state is the
noninteracting exact ground state, i.e., all the lower levels oc-
cupied. The second one corresponds to the conditions χ > �0

and χ > 1. In this case the HFB ground state breaks the parity
symmetry3 (that is why it is called deformed). The last region
corresponds to χ < �0 and �0 > 1. It preserves the parity
symmetry but it breaks the particle number symmetry and
represents a superfluid system described by the BCS approx-
imation. Since in all regions the ground state is defined as a
quasiparticle vacuum, the two-body density is separable and
the diagonal elements can be written as

γi, j,i, j = γi,iγ j, j + �i, j,

2Those states are also called Hamiltonian orbitals throughout this
work.

3In the context of the Agassi model, particles in the upper (lower)
level are assumed to have positive (negative) parity.
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FIG. 1. Quantum discord between an orbital pair with m = m′

and σ = −σ ′ as a function of the two Hamiltonian parameters χ and
�. The quantum correlations in this case are zero for the spherical
HF and BCS regions and nonzero only in the deformed HF region.
Here � = 20.

with �i, j = |κi, j |2 − |γi, j |2 and, using Eqs. (7) and (3), we can
write the two orbital reduced density matrix as

ρ1 = (1 − γi,i )(1 − γ j, j ) + �i, j,

ρ2 = (1 − γi,i )γ j, j − �i, j,

ρ3 = γi,i(1 − γ j, j ) − �i, j,

ρ4 = γi,iγ j, j + �i, j,

α = κ∗
j,i,

γ = γ j,i.

With those results and using Eq. (5) we can easily compute
the quantum discord between a pair of orbitals in the HFB
ground-state solution, which is

δ(m, σ ; m,−σ ) = h(χ ) in the deformed HF region,

δ(m, σ ; −m, σ ) = h(�0) in the BCS region,

δ(m, σ ; m′, σ ′) = 0 otherwise, (13)

with h(x) = − 1
2 (1 − 1

x ) ln 1
2 (1 − 1

x ) − 1
2 (1 + 1

x ) ln 1
2 (1 + 1

x ).
This solution is shown in Figs. 1 and 2.

The structure of the quantum discord is the same as the
phase diagram [48]. In the deformed HF phase, there are
quantum correlations only between orbitals with the same m
and opposite σ due to the monopole-monopole interaction.
In the same way, there are quantum correlations in the BCS
phase only between orbitals with the same σ and opposite m
due to the pairing interaction in the Hamiltonian. In fact, if we
compute the mutual information, defined in Eq. (1), we obtain
I (A, B) = 2δ(A, B). This is expected when the state ρ (A,B) is
pure [28] and indeed it is the case within the HFB solution.4

Specifically, the two-orbital reduced state between orbitals
with the same m and opposite σ is pure in the deformed HF
region and mixed in the BCS one (the inverse happens with
the same σ and opposite m orbitals). This result serves as a

4It can be checked that the eigenvalues of the two-body density
matrix, i.e., λi in Eq. (6), acquire the values λi = 0, 1.

FIG. 2. Quantum discord between an orbital pair with m = −m′

and σ = σ ′ as a function of the two Hamiltonian parameters χ and
�. The quantum correlations in this case are zero for the spherical
and deformed HF regions and nonzero only in the BCS region. Here
� = 20.

benchmark of the results obtained in Sec. III. Moreover, we
note that the quantum discord between a transition from a
spherical HF state to a deformed HF or BCS state is contin-
uous, while the quantum discord between a transition from a
deformed HF state to a BCS one is discontinuous. Since the
quantities ρ = − 1

2 sin φ cos α and κ = 1
2 sin α from Eqs. (11)

and (12) can be considered as order parameters of the model
[48], the quantum discord shows the behavior of a combined
order parameter.

It is interesting to note that there is no quantum discord
between the Hamiltonian orbital pairs considered when the
state is the exact ground state, since the corresponding one-
body matrix elements are zero and the particle number is
well defined (see Appendix C for details). As we will discuss
in the next section, a low quantum discord implies a better
adaptation of the orbitals in order to describe the state. This
indicates that the Hamiltonian orbitals are suited to describe
the exact ground state better than the HFB ground state, as
expected.

B. Exact ground state of the LMG model

Finally, we analyze the quantum discord between orbital
pairs within the exact ground state of the LMG model. The
LMG Hamiltonian is the same as Eq. (9), with g = 0, i.e.,
there are only monopole-monopole interactions. For this rea-
son, we only consider the quantum discord between orbitals
with the same m and opposite σ .

Since the Hamiltonian commutes with the particle number
and parity operators, the Hamiltonian orbitals, represented by
the creation and annihilation operators (c†

σ,m and cσ,m, respec-
tively), in Eq. (9) are the natural ones (γi, j = 0 for i 	= j) and
the pairing tensor is zero. Thus, as explained in Sec. IV, the
quantum discord is zero for all pairs.

However, this is not true if we change the orbital basis.
In general, a low quantum discord implies a better adaptation
of the orbitals in order to describe the exact ground state,
while a high quantum discord reflects the contrary case. If we
compute the quantum discord between an up-down pair of HF
orbitals, we obtain the result shown in Fig. 3. It is interesting
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FIG. 3. Quantum discord between an up-down orbital pair as a
function of the Hamiltonian parameter χ with N from 3 to 20.

to analyze the behavior of the quantum discord of the exact
ground state between those orbitals since they are defined in
order to catch the maximum correlations as possible within a
mean-field scenario.

For χ < 1 the quantum discord is zero, since the HF or-
bitals in this region coincide with the natural ones. For χ > 1
there are two different regimes. First, as χ is big enough
and it grows, the quantum discord decreases. This decrease
is more drastic if the particle number is bigger, consistent
with the mean-field description, in which more accuracy is
obtained when the number of particles is big enough. The
other regime is manifested when χ > 1 acquires intermediate
values, this is, near the quantum phase transition point (χ = 1)
and far from the asymptotic limit. In this region, the quan-
tum discord grows fast until reaching the maximum. Then
it decreases exponentially until the asymptotic regime. This
intermediate region is where the Hartree-Fock approximation
becomes less accurate, and this is reflected as a high quantum
discord between the HF orbitals: Since the orbitals are less
optimum in order to encode the exact ground state, more
quantum correlation is needed between them for that task.
In this intermediate region it is necessary to consider linear
combinations of mean-field Slater determinants to catch the
physics of the exact ground state [41].

Until now, we have discussed the quantum discord between
an up-down HF orbital pair for the exact ground state of the
LMG model. We argued that, since the Hamiltonian orbitals
are the natural ones, the same quantity between those is zero.
The same argument applies for the HF orbitals in a HF ground
state. However, we can ask ourselves what the quantum dis-
cord is between an up-down Hamiltonian orbital pair of the
HF ground state (which is the “inverse” case with respect to
the results in Fig. 3). Since the LMG model is a particular
case of the Agassi model, we find that this quantity is given
by Eq. (13) when � = 0 (Fig. 4).

Unlike Fig. 3, now the quantum discord approaches the
value ln 2 when χ → ∞ and does not depend on the particle
number. This different behavior is consistent with the fact that
the HF ground state is rather different from the exact one:

FIG. 4. Quantum discord between an up-down Hamiltonian or-
bital pair for the HF ground state as a function of the Hamiltonian
parameter χ .

Although the HF orbitals are better adapted when χ is high, as
discussed previously, the structure of the HF ground state re-
mains a Slater determinant, which in general is far from being
exact. Thus, the Hamiltonian orbitals require higher quantum
correlations in order to describe this state when the interaction
is large. So, within the context of the models considered, a low
quantum discord between pairs of orbitals can be related to an
optimal orbital adaptation when describing a given state.

VII. CONCLUSION

The quantum discord is a measure of quantum correlations
in a given state. It is defined as the minimum difference
between two classically equivalent but quantumly different
versions of the mutual information. This definition is based
in the fact that, given a bipartition A|B of a system, a mea-
surement on A may break the quantum correlations between
A and B. In this manner, a projective measurement may be
performed in one of the subsystems. Nonetheless, a fermion
system must satisfy the parity superselection rule, so not all
the projective measurements are physical.

In this work we used this property and we proposed a sim-
ple expression [see Eq. (5)] in order to compute the quantum
discord between two orbitals in a general fermionic pure or
mixed state. This expression does not require an optimization
procedure and is directly related to two central many-body
quantities: the one-body density matrix and the pairing tensor.
Thus, we have shown that the natural orbital basis, which
is defined as the one that diagonalizes the one-body density
matrix, reduces the quantum discord between any pair of
orbitals to zero when the state commutes with the particle
number operator. Moreover, when the system’s orbitals are
half filled, there are no quantum correlations between pairs
for any arbitrary orbital basis. Finally, we computed and
discussed the quantum discord between pairs of orbitals in
the HFB ground state of the Agassi model and in the exact
ground state of the LMG model. Our results may be useful
in order to analyze quantum correlations in more complicated
and realistic many-body fermionic systems.
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APPENDIX A: RELATION BETWEEN TWO-ORBITAL
FERMIONIC QUANTUM DISCORD, VARIATIONAL

DIAGONALIZATION, AND MEASUREMENT INDUCED
DISTURBANCE

In this Appendix we briefly discuss some connections
between the proposed measure of quantum discord and the
literature.

Following Eq. (5) and taking into account that δ(A, B) =
0 ⇔ Z (ρ (A,B) ) = ρ (A,B), the quantum discord can be used as
a cost function for a variational quantum state diagonalization
algorithm [49]. Indeed, following the inverse argument, the
difference in purities between Z (ρ (A,B) ) and ρ (A,B), which
is used as a cost function in [49], could be interpreted as a
measure of the quantum correlations, at least in the case of a
two-fermionic-orbital state.

On the other hand, Luo proposed in [50] an alternative way
to characterize the quantum correlations of a state. He defined
classical states as the ones that fulfill the condition5 �(ρ) =
ρ, with �(ρ) = ∑

k,l �
(A)
k ⊗ �

(B)
l ρ�

(A)
k ⊗ �

(B)
l , where �

(A)
k

and �
(B)
k are general projective measurements into the A and

B systems, respectively. As explained in Sec. III, the only
possible projectors are those of Eq. (4). Thus, we have

�(ρ (A,B) ) = Z (ρ (A,B) )

and therefore Eq. (5) could be interpreted as a distance be-
tween the dephased density matrix and the original one and
therefore the quantum discord and the measurement-induced
disturbance coincide.

APPENDIX B: MULTIPARTITE GENERALIZATION OF
QUANTUM DISCORD

Until now, we have only taken into account quantum cor-
relations among pairs of orbitals. In this Appendix we discuss
the quantum discord beyond the bipartite case and derive an
expression for a measure of the total quantum correlation of a
state which indeed matches the proposed generalization of the
multipartite quantum discord in [51].

As explained in Sec. IV, the overall entropy is a measure
of the total entanglement in a pure state (the total correlation
if the state is mixed) [39]. With the definition in Eq. (1), we
can write the overall entropy as

Sov = I (� − 1; �) + I (� − 2; � − 1,�)

+ I (� − 3; � − 2,� − 1,�) + · · · + S(ρ),

where I (i; j, k, . . . , l ) is the mutual information [Eq. (1)] with
A as the ith orbital and B as the system composed of the
j, k, . . . , lth orbitals. In addition, S(ρ) is the von Neumann
entropy of the system’s density matrix. Naturally, if the system
is pure, S(ρ) = 0. Since the mutual information quantifies the

5It is assumed here that ρ ∈ H(A) ⊗ H(B).

total correlation, both classical and quantum, between parties
and the overall entropy measures the total correlation encoded
in a state [39], we propose the quantity

S′
ov = J (� − 1; �) + J (� − 2; � − 1,�)

+ J (� − 3; � − 2,� − 1,�) + · · · + S(ρ)

as a measure of the total classical correlation encoded in a
state. Then the total quantum correlation, i.e., the multipartite
generalization of the quantum discord of a state, will be the
difference between Sov and S′

ov. Since

J (i; j, k, . . . , l )

= max
{�( j,k,...,l )

α }

(
S(i) − S

(
i, j, k, . . . , l

∣∣{�( j,k,...,l )
α

}))
,

where �
( j,k,...,l )
α is the αth projector existing in the space

formed by the j, k, . . . , l orbitals, we have

δ(i, . . . , l ) = Sov − S′
ov

= min
{�α}

S
(
m, l|{�(l )

α

}) + S
(
k, m, l|{�(m,l )

α

})
+ · · · − S(i, . . . , k, m, l|l )

as an expression for the multipartite quantum discord. This
proposal coincides with the one in Ref. [51]. This alternative
derivation justifies the validity of the result and, since it is
related to the overall entropy, may be interesting in future
work to study its relationship with the orbital basis used, as
well as apply it in the study of several models. Of special
interest would be to study the connection with the natural
basis, which is the one that minimizes Sov [38].

APPENDIX C: EXACT GROUND-STATE QUANTUM
DISCORD IN THE AGASSI MODEL

The exact ground state of the Agassi model can be obtained
easily using group theory arguments. Following Refs. [47,52],
all the operators in Eq. (10) are part of the SO(5) genera-
tors. In this way, the exact ground state and energy can be
obtained by diagonalizing the Hamiltonian (9) in terms of
the basis within a given irreducible representation of SO(5).
Since SU(2) × SU(2) ⊂ SO(5), the elements of this basis
can be labeled as {|(Jm,�m); J, MJ ,�, M�〉}, where (Jm,�m)
labels the irreducible representation (it represents the maxi-
mum values of the angular momentums) and the pairs (J, MJ )
and (�, M�) behave as two independent angular momentum
quantum numbers. We are interested in the irreducible repre-
sentation given by Jm = �m = �

4 , since this one contains the
half-filled noninteracting ground state. The angular momen-
tum quantum numbers are related to the number of particles
and seniority6 of the upper and lower levels by

N− = 2MJ + �

2
, V− = �

2
− 2J,

N+ = 2M� + �

2
, V+ = �

2
− 2�,

6Here seniority refers to the number of unpaired states. A filled
state labeled by (σ, m) is unpaired when the state (σ,−m) is unfilled.
Otherwise, the state is paired.
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where N+ and N− denote the number of particles in the upper
and lower levels, respectively, and V+ and V− denote the
seniority of the upper and lower levels, respectively. For more
details, we refer the reader to Refs. [47,52].

With this, in order to compute the quantum discord
between the {(σ, m), (−σ, m)} and {(σ, m), (σ,−m)} lev-
els, we must compute the one-body density matrix ele-
ments 〈g.s.|c†

σ,mc−σ,m|g.s.〉 and 〈g.s.|c†
σ,mcσ,−m|g.s.〉, where

|g.s.〉 denotes the exact ground state of the Hamiltonian
(9). However, it can be seen that 〈g.s.|c†

σ,mc−σ,m|g.s.〉 =
〈g.s.|c†

σ,mcσ,−m|g.s.〉 = 0. For the {(σ, m), (−σ, m)} levels,
the reason is simple. Using the definitions in (10), we can
write

〈g.s.|c†
σ,mc−σ,m|g.s.〉 = 〈g.s.|Jσ |g.s.〉

�

since the value of 〈g.s.|c†
σ,mc−σ,m|g.s.〉 must be the same for all

m. However, only the matrix elements of the Hamiltonian in
(9) which connect states that differ in their quantum numbers
by zero or ±1 are nonzero. For this reason, the ground state
can only be constructed as a linear superposition of integer or
half-integer states. Since the operators J± only have nonzero
elements between states that differ by ± 1

2 in their quantum
numbers [47], 〈g.s.|c†

σ,mc−σ,m|g.s.〉 = 0.
Finally, we will justify 〈g.s.|c†

σ,mcσ,−m|g.s.〉 = 0. We ex-
pand the ground state in terms of the SO(5) basis7

|g.s.〉 =
∑

CJ,MJ ,�,M�
|J, MJ ,�, M�〉.

7We have omitted the irreducible representation label for simplicity.

The one-body matrix element between the {(σ, m), (σ,−m)}
levels can be written as

〈g.s.|c†
σ,mcσ,−m|g.s.〉

=
∑

C∗
J ′,M ′

J ,�
′,M ′

�
CJ,MJ ,�,M�

× 〈J ′, M ′
J ,�

′, M ′
�|c†

σ,mcσ,−m|J, MJ ,�, M�〉.
Since the operator c†

σ,mcσ,−m does not change N± and V±, we
have

〈J ′, M ′
J ,�

′, M ′
�|c†

σ,mcσ,−m|J, MJ ,�, M�〉
= 〈J, MJ ,�, M�|c†

σ,mcσ,−m|J, MJ ,�, M�〉
× δJ ′,JδM ′

J ,MJ δ�′,�δM ′
�,M�

.

Now we expand the |J, MJ ,�, M�〉 state in terms of the
occupational basis |bi〉, we fix the label m, and we analyze all
the even8 occupational states for the reduced system formed
by the four states {(σ, m), (−σ, m), (σ,−m), (−σ,−m)}:
(i) zero-particle states c†

σ,mcσ,−m|bi〉 = 0; (ii) two-particle
states, where the particles cannot occupy the levels
{(σ, m), (−σ, m)}, since the algebra operators [47] can
only create and annihilate particles within the pairs
{(σ, m), (σ,−m)} and {(σ, m), (−σ,−m)}, and for the
other possible combinations 〈c†

σ,mcσ,−m〉 = 0; and (iii) four-
particle states c†

σ,mcσ,−m|bi〉 = 0. With this, it can be seen
that 〈J, MJ ,�, M�|c†

σ,mcσ,−m|J, MJ ,�, M�〉 = 0 and there-
fore 〈g.s.|c†

σ,mcσ,−m|g.s.〉 = 0.

8Since all the operators of the algebra of SO(5) create and annihi-
late particles by pairs, the states with odd occupation do not exist.
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