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We present some basic integer arithmetic quantum circuits, such as adders and multiplier-accumulators of
various forms, which operate on multilevel qudits. The integers to be processed are represented in an alternative
basis after they have been Fourier transformed. Several arithmetic circuits operating on Fourier-transformed
integers have appeared in the literature for two-level qubits. Here we extend these techniques to multilevel
qudits, as they may offer some advantages relative to qubit implementations. The arithmetic circuits presented
here can be used as basic building blocks for higher level algorithms such as quantum phase estimation, quantum
simulation, quantum optimization, etc. Detailed decomposition is given down to elementary two-level single-
and two-qudit gates as such gates are the most appropriate for physical implementation. A complexity analysis
is given after this decomposition step and it is shown that the depth of the circuits is linear in the number of qudits
employed and quadratic in the dimension of each qudit while their quantum cost is quadratic in the number of
the qudits and quadratic in the dimension.
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I. INTRODUCTION

A quantum computer is a finite-dimensional quantum
system composed of qubits, performing various unitary op-
erations on the qubits (quantum gates) as well as quantum
measurements. Alternatively, d-dimensional qudits can be
used instead of the two-dimensional qubits. Qutrit is a special
name for the case d = 3, while ququart corresponds to d = 4.
In many cases, the employment of a multivalued quantum
logic is more natural, e.g., in ion traps we could exploit more
than two energy levels. Multiple laser beams could be used to
manipulate the transitions between these levels [1].

Working with qudits instead of qubits may offer some ad-
vantages. The required number of qudits is smaller by a factor
log2 d compared to the number of qubits for the same dimen-
sion a quantum computer has to explore, e.g., the dimension
of a composite system of n qubits is 2n, while the same di-
mension can be reached with only logd 2n = log2 2n/ log2 d =
n/log2d qudits. Such a reduction of quantum information
physical carriers is advantageous, considering the difficulty
of reliably controlling a large number of them. When fewer
quantum information carriers are used, a decrease in the over-
all decoherence is expected, helping to alleviate scalability
issues [1,2].

Another advantage, which is also related to the adverse
effect of decoherence, is that fewer multilevel qudit gates are
required to construct a quantum circuit implementing a given
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unitary operation compared to the case of using two-level
gates [1,3,4]. Fewer gates reduce the number of steps needed
to complete the circuit operation (depth) and, consequently,
less errors are accumulated during the overall operation of the
circuit. Even so, protection of quantum information against
environmental interaction is inevitable. Quantum error cor-
recting codes and fault-tolerant gate constructions to combat
decoherence on multilevel qudits have been reported and they
are similar to the ones used for the qubit case [5–7]. Moreover,
it is shown that working with qudits instead of qubits offers
substantial advantages in terms of the fault-tolerance-induced
overhead bottleneck [8,9]. An assortment of single- and two-
qudit quantum gates have been proposed or experimentally
realized on various technologies, e.g., ion traps [1,10], super-
conducting [11,12], and optical [13,14] systems.

At a higher level, generalizations of known quantum
algorithms and circuits using d-level qudits may offer im-
provements with respect to their qubits’ implementation
counterparts, e.g., quantum phase estimation, which is both
a core part of Shor’s algorithm [15] and used in quantum
simulation [16], is improved in terms of success probability
when multilevel qudits are incorporated [17]. A qudit version
of the Deutsch-Josza algorithm has been reported in Ref. [18]
and may find applications in image processing, while an im-
plementation proposal for five-level superconducting qudits
appeared in Ref. [19]. A qudit version of Grover’s algorithm
[20] has been reported in Ref. [21] and offers a trade-off
between space and time.

In this paper, we present some quantum arithmetic circuits
operating on d-level qudits by extending results given in prior
works [22–24]. These circuits exploit the quantum Fourier
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transform (QFT) and various single-qudit and two-qudit ro-
tation gates to perform the desired calculations. Processing
in the Fourier domain may offer some advantages related to
speed [24] and robustness to decoherence [25,26]. Among
the proposed circuits are various versions of adders (adder
with constant, generic adder, adder with constant controlled
by single qudit) and multipliers [multiplier with constant and
accumulator (MAC), multiplier with constant]. Such circuits
are useful in many quantum algorithms, e.g., quantum phase
estimation and quantum simulation. The extension of the QFT
method to process integers in the multilevel qudit case de-
mands the definition of suitable generalized rotation gates
for qudits. These gates are derived from the corresponding
qudit QFT circuits and they are decomposed down to more
elementary two-level qudit rotation gates. Approximation of
such gates by a sequence of qudit gates belonging to a discrete
set can be done using techniques similar to the qubit case. The
depth of the presented circuits is linear in the length of integers
processed and quadratic with respect to the dimensionality
of the qudits (when decomposition to two-level qudit gates
is required). Their quantum cost is quadratic in the length of
integers and quadratic in the qudit dimensionality.

The rest of the paper is organized as follows: A short
background about design and synthesis of qudits quantum
circuits is given in Sec. II. The QFT definition and its circuit
for q qudits of d levels is presented in Sec. III along with
the definition of the basic rotation gates used in the proposed
circuits. Section IV introduces an adder of two integers of q
qudits [depth O(q) including the QFTs, width 2q], an adder
of q qudits with a constant [depth O(q) including the QFTs,
width q], a single state controlled adder of a q qudits integer
with a constant [depth O(q), width q + 1], and a generalized
controlled adder of an integer of q qudits with a constant
[depth O(q), width q + 1]. In Sec. V, a MAC [depth O(q),
width 2q], and a multiplier with constant [depth O(q), width
2q of which q qudits are ancilla] are presented. All these
integer processing units accept one of their operands after it
has been Fourier transformed. Detailed complexity analysis
in terms of quantum cost, depth, and width is reported in
Sec. VI. In the Appendix, we present a library of elementary
qudit gates operating on two levels and which can be used
to synthesize the required gates of the proposed arithmetic
circuits. Finally, we conclude in Sec. VII.

II. BACKGROUND AND RELATED WORK

A d-level single-qudit gate is represented by a unitary
matrix of dimensions d × d , while a two-qudit gate is rep-
resented by a unitary matrix of dimensions d2 × d2. Two
single-qudit gates V1 and V2 operating on two different qudits
can be seen as a two-qudit gate which is the tensor prod-
uct U = V1 ⊗ V2. However, not every two-qudit gate can be
decomposed as a tensor product of two single-qudit gates,
in which case we have an entangling gate. Thus, quantum
computing in a qudit-based system works analogously to that
of a qubit-based system.

It is known that single-qudit gates and a two-qudit gate
alone are adequate to form a universal set of gates, pro-
vided that the two-qudit gate is an entangling gate [27]. A
universal set of gates can be used to approximate any target

quantum circuit with arbitrary precision. Various gate libraries
and methods to synthesize a circuit have been introduced in
the literature, like spectral decomposition [1], Cosine-Sine
decomposition [28], QR decomposition [29], and Shannon
decomposition [10]. The previous methods and results are
similar to the two-level qubits synthesis cases. It is proven
in Ref. [30] that the cost of the resulting circuit in terms of
two-qudit gates is upper bounded by O(d2n), where n is the
qudits number. Thus, these automated methods are suitable
only for small quantum circuits due to their exponential cost.

When the target circuit is an arithmetic or logic block
which is prepresented by a permutation matrix consisting of
elements 0 and 1, multiple-valued classical reversible synthe-
sis methods can be applied. These methods are an extension
of the binary reversible logic case and may be applied to a
specific value of d , e.g., [31] (d = 3), or applied to any value
of d [32,33]. Similar to the quantum synthesis case, these
algorithms are not suitable for large circuits.

As many algorithms widely use quantum arithmetic blocks
like adders or multipliers recurrently, it is crucial to have
available efficient arithmetic and logic blocks. Ad hoc design
of such blocks usually offers better results compared to the
automated synthesis methods. One can exploit the iterative
and regular structure of these arithmetic blocks or extend
known classical designs to the quantum case. A diversity of
ad hoc designed quantum arithmetic and logic circuits for
two-level qubits can be found in the literature [22,24,34–39]
but few (usually adders) are known for multilevel qudits. A
few examples of such designs are a ternary (d = 3) adder
for three inputs [32] as a byproduct of a synthesis method,
ternary adders-subtractors ad hoc designed for any number
of inputs [40] and quaternary (d = 4) comparators [41]. A
ternary extension of the well-known Vedral-Barenco-Ekert
[34] ripple-carry adder is reported in Ref. [42]. In Ref. [43],
two ternary extensions of the Cuccaro-Draper-Kutin-Moulton
[35] ripple carry adder and the Draper-Kutin-Rains-Svore [37]
carry look-ahead adder are given.

The previous qudit arithmetic circuits are designed for a
specific value of d . In contrast, the proposed designs are
parametrized for any value of d . The majority of qudit rotation
gates used in our proposed designs are synthesized using
elementary gates introduced in Ref. [10], where physical im-
plementation directions are also given. As the rotation angles
of these gates vary with the size of the circuit and small angles
are required, implementation and fault tolerance issues are
briefly discussed in Sec. VII.

III. QUANTUM FOURIER TRANSFORM AND
BASIC GATES

The QFT definition is

| j〉 QFTN−−−→ 1√
N

N−1∑
k=0

e
i2π
N jk|k〉 (1)

on the N-dimensional computational basis {|0〉, |1〉, . . . ,
|N − 1〉}.
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FIG. 1. QFT circuit implemented on d-level qudits. The order of the qudits must be reversed at the end.

Using q qudits of d levels [2,44], and setting N = dq, the q
qudits basis consists of | j〉 = | j1 . . . jq〉 = | j1〉 . . . | jq〉, where
for the lth qudit it holds | jl〉 ∈ {|0〉, . . . , |d − 1〉}. Then, the
QFT action on a basis state | j〉 ( j = 0 . . . dq − 1) is

| j〉 = | j1 . . . jq〉 QFTN−−−→ 1√
dq

×
d−1∑
k1=0

· · ·
d−1∑
kq=0

e
i2π
dq j

∑q
l=1 kl dq−l |k1 . . . kq〉

= 1√
dq

d−1∑
k1=0

· · ·
d−1∑
kq=0

q⊗
l=1

ei2π jkl d−l |kl〉

= 1√
dq

q⊗
l=1

d−1∑
kl =0

ei2π jkl d−l |kl〉

= 1√
dq

(
d−1∑
m=0

ei2π (0. jq )m|m〉
)(

d−1∑
m=0

ei2π (0. jq−1 jq )m|m〉
)

× · · ·
(

d−1∑
m=0

ei2π (0. j1 j2... jq−1 jq )m|m〉
)

. (2)

The d-ary representation ( j1 j2 . . . jq) of the integer j =
j1dq + j2dq−1 + · · · + jq as well as the fractional d-ary repre-
sentation (0. j1 j2... jq) = j1/d + j2/d2 + . . . + jq/dq are used
in the above definition. This tensor product form is similar
to the form of the order 2n QFT which is implemented on
n qubits of two levels. Thus, the structure of an order dq

QFT circuit implemented with qudits is similar to the binary
QFT case as depicted in Fig. 1, where in place of the the
usual Hadamard and rotation qubit gates, their generalization
in d-dimensional qudits is used.

The definition of the generalized d-dimensional Hadamard
gate is

H (d ) = 1√
d

d−1∑
j=0

d−1∑
m=0

ei 2π
d jm| j〉〈m|, (3)

while the definition of the generalized d-dimensional
controlled rotation two-qudit gates R(d )

k is

R(d )
k =

d−1∑
j=0

d−1∑
m=0

ei 2π

dk jm| j〉〈 j| ⊗ |m〉〈m|

=
d−1∑
j=0

d−1∑
m=0

e
i2π (0.00 . . . 0︸ ︷︷ ︸

k−1

j)m

| j〉〈 j| ⊗ |m〉〈m|. (4)

Taking into account the above two definitions, the ef-
fect of H (d ) on a computational basis state as well as the
effect of R(d )

k to an arbitrary superposition state, as ana-
lyzed in the Appendix, we can confirm that the network of
Fig. 1 corresponds to Eq. (2). Indeed, comparing the state∑d−1

m=0 ei2π (0. jl jl+1... jq−1 jq )m|m〉 of the lth qudit after the transfor-
mation of Eq. (2) with Eqs. (A5) and (A16), we can conclude
that this state can be generated by applying at the basis state
| jl〉 of the lth qudit a Hadamard gate H (d ) and a sequence of
q − l generalized rotation gates R(d )

k , with k = 2 . . . q − l + 1,
controlled by the qudits l + 1 . . . q, respectively. At the end,
the order of the qudits must be reversed with swap gates as
in the case of the QFT operated on qubits. This swapping
of the qudits is not shown in Fig. 1. An inverse QFT circuit
is derived by reversing horizontally the direct QFT circuit of
Fig. 1 (including the SWAP gates not shown) with opposite
signs in the angles of the rotation gates.

IV. ADDERS

The integer arithmetic circuits presented in this section
are developed in a bottom-up succession, starting from the
simpler ones and gradually proceeding to more complex ones.
The arithmetic operations are assumed to be modulo dq,
where d is the qudit dimension and q is the number of qudits
used to represent the integers. All the adders can be easily
converted to subtractors using opposite signs in the angles of
the rotation gates while retaining the same circuit structure.

A. Adder of two integers

A basic arithmetic operation block is an adder of two
integers of q d-ary digits each, e.g., a = (a1a2 . . . aq) and b =
(b1b2 . . . bq ) or two superpositions of integers. Following the
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FIG. 2. Adder of two integers (ADD) and the respective symbol. The direct QFT at the lower register which precedes the rotations block
as well as the inverse QFT following it are not shown.

previous section, the most significant d-ary digit of an integer
is indexed with 1 while the least significant digit is indexed
with q. The circuit in Fig. 2 operates on 2q qudits, the state
|b1 . . . bq〉 of the q upper qudits (upper register) represents
integer b while the state of the lower q qudits (lower register)
represents the Fourier-transformed state (see Ref. [45]) of
the other integer a, that is, |ϕ1(a)〉|ϕ2(a)〉 · · · |ϕq(a)〉, where
|ϕl (a)〉 = 1√

d

∑d−1
m=0 ei2π (0.al al+1...aq )m|m〉 [see Eq. (2)]. It is a

generalization on qudits of the adder proposed in Ref. [22].
The first qudit of the lower register is initially in the state

|ϕ1(a)〉. The effect of the first rotation gate R(d )
1 controlled

by state |b1〉 to this qudit (step[1,1]), taking into account
Eq. (A16), is to evolve it in the state

|ϕ1(a)〉 R(d )
1−−→ 1√

d

d−1∑
m=0

ei2π[(0.a1a2...aq )+(0.b1 )]m|m〉. (5)

The effect of the second gate R(d )
2 controlled by |b2〉

(step[1,2]) is to further evolve the state to

|ϕ1(a)〉1
R(d )

2−−→ 1√
d

d−1∑
m=0

ei2π[(0.a1a2...aq )+(0.b1 )+(0.0b2 )]m|m〉 (6)

Proceeding in a similar way up to gate R(d )
q controlled by

|bq〉, we derive the final state (step[1,q]) of the first qudit

|ϕ1(a)〉q−1
R(d )

q−−→ 1√
d

d−1∑
m=0

ei2π[(0.a1a2...aq )+(0.b1b2...bq )]m|m〉. (7)

In general, the final state of the lth qudit of the lower
register is found to be

|ϕl (a)〉q−l+1 = 1√
d

d−1∑
m=0

ei2π[(0.al al+1...aq )+(0.bl bl+1...bq )]m|m〉.
(8)

Consequently, the total effect of all the rotation gates to the

lower register is the evolution

|ϕ1(a)〉|ϕ2(a)〉 · · · |ϕq(a)〉 ADD−−→ |ϕ(a + b)〉

=
q⊗

l=1

1√
d

d−1∑
m=0

ei2π[(0.al al+1...aq )+(0.bl bl+1...bq )]m|m〉, (9)

which is the QFT of the sum state |a + b (mod dq)〉. Thus, by
applying the inverse QFT at the lower register, we can get the
desired sum back in the computational basis, while the upper
register remains in the initial state |b〉. The required direct and
inverse QFT blocks are not shown in Fig. 2.

B. Adder with constant

Whenever one of the integers is constant, e.g., b =
(b1b2 . . . bq ), the upper register in Fig. 2 is not necessary as
all the controlled rotation gates become classically controlled
single-qudit rotation gates with their angles defined by the
constant integer b. In such a case, a sequence of q − l + 1

rotation gates (�(d )
k )

bk+l−1 = ∑d−1
m=0 ei 2π

dk mbk+l−1 |m〉〈m|, for k =
1 . . . q − l + 1 are applied on the lth qudit of the lower register
[see Eqs. (A12)–(A14)]. This product of gates can be merged
into one gate of the form

Bl (b) =
q−l+1∏

k=1

(
�

(d )
k

)bk+l−1

=
q−l+1∏

k=1

(
d−1∑
m=0

e
i2πm

dk |m〉〈m|
)bk+l−1

=
d−1∑
m=0

(
q−l+1∏

k=1

e
i2πm

dk bk+l−1

)
|m〉〈m|. (10)

These are diagonal gates of the form of Eq. (A8), whose
angles depend on the constant b by the relation

ϕl,m(b) =
q−l+1∑

k=1

2π

dk
mbk+l−1, (11)
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FIG. 3. Adder of an integer with constant b (ADDCb) and the respective symbol. Direct and inverse QFT blocks not included in this
diagram.

so they can be constructed with elementary R( jk)
z (θ ) two-

level qudit gates using the procedure described in the
Appendix. Figure 3 shows the constant b adder. Like
the general adder ADD, this adder performs the addition
modulo dq.

C. Single state controlled adder with constant

The constant adder ADDCb can be easily converted to a
constant adder controlled by the state of an additional control
qudit so as to perform the transformation

CcADDCb(|e〉|a〉) = |e〉|a + bδce〉, (12)

where δce is the Kronecker delta function. Consequently, the
addition is performed iff the control state equals |c〉, otherwise
the target state |a〉 remains unaltered. The single-state con-
trolled constant adder CcADDCb can be constructed as shown
in Fig. 4 where the single-qudit rotation gates Bl (b) of Fig. 3
have been converted to the respective two-qudit diagonal gates
controlled by state |c〉. Such controlled gates affect the phases
of the target qudit iff the control qudit has the state |c〉, thus
they are represented by a block diagonal matrix whose cth
block is given by Eq. (10) and the other blocks are identities.
They have the form of the CD(c) gates of Eq. (A11) in the Ap-
pendix, where decomposition in elementary two-level qudit
gates is shown.

D. Generalized controlled adder of an integer with constant

A useful generalization of the previous CcADDCb cir-
cuit can be achieved if we permit all the basis states of the
control qudit to influence the result of the addition. We de-

fine this generalized controlled adder with constant b by the
relation

GCADDCb(|e〉|a〉) = |e〉|a + be〉. (13)

The above equation can be rewritten as

GCADDCb(|e〉|a〉) = |e〉|a + bδ1e + · · · + (d − 1)bδ(d−1)e〉.
(14)

Equation (14) directly leads to the implementation of
Fig. 5, where d − 1 consecutive applications of CcADDCcb

(c = 1 . . . d − 1) adders are employed.

V. MULTIPLIERS

The generalized controlled constant adder adder can be
used as building block for the multiplier with constant-
accumulator and the multiplier with constant presented in
this section. Both kind of multipliers have linear depth with
respect to the size of integers processed.

A. Multiplier with constant and accumulator

MACb multiplies a q qudits integer x with a constant b of
q d-ary digits, and accumulates the product bx to a q qudits
integer a (modulo dq). Namely, the MACb circuit consists of
two q qudit registers initially holding the states |x〉 and |a〉 and
transforms them as

MACb(|x〉|a〉) = |x〉|a + bx〉. (15)

Taking into account that x can be expressed as
(x1x2 . . . xq ) = ∑q

l=1 xldq−l , then Eq. (15) can be

)(1
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c c c
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FIG. 4. State |c〉 controlled adder with constant b (CcADDCb) and the respective symbol.
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FIG. 5. Generalized controlled adder with constant b (GCADDCb) and the respective symbol.

written as

MACb(|x〉|a〉) = |x〉
∣∣∣∣∣a + b

q∑
l=1

xld
q−l

〉

= |x〉|a + xqb + xq−1db + · · · + x1(dq−1b)〉.
(16)

This means that the above transformation can be im-
plemented by applying q GCADDC circuits, where the
control is done consecutively by the qudits xq, xq−1, . . . , x1

and the constant parameter for each one GCADDC block
is b, db, . . . , dq−1b (modulo dq), respectively, as shown in
Fig. 6.

B. Multiplier with constant

A multiplier (modulo dq) with constant b implements the
function f : {0 . . . dq − 1} → {0 . . . dq − 1} with y = f (x) =
bx (mod qq). When constant b is relative prime to dq, then
there exists the inverse b−1 (mod dq) and, consequently, there
exists the inverse function f −1(y) = b−1y (mod dq) = b−1bx
(mod dq) = x. Figure 7 shows how to construct a Multiplier
with constant b using two MACb blocks and the necessary
direct and inverse QFT blocks. It requires a q qudits register
initially holding the integer x and another q qubits ancilla
register initially in the zero state. The result is that one of the
registers is set to the state |bx (mod dq)〉 while the ancilla

register is set to state zero, so effectively the ancilla register
can be reused.

In the diagram of Fig. 7, the boxes with the black strip
on their right side are the direct blocks while these with the
black strip at their left side are the respective inverses. The
operation of an inverse MAC with parameter b−1 is to per-
form subtraction instead of accumulation, that is, referring to
Fig. 7, we have the operation MAC−1

b−1 |bx〉|ϕ(x)〉 = |bx〉|ϕ(x −
b−1(bx))〉 = |bx〉|ϕ(0)〉. The inverse MAC−1 has the same
internal topology as the direct MAC of Fig. 6 (of course, with
parameter b−1 instead of b) with the only difference that the
angles of its rotation gates have a minus sign. The labels at
the qudit buses of Fig. 7 which describe the respective states
show that the circuit implements the multiplication

MULCb(|x〉|0〉) = |bx〉|0〉. (17)

Excluding the ancilla register, which is in the zero state be-
fore and after the operation and thus remains unentangled, we
conclude that this circuit performs the desired multiplication
operation.

VI. COMPLEXITY ANALYSIS

The arithmetic quantum circuits proposed in the previous
sections are broken down to the level of elementary gates H (d ),
as well as elementary GCX( jk)

m , R( jk)
z (θ ), and R( jk)

x (θ ) gates
introduced in the Appendix. This decomposition is depicted
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FIG. 6. Multiplier with constant b accumulator (MACb) and the respective symbol.
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FIG. 7. Multiplier with constant b (MULCb) and the respective symbol.

in Fig. 8 as a tree structure, where the root of each tree is any
of the complete circuits proposed and the leaves of each tree
(trapezoids) represent the elementary gates. The edges of each
tree are labeled with the number of components needed by one
level below (no label stands for 1).

A rough complexity analysis in terms of quantum cost
(number of elementary gates used) and depth (execution time)
can be done with the help of Fig. 8. The analysis assumes
that single- and two-qudit gates are equivalent in terms of
costs and execution time. Exact costs and depths depend on
the particular implementations. The total gate counts for each
block can be found by traversing the tree emerging from
the inspected block down to each leaf of the subtree. The
labels of the edges for each path are multiplied and then
the products of each path used are summed together, e.g.
the QFT circuit needs q Hadamard gates, (q2 − q/2)(d −
1)(2d − 1) GCX( jk)

m gates, and (q2 − q/2)(d − 1)2d R( jk)
z (θ )

gates. Similar calculations provide us with the quantum
costs shown in Table I, which shows only the highest order
terms.

For the depth calculation, the following remarks apply:
QFT At first glance, Fig. 1 exhibits a quadratic depth

O(q2), but it can be easily shown [46] that we can parallelize
the execution with an appropriate reordering of the gates and
thus achieve a linear depth, namely, depth(QFT) = 8d2q.

ADD Similarly as in the QFT case, a reordering of gates in
Fig. 2 offers a linear depth too, that is, depth(ADD) = 4d2q.

MAC Concurrent execution of gates is possible in this
case, too. It can be seen that by flattening the hierarchy
MAC-GCADDC-CADDC, q different controlled gates Bl (b)
[Eq. (10)] belonging in different GCADDC blocks can be
executed concurrently [24]. Thus, the MAC depth is of the
order O(4d2q) instead of O(4d2q2) as directly calculated by
the number of elementary gates.

MULC Observing Fig. 7, we easily calculate that
depth(MULC) = 3depth(QFT) + 2depth(MAC), as the two
middle QFT blocks (direct and inverse) can be executed si-
multaneously. Thus, we derive depth(MULC) = 32d2q.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an assortment of quantum
circuits for multilevel qudits. They perform basic integer arith-
metic operations (like addition, multiplication-accumulation
and multiplication). Additional extensions can be applied,
e.g., the MAC and MULC circuits can be converted to single-
qudit controlled versions. Such controlled versions could be
useful for qudit-based quantum phase estimation algorithms
and quantum simulations.

The designs are based on the alternative representation
of an integer after being QFT-transformed instead of the
usual computational basis representation, a method which
has already been exploited in the binary qubit case. QFT-
based design is a versatile method to develop many arithmetic

QFT

)(d
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CD
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)(dH

),( kj
zR

q2-q/2q

d-1

2d-1 2d

ADD

)(d
kR
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GCX ),( kj
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q2+q/2

d-1

2d-1 2d

MAC

GCADDC
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CD

GCX ),( kj
zR

2d-1 2d

q

d

q

FIG. 8. Hierarchy breakdown of various arithmetic quantum circuits proposed. Elementary two-level gates are denoted in trapezoids as the
leaves of the tree. Parameter q is the integer argument size, while d is the dimensionality of the qudits.
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TABLE I. Quantum cost, depth and width of the proposed arith-
metic circuits.

Circuit Cost Depth Width

QFT 4d2q2 8d2q q
ADD 4d2q2 4d2q 2q
MAC 4d2q2 4d2q 2q
MULC 24d2q2 32d2q 2q

circuits, e.g., there is no need to handle carries, which leads to
space reduction. Moreover, if it is suitably used, it can offer
advantages in terms of speed. This is possible when similar
blocks are iterated to act on a data path whose state follows
the QFT representation. The extensive usage of rotation gates
(which mutually commute) on such a data path permits their
rearrangement to execute concurrently [24]. This capability
is observed in the MAC block, where the application of a
suitable reordering of gates led to depth reduction from O(q2)
to O(q).

Another advantage that has been observed in designs
adopting the QFT method is their robustness to various kinds
of deviations from the ideal operation, e.g. approximate QFT
[47] or QFT banding is the design procedure of eliminating
small angle rotation gates. Studies of Shor’s algorithm which
uses the QFT showed that the algorithm still works sufficiently
even when a large proportion of the QFT rotation gates are
eliminated [25,48,49]. Recent studies extended to circuits be-
yond QFT. In Refs. [50,51] the simultaneous gate pruning of
rotation gates of the QFT circuit and the QFT based modular
exponentiator of Beauregard’s circuit [23] were simulated.
The simulation results showed similar robustness of Shor’s
algorithm to these gates eliminations. This robustness is sus-
tained even if the parameters of the remaining rotation gates
are randomly selected [26]. The above results suggest that a
similar robustness is expected in the multidimensional qudits
case and further investigation needs to be carried.

On the other hand, there is a drawback related to the
requirement of implementing high accuracy small angle ro-
tation gates. Moreover, these gates must belong to a set
of fault-tolerant gates if large-scale quantum computation is
considered. The fault-tolerant universal set of gates which
is usually adopted in the qubit case is the Clifford+T . Ef-
ficient techniques to synthesize (approximately or exactly)
an arbitrary quantum gate to a sequence of gates belong-
ing to this fault-tolerant set have been established. The first
Solovay-Kitaev algorithms [52–54] generate a sequence of
such gates of length O[log3.97 (1/ε)] and synthesis time in or-
der of O[log2.71 (1/ε)], where ε is the approximation error. In
the last decade, extensive research resulted in great improve-
ments both in terms of the sequence length and synthesis time.
They used a diverse set of techniques (usage of ancilla or not,
different libraries, approximate or exact synthesis, etc). Some
of the best results in terms of the generated sequence length
can be found in Refs. [55–58]. These works offer a length of
less than 10 log2 (1/ε) T gates (T gates are considered more
costly if they are built fault tolerantly).

While universal fault-tolerant gates set analogous to qubit
Clifford+T have been established for qudits of prime d

dimensions [9,59], unfortunately the best synthesis method
to synthesize an arbitrary qudit gate like the rotation gates
is the original Solovay-Kitaev algorithm [54], although op-
timization techniques for synthesizing qutrit gates belonging
to Clifford +T group have appeared in Refs. [60,61] and in
Ref. [62] (topological model). Thus, an overhead is expected
in the proposed circuits if fault tolerance is entered in the anal-
ysis but the exact overhead cannot be easily estimated because
the suspected robustness of QFT-based circuits significantly
influences the chosen approximation error ε.

For all the above reasons and also because the exact cost
depends on the technology used, which for qudits is at an early
stage, the complexity analysis of Sec. VI is to be considered
as a crude indicator of performance. Despite that, we think
that the proposed designs enrich the toolkit of future quantum
computing.

APPENDIX: GATE DECOMPOSITION

Decomposition of basic gates, like the rotation gates R(d )
k ,

used in the presented circuits to more elementary gates which
adopt physical implementation is given. At the lowest level,
the elementary gates operate in a two-dimensional subspace
of the d-dimensional qudit space. By combining such ele-
mentary gates, we can derive more complex gate operating
in the whole d-dimensional space. The elementary gates used
here are reported in Ref. [10], although alternative library of
elementary gates could be used as well.

1. Generalized X gates

The X ( jk) gates [10] operate on a two-dimensional sub-
space of a d-level qudit by exchanging the basis states | j〉 and
|k〉, while leaving intact the other basis states, thus they are
a generalization of the well-known X gate for qubits which
exchange the basis states |0〉 and |1〉. They are defined by the
d × d matrix:

X ( jk) = | j〉〈k| + |k〉〈 j| +
d−1∑
n = 0
n �= j
n �= k

|n〉〈n|, j, k = 0 . . . d − 1.

(A1)
It holds that X ( jk) = X (k j), so there are d (d − 1)/2 differ-

ent such gates in this family.

2. Rotation gates of two levels

These gates perform a rotation on a two-dimensional sub-
space [10] of a d-level qudit and are defined as

R( jk)
a (θ ) = exp

( − iθσ
( jk)
a /2

)
, 0 � j, k � d − 1, (A2)

where σ
( jk)
x = | j〉〈k| + |k〉〈 j|, σ

( jk)
y = −i| j〉〈k| + i|k〉〈 j| and

σ
( jk)
z = | j〉〈 j| − |k〉〈k| for j, k = 0 . . . d − 1 are matrices of

dimensions d × d . Parameter θ is the rotation angle and label
a ∈ {x, y, z},

3. Generalized controlled X gates

The GCX( jk)
(m) gates are generalizations in the qudits of the

CNOT gates acting on qubits [10]. Thus, they are gates which
operate on a control and a target qudit. A GCX gate has three
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FIG. 9. Symbols of X ( jk), GCX( jk)
(m) , R jk

a (θ ), and H (d ) elementary gates (a is x, y or z).

parameters, m, j, and k, which define its operation. A GCX( jk)
(m)

acts like a X ( jk) on the target qudit iff the control qudit is on
the basis state |m〉. Consequently, the definition matrix of such
a gate is block diagonal with dimension d2 × d2 consisting of
d blocks of d × d dimensions each and is given by

GCX( jk)
(m) = |m〉〈m| ⊗

⎛
⎜⎜⎜⎜⎜⎝| j〉〈k| + |k〉〈 j| +

d−1∑
n = 0
n �= j
n �= k

|n〉〈n|

⎞
⎟⎟⎟⎟⎟⎠

+
d−1∑
n = 0
n �= m

|n〉〈n| ⊗ Id , (A3)

where j, k, m = 0 . . . d − 1 and Id is the identity matrix
of dimensions d × d . Equation (A3) can be equivalently
written as

GCX ( jk)
m = diag(Id , Id , . . . , X ( jk)

mth block
, . . . , Id ). (A4)

4. Hadamard gate

The Hadamard gate H (d ) on d-level qudits has already been
defined in Eq. (3). It is easy to show that application of a H (d )

gate to a basis state | j〉 derives the superposition

H (d )| j〉 = 1√
d

[
1 ei2π (0. j) . . . ei2π (d−1)(0. j)

]T

= 1√
d

(|0〉 + ei2π (0. j)|1〉 + · · · + ei2π (d−1)(0. j)|d − 1〉)

(A5)

in d-ary fractional representation. The Hadamard gate for
qudits essentially performs the order-d Fourier transform;
likewise, the Hadamard gate for qubits performs the order-2
Fourier transform. Methods for implementation of the H (d )

gate are proposed in Refs. [2,44].
The symbols used throughout the text for the three families

of elementary gates defined and the H (d ) gate are shown in
Fig. 9.

5. Diagonal gates of one and two qudits

The qudit elementary gates X ( jk), R( jk)
a and GCX( jk)

m af-
fect a two-dimensional subspace of the whole d-dimensional
Hilbert space of a single qudit. They can be used to derive
single- and two-qudit (controlled) diagonal basic gates affect-
ing the whole d-dimensional space of one of the qudits as
follows.

The diagonal D′(a1, a2, . . . , ad−1) gate [10] is defined by
the equation

D′(a1, a2, . . . , ad−1)

= eiϕdiag(e−i(a1+a2+...+ad−1 ), eia1 , eia2 , . . . , eiad−1 ). (A6)

It can easily be proved that such a gate can be constructed
by sequentially applying d − 1 R( jk)

z (θ ) gates as shown in the
following equation:

D′(a1, a2, . . . , ad−1)

= eiϕR(01)
z (a1)R(02)

z (a2) · · · R(0(d−1))
z (ad−1). (A7)

A related gate is the D(ϕ1, ϕ2, . . . , ϕd−1) defined as

D(ϕ1, ϕ2, . . . , ϕd−1) = diag(1, eiϕ1 , eiϕ2 , . . . , eiϕd−1 ). (A8)

The D(ϕ1, ϕ2, . . . , ϕd−1) gate is identical with the
D′(a1, a2, . . . , ad−1) gate if we set

a j = ϕ j − 1

d

d−1∑
k=1

ϕk, j = 1 . . . d − 1 (A9)

and add a global phase of angle ϕ = 1
d

∑d−1
k=1 ϕk to every

diagonal element of D′(a1, a2, . . . , ad−1).
The previously defined diagonal gates can be extended to

operate on two qudits, where the first is the control qudit and
the second is the target qudit, in the following manner: A
diagonal gate D′(a1, a2, . . . , ad−1) or D(ϕ1, ϕ2, . . . , ϕd−1) is
applied on the target qudit iff the control qudit is in state |m〉,
otherwise no operation is effective on the target. Thus, the
d2 × d2 matrices representing such gates have the following
block diagonal form:

CD′
m(a1, a2, . . . , ad−1)

= diag(Id , . . . , Id , D′(a1, a2, . . . , ad−1)
mth block

, Id , . . . , Id ) (A10)

and

CDm(ϕ1, ϕ2, . . . , ϕd−1)

= diag(Id , . . . , Id , D(ϕ1, ϕ2, . . . , ϕd−1)
mth block

, Id , . . . , Id ) (A11)

A construction of a CD′
m(a1, a2, . . . , ad−1) gate

using 4(d − 1) elementary GCX( jk)
(m) and R( jk)

z (θ )
gates is shown in Fig. 10. Single qudit gate Sm =
diag(1, . . . , 1, eiϕ

mth pos
, 1, . . . , 1) is a phase gate which is

identical to a D′ gate up to a global phase.

6. Generalized controlled rotation gate R(d )
k

The controlled diagonal gates CD′
m and CDm are activated

whenever the control state is equal to one of the d possible
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FIG. 10. Controlled diagonal CD′
m(a1, a2, . . . , ad−1) gate construction and its symbol. The parameter

→
a inside the symbol represents the

angles (a1, a2, . . . , ad−1).

basis states, e.g., |m〉. They can be used to synthesize the
generalized controlled diagonal gate, R(d )

k , of Eq. (4) such that
each one of the d possible control states have a different effect
on the target qudit.

The R(d )
k gate is parametrized by the integer k. The matrix

defining this gate is block diagonal of the form

R(d )
k = diag

((
�

(d )
k

)0
,
(
�

(d )
k

)1
, . . . ,

(
�

(d )
k

)d−1
)
, (A12)

where the matrix �
(d )
k is diagonal too, and defined with

�
(d )
k = diag(1, eiϕ1 , eiϕ2 , . . . , eiϕ(d−1) ). (A13)

The angles ϕ1, ϕ2, . . . , ϕ(d−1) depend on the parameter k as
follows:

ϕm = 2π

dk
m, m = 1, . . . , d − 1. (A14)

The implementation of an R(d )
k can be achieved by

sequentially combining d − 1 controlled diagonal gates
CDm(ϕ1, ϕ2, . . . , ϕd−1) for m = 1 . . . d − 1 and different an-
gles for each case of m as shown below [see also Eqs. (A11)–
(A13)]:

R(d )
k = CD(1)

(
2π

dk
,

2π

dk
2, . . . ,

2π

dk
(d − 1)

)
CD(2)

(
2π

dk
2,

2π

dk
4, . . . ,

2π

dk
2(d − 1)

)

× CD(d−1)

(
2π

dk
(d − 1),

2π

dk
(d − 1)2, . . . ,

2π

dk
(d − 1)(d − 1)

)
.

(A15)

Taking into account that a CD(m)(ϕ1, ϕ2, . . . , ϕd−1) gate is composed by 4(d − 1) elementary GCX( jk)
(m) and R( jk)

z (θ ) gates, we

conclude that an R(d )
k gate requires 4(d − 1)2 elementary gates.

We can see by inspecting Eq. (4) that an R(d )
k gate is a generalization on qudits of the controlled rotation gates Rk =

Rz(2π/2k ) = diag(1, 1, 1, ei2π/2k
) for the qubit case (where d = 2) and this generalization is exploited in the construction of

the QFT and the various arithmetic circuits based on the QFT. To understand this, it is useful to see what the effect is of an
R(d )

k gate when the control qudit is on a basis state | j1〉 ( j1 = 0, 1, . . . , d − 1) and the target qudit is in a superposition of equal
amplitudes but with different phases, such as |b〉 = 1√

d

∑d−1
l=0 eiϕl |l〉. The joint state of the two qudits after the application of an

R(d )
k gate is

R(d )
k (| j1〉|b〉) = 1√

d

d−1∑
j=0

d−1∑
m=0

e
i2π (0.00 . . . 0︸ ︷︷ ︸

k−1

j)m

| j〉 〈 j| j1〉︸ ︷︷ ︸
=δ j j1

⊗ |m〉〈m|
d−1∑
l=0

eiϕl |l〉
︸ ︷︷ ︸

=eiϕm |m〉

= 1√
d

d−1∑
m=0

e
i2π (0.00 . . . 0︸ ︷︷ ︸

k−1

j1 )m

| j1〉eiϕm |m〉 = 1√
d

| j1〉
d−1∑
m=0

e
i2π

[
(0.00 . . . 0︸ ︷︷ ︸

k−1

j1 )m+ϕm

]
|m〉. (A16)

Thus, an angle 2π (0. 00 . . . 0︸ ︷︷ ︸
k−1

j1)m = 2π
dk j1m is added to every component |m〉 of the target qudit superposition and this angle

is proportional to the value | j1〉 of the control qudit and also proportional to index m in the |m〉 component of target qudit
superposition.
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