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We present a quantum algorithm for European option pricing in finance, where the key idea is to work in the
unary representation of the asset value. The algorithm needs novel circuitry and is divided in three parts: first,
the amplitude distribution corresponding to the asset value at maturity is generated using a low-depth circuit;
second, the computation of the expected return is computed with simple controlled gates; and third, standard
amplitude estimation is used to gain quantum advantage. On the positive side, unary representation remarkably
simplifies the structure and depth of the quantum circuit. Amplitude distributions use quantum superposition
to bypass the role of classical Monte Carlo simulation. The unary representation also provides a postselection
consistency check that allows for a substantial mitigation in the error of the computation. On the negative side,
unary representation requires linearly many qubits to represent a target probability distribution, as compared to
the logarithmic scaling of binary algorithms. We compare the performance of both unary vs binary option pricing
algorithms using error maps, and find that unary representation may bring a relevant advantage in practice for
near-term devices.
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I. INTRODUCTION

Quantum computing provides new strategies to address
problems that nowadays are considered difficult to solve
by classical means. The first quantum algorithms showing
a theoretical advantage over their classical counterparts are
known since the 1990s, such as integer factorization to prime
numbers [1] or a more efficient unstructured database search
[2]. Nevertheless, current quantum devices are not powerful
enough to run quantum algorithms that are able to compete
against state-of-the-art classical algorithms. Indeed, avail-
able quantum computers are in their noisy intermediate-scale
quantum (NISQ) stage [3], as errors due to decoherence, noisy
gate application, or error readout limit the performance of
these new machines. These NISQ devices may nonetheless
be useful tools for a variety of applications due to the intro-
duction of hybrid variational methods. Some of the proposed
applications include quantum chemistry [4–6], simulation
of physical systems [7–9], combinatorial optimization [10],
solving large systems of linear equations [11–13], state di-
agonalization [14,15], or quantum machine learning [16–18].
Some exact, nonvariational, quantum algorithms are also well
suited for NISQ devices [19–22].

*sergi.ramos@tii.ae

A field that is expected to be transformed by the improve-
ment of quantum devices is quantitative finance [23–27]. In
recent years, there has been a surge of new methods and
algorithms dealing with financial problems using quantum
resources, such as optimization problems [28–31] which are
in general hard.

Notably, pricing of financial derivatives is a prominent
problem, where many of its computational obstacles are suited
to be overcome via quantum computation. In this paper we
will deal with options, which are a particular type of financial
derivatives. Options are contracts that allow the holder to buy
(call) or sell (put) some asset at a preestablished price (strike),
or at a future point in time (maturity date). The payoff of an
option depends on the evolution of the asset’s price, which
follows a stochastic process. A simple, yet successful model
for pricing options is the Black-Scholes model [32]. This is
an analytically solvable model that predicts the asset’s price
evolution to follow a log-normal probability distribution, at
a future time t . Then, a specified payoff function, which de-
pends on the particular option considered, has to be integrated
over this distribution to obtain the expected return of the
option. Current classical algorithms rely on computationally
costly Monte Carlo simulations to estimate the expected re-
turn of options.

A few quantum algorithms have been proposed to improve
on classical option pricing [33–35]. It has been shown that
quantum computers can provide a quadratic speedup in the
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number of quantum circuit runs as compared to the number
of classical Monte Carlo runs needed to reach a certain pre-
cision in the estimation. The basic idea is to exploit quantum
amplitude estimation [36–38]. Nonetheless, this can only be
achieved when an efficient way of loading the probability
distribution of the asset price is available. The idea of using
quantum generative adversarial networks (qGANs) [39,40] to
address this issue has been analyzed [41].

In the following, we propose a quantum algorithm for op-
tion pricing. The key idea is to construct a quantum circuit that
works in the unary basis of the asset’s value, i.e., in a subspace
of the full Hilbert space of n qubits. Then, the evolution of
the asset’s price is computed using an amplitude distributor
module. Furthermore, the computation of the payoff greatly
simplifies. A third part of the algorithm is common to pre-
vious approaches, namely, it uses amplitude estimation. The
unary scheme brings further advantage since it allows for a
postselection strategy that results in error mitigation. Let us
recall that error mitigation techniques are likely to be crucial
for the success of quantum algorithms in the NISQ era. On
the negative side, the number of qubits in the unary algorithm
scales linearly with the number of bins, while in the binary
algorithm it is logarithmic with the target precision. This
results in a worse asymptotic scaling for the unary algorithm.
Yet, our estimates for the number of gates indicate that the
crossing point between these two is located at a number of
qubits that render a good precision (<1%) for real-world ap-
plications. Moreover, the performance of the unary algorithm
is more robust to noise, as we show in simulations. Hence, our
proposal seems to be better suited to be run on NISQ devices.
Unary representations have also been considered in previous
works [42–44].

We will illustrate our algorithm focusing on a simple Eu-
ropean option, whose payoff is a function of only the asset’s
price at maturity date, the only date the contract can be ex-
ecuted at. This straightforward example has been chosen as
a proof of concept for this approach. We will compare the
performance of our unary quantum circuit with the previous
binary quantum circuit proposal, for a fixed precision or bin-
ning of the probability distribution.

The paper is organized as follows. We first introduce the
basic ideas on option pricing, both classical and quantum,
in Sec. II. The unary quantum algorithm is presented and
analyzed in Sec. III. We devote Sec. IV to outline the circuit
specifications and compare them for the unary and binary
quantum algorithms. Section V is dedicated to describe the
results obtained by means of classical simulations for both
algorithms. Lastly, conclusions are drawn in Sec. VI. Further
details on several topics are described in the Appendices.

II. BACKGROUND

There are three main pieces that lay the groundwork
needed for our algorithm. They are (a) the economical model
employed in European-option pricing, known as the Black-
Scholes model; (b) the amplitude estimation technique that
provides a quadratic quantum advantage over classical Monte
Carlo methods; and (c) a quantum algorithm for option pricing
in the binary basis, as proposed in Ref. [33].

A. Black-Scholes model

The evolution of asset prices in financial markets is usually
computed using the model established by Black and Scholes
in Ref. [32]. This evolution is governed by two properties
of the market, the interest rate and the volatility, which are
incorporated into a stochastic differential equation.

The Black-Scholes model for the evolution of an asset’s
price at time T , ST , is based on the following stochastic
differential equation:

dST = ST r dT + ST σ dWT , (1)

where r is the interest rate, σ is the volatility, and WT describes
a Brownian process. Let us recall that a Brownian process
WT is a continuous stochastic evolution starting at W0 = 0
and consisting of independent Gaussian increments. To be
specific, let N (μ, σs) be a normal distribution with mean μ

and standard deviation σs. Then, the increment related to two
steps of the Brownian processes is WT − WS ∼ N (0, T − S),
for T > S.

The stochastic differential equation (1) can be approxi-
mately solved analytically to first order, yielding the solution

ST = S0e(r− σ2

2 )T eσWT ∼ eN ((r− σ2

2 )T,σ
√

T ), (2)

which corresponds to a log-normal distribution. The details of
this procedure are outlined in Appendix A.

To obtain the expected return of an option, a payoff
function has to be integrated over the resulting probability dis-
tribution. This is usually solved using classical Monte Carlo
simulation.

In the case of European options, the payoff function is

f (ST , K ) = max(0, ST − K ), (3)

yielding an expected payoff given by

C(ST , K ) =
∫ ∞

K
(ST − K ) dST , (4)

where K is the strike. European options can only be executed
at a fixed prespecified time, called maturity date. This is the
reason why the payoff is computed using only the probability
distribution of ST at time T .

Our algorithm employs a quantum circuit that generates a
probability distribution following Eq. (2), and then encodes
the expected payoff of a European option, Eq. (4), into the
amplitudes of an ancilla qubit.

B. Amplitude estimation

Amplitude estimation (AE) is a quantum technique that al-
lows to estimate the probability of obtaining a certain outcome
from a quantum state (with a given precision), with up to a
quadratic speedup in the number of function calls as compared
to direct sampling [36,45].

1. AE with quantum phase estimation

Let us take an algorithm A such that

A|0〉n|0〉 = √
1 − a|ψ0〉n|0〉 + √

a|ψ1〉n|1〉, (5)
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where the last qubit serves as an ancilla qubit and the states
|ψ0,1〉n can be nonorthogonal. The ancilla qubit is a flag which
enables to identify the states as good (|1〉) or bad (|0〉). The
state A|0〉n|0〉 can be directly sampled N times, and the esti-
mate for probability of finding a good outcome will be ā, with

|a − ā| ∼ O(N−1/2), (6)

as dictated by the sampling error of a multinomial distribution.
However, AE can improve this result. Let us first define the
central operator for AE [36]

Q = −AS0A†Sψ0 , (7)

where the operators S0 and Sψ0 are inherited from Grover’s
search algorithm [2], being

S0 = I − 2|0〉n〈0|n ⊗ |0〉〈0|, (8)

Sψ0 = I − 2|ψ0〉n〈ψ0|n ⊗ |0〉〈0|. (9)

The S0 operator changes the sign of the |0〉n|0〉 state, while
Sψ0 takes the role of an oracle and changes the sign of all bad
outcomes. The operator Q has eigenvalues e±i2θa , with a =
sin2(θa). The procedure of quantum phase estimation (QPE) is
then applied to extract an integer number y ∈ {0, 1, . . . , 2m −
1} such that θ̄a = πy/2m is an estimate of θa, with m the num-
ber of ancilla qubits. Recall that a quantum Fourier transform
(QFT) is required to perform QPE.

The value of θ̄a leads to an estimate of ā, such that

|a − ā| <
2π

√
a(1 − a)

2m
+ π2

22m
∼ O

( π

2m

)
(10)

with probability at least 8/π2 ≈ 81%.
The original amplitude estimation procedure requires the

implementation of QPE, which is highly resource demanding.
Hence, the complexity of the circuit precludes its feasibility
in the NISQ era.

2. AE without quantum phase estimation

Recently, there has been a new proposal for amplitude
estimation that does not require QPE and, therefore, is less
resource demanding. This approach is based on iterative pro-
cedures [45]. The key fact allowing to circumvent the use of
QPE is that

QmA|0〉 = cos [(2m + 1)θa]|ψ0〉n|0〉
+ sin [(2m + 1)θa]|ψ1〉n|1〉. (11)

An integer m is chosen to prepare the state in Eq. (11) and
its outcome is measured Nshots times, so that the value of
sin2 [(2m + 1)θa] is estimated with a precision of ∼N−1/2

shots .
This process is repeated several times with different values
of m extracted from a set of {mj}. At the end of the proce-
dure, the precision achieved is bounded by ∼N−1/2

shots M−1, with
M = ∑J

j=0 mj , where J is the last index. The exact scaling of
the precision depends on the choice of mj’s. In Appendix D
the full method is explained in further detail.

FIG. 1. Full circuit for the binary algorithm for option pricing
that includes all steps, namely, the amplitude distributor D, payoff
estimator comprised of the comparator and payoff estimator C and
R, respectively, followed by components of amplitude estimation Q.
The operator Q is repeated m times, where m depends on the AE
algorithm. The payoff is indirectly measured in the last qubit.

C. Binary algorithm

We now present a binary algorithm for option pricing, as
introduced in Ref. [33]. This algorithm is divided in three
parts.

(a) Amplitude distributor. It encodes the underlying prob-
ability distribution of an asset’s price at maturity date into a
quantum register. The operator representing this piece will
be denoted by D. This algorithm uses a quantum generative
adversarial network (qGAN) [39–41] in order to fulfill this
part. Classical knowledge of the probability distribution is
required at this stage.

(b) Payoff calculation. It computes the expected payoff
of the option, which is encoded into the amplitude of an
ancillary qubit. The operators that perform this step will be
a comparator C, that separates the state as above or below
the strike, and a set of controlled rotations R, that encode the
expected payoff into the probability of measuring an ancilla.

(c) Amplitude estimation. It extracts the expected payoff
calculation encoded in the amplitude of the ancilla, reducing
the number of circuit calls needed to reach a desired precision.
It is based on the operator Q, which may be applied several
times.

A sketch of a quantum circuit implementing the full algo-
rithm is shown in Fig. 1. For a detailed description of each
part, refer to Appendix B.

III. UNARY ALGORITHM

We present now a quantum algorithm that prices European
options according to the Black-Scholes model, as outlined
in Sec. II A. The key idea is to construct a quantum circuit
that works in the unary basis of the asset’s value. The struc-
ture of the algorithm is inherited from the one explained in
Sec. II C, namely, amplitude distributor module, computation
of the payoff, and amplitude estimation. Furthermore, the im-
plementation of all different pieces is greatly simplified with
respect to the binary case. The unary scheme brings further ad-
vantage in practice since it allows for a postselection strategy
that results in error mitigation. Although our unary algorithm
requires more qubits than a binary one, its performance is
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FIG. 2. Scheme for the quantum representation of a given asset
price at maturity date. For a given number of Monte Carlo paths,
a binning scheme must be applied in such a way that the prices
of the asset are separated according to its value. Different Monte
Carlo paths that end up in the same bin are color coded accordingly.
Each bin is mapped then to an element of the unary basis, whose
coefficient is the number of Monte Carlo paths in this bin. The
quantum representation of the asset price at maturity contains all
possible Monte Carlo paths simultaneously. The precision is then
bounded by the numbers of bins we can store on a quantum state,
i.e., how many qubits are available.

more robust to noise and probably better suited to be run on
NISQ devices.

A. Unary representation

The main feature of the algorithm is that it works in the
unary representation of the asset value encoded on the quan-
tum register. That means that for every element of the basis
only one qubit will be in the |1〉 state, whereas all others will
remain in |0〉. A quantum register |ψ〉n made of n qubits in the
unary representation can be written as

|ψ〉 =
n−1∑
i=0

ψi|i〉n =
n−1∑
i=0

ψi

(
n−1⊗
j=0

|δi j〉
)

= ψ0|00 . . . 01〉n + ψ1|00 . . . 10〉n + · · ·
+ψn−2|01 . . . 00〉n + ψn−1|10 . . . 00〉n, (12)

where |i〉n corresponds to the ith element of the unary basis,
δi j is the Kronecker delta, and

∑n
i=1 |ψi|2 = 1. A well-known

example of a state in the unary representation is the W state,
which defines a class of three-qubit multipartite entanglement
[46]. Depicted in Fig. 2 is a visual representation of how the
unary algorithm would map the outcomes of a Monte Carlo
simulation of the asset’s price to a quantum register. The ratio
of Monte Carlo paths leading to each of the bins will translate
into the amplitudes of the corresponding unary basis states.

Given a fixed number of qubits, the unary scheme allows
for a lower precision than the binary one. Indeed, only n out of
the 2n basis elements of the Hilbert space are used. However,
due to the natural mapping between the unary representation
and the asset’s price evolution, we will find that the probability
distribution loading and the expected payoff calculation can
be carried out with much simpler quantum circuits. On real
devices, the potential gain of the unary representation trans-
lates into a shallower circuit depth and simpler connectivity
requirements. Furthermore, the unary scheme provides means
to postselect results so as to increase the faithfulness of the

computation. This is due to the fact that the unary representa-
tion resides within a restricted part of the Hilbert space, and
that extra space can be used as an indicator of the appearance
of errors. As a matter of fact, given a realistic precision goal
(<1%), it may well turn out to be advantageous to move to
the unary representation on NISQ devices, as it simplifies the
complexity of the circuit and mitigates errors.

In most cases, a quantum computation does not start in a
quantum state that belongs to the unary representation, but
in the |0〉n state instead. To solve this issue, we act with a
single Pauli X gate on any qubit. In our algorithm, this qubit
is chosen to be the central one to improve overall circuit depth.
At this point, the register displays a single qubit in |1〉 while
all others are in |0〉. This register is an element of the unary
basis.

B. Implementation of the algorithm

The basic structure of the unary algorithm is directly inher-
ited from the structure of the binary one. All three independent
parts are amplitude distributor, payoff calculator, and ampli-
tude estimation. We discuss them now in further detail.

1. Amplitude distributor

The probability distribution predicted by the Black-Scholes
model is based on the one in Eq. (2). For a given number of
qubits, that is of precision, the asset price at any time can be
mapped to a fixed depth circuit that distributes probabilities
according to the final desired result. The unary representation
is akin to the value of the asset. In other words, for every
element in the superposition describing the quantum register,
the qubit which is flipped into |1〉 determines the value of the
asset. The classical Monte Carlo spread of asset values will
be mapped into the probability of measuring each unary basis
element.

The quantum circuit generating the final register operates
as a distributor of probability amplitudes. The initial state of
the algorithm is given by |0 . . . 010 . . . 0〉n, i.e., the element
of the unary basis with |1〉 in the middle qubit. Then, the
coefficients of the register in the next step of the circuit are
generated using partial-SWAP gates (also called parametrized-
SWAP or SWAP power gate) between the middle qubit and its
neighbors. The partial-SWAP gate is defined as

(13)

Moreover, the partial-SWAP gate could be substituted with a
partial-iSWAPgate which performs the same purpose of ampli-
tude sharing. This partial-iSWAP gate,

(14)

is a universal entangling gate that comes naturally from
the capacitive coupling of superconducting qubits [47,48].
As a matter of fact, Google’s Sycamore chip in which the
supremacy experiment was performed [49] allows for this
type of gates as they are of great importance as well for

032414-4



QUANTUM UNARY APPROACH TO OPTION PRICING PHYSICAL REVIEW A 103, 032414 (2021)

FIG. 3. Quantum circuit for loading any probability distribution
in the unary representation D. The circuit works as a distributor
of amplitude probabilities from its middle qubit to the ones in the
edges, using partial-SWAPgates that act only on nearest neighbors.
Time dependence is encoded in the angles determining the gates.

quantum chemistry applications [50,51] or combinatorial op-
timization [52–54].

This provides the first step to distribute the probability
amplitude from the middle qubit to the rest. The procedure is
repeated until the edge of the system is reached, as illustrated
in Fig. 3. Specific angles can be fed into each partial-SWAP

gate to obtain the target probability distribution in the unary
representation. The detailed procurement of these angles is
described in Appendix C.

Let us note that any final probability distribution at time t
can be obtained with this circuit whose depth is independent
of time since all the necessary information is carried in the
angles of the partial-SWAP gates. To be precise, given n qubits,
the circuit will always be of depth 
n/2� + 1. The time depen-
dency of the solution is encoded in the angles determining the
partial-SWAP gates. This idea is reminiscent of the quantum
circuits that describe the exact solution of the Ising model
[19,55,56].

The mapping of a known probability distribution function
to the unary system is dependent on (n − 1) angles that need
to be introduced in the partial-SWAP gates. There are two
distinct situations depending on whether the final distribution
probability is known exactly or not. The first case can be
addressed solving an exact set of n equations with n − 1
parameters after computing the probability distribution clas-
sically. In case only the differential equation is known, but not
its solution, other methods should be employed [57].

2. Payoff calculator

The expected payoff calculation circuit builds upon the
action of the amplitude distributor to encode the expected
return on an ancillary qubit. The unary representation allows
for a simple algorithm to accomplish this task. The procedure
will prepare an entangled state in the form

|�〉 = √
1 − a|ψ0〉n|0〉 + √

a|ψ1〉n|1〉, (15)

where |ψ0,1〉 are states in a superposition of the basis ele-
ments below and above the strike, respectively. The payoff
is encoded within the amplitude

√
a, with |a| � 1, ready for

amplitude estimation [38].

FIG. 4. Quantum circuit that encodes the expected payoff in an
ancillary qubit in the unary representation C + R. Each qubit with
a mapped option price higher than the designated strike controls a
cRy gate on the ancilla, where the rotation angle is a function of its
contribution to the expected payoff. The comparator C is constructed
through the control wires, while the R piece is performed by rota-
tions in the last qubit.

The relevant point to encode the payoff of a European
option in an ancillary qubit is to distinguish in the quantum
register whether the option price Si is above or below the
strike K . This task turns out to be very simple when working
in the unary representation, as opposed to the binary one
where a comparator C needs to be introduced. To be explicit,
the computation of the payoff can be achieved by applying
controlled Y rotations (cRy gates), whose control qubits are
those encoding a price higher than the accorded strike K ,
namely, the operator R. These cRy gates will only span over
those qubits that represent asset values larger than the strike.
Note that the depth of the circuit will be n − k, where k is the
unary label of the strike K (see Fig. 4).

The rotation angle for each cRy depends on the contribution
of the qubit to the expected payoff. This can be achieved using

φi = 2 arcsin

√
Si − K

Smax − K
, (16)

where the denominator inside the arcsin argument is intro-
duced for normalization.

Applying the payoff calculator to a quantum state rep-
resenting the probability distribution, as depicted in Fig. 2,
results in

|�〉 =
n−1∑

Si�K

√
pi|i〉n|0〉 +

n−1∑
Si>K

√
pi cos(φi/2)|i〉n|0〉

+
n−1∑

Si>K

√
pi

√
Si − K

Smax − K
|i〉n|1〉. (17)

The state is now in the form of Eq. (15). It is straightforward to
see that the probability of measuring |1〉 in the ancillary qubit
is

P(|1〉) =
∑
Si>K

pi
Si − K

Smax − K
. (18)
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FIG. 5. Quantum circuit representation of Sφ0 (left) and S0

(right) required to perform amplitude estimation in the unary basis.
Notice that operator S0 is much simpler in the unary representation
as it does not require multicontrolled CNOT gates.

In order to recover the encoded expected payoff, we need
to measure the probability of obtaining |1〉 for the ancilla
and then multiply it by the normalization factor Smax − K .
Note that the form of the state is such that further amplitude
estimation can be performed.

3. Amplitude estimation

Let us now move to the application of amplitude estima-
tion to our unary option pricing algorithm. As described in
Sec. II B, amplitude estimation is performed by concatenating
the operators A and its inverse A† with operators S0 and Sψ0 .
In the following, we will describe how to implement these
operators in the unary algorithm. Detailed implementation can
be seen as well in Fig. 5.

The oracle operator Sψ0 acts by identifying those coeffi-
cients corresponding to accepted outcomes and inverting their
sign. In this problem, the task of identifying the element of
the basis has been already done by the algorithm A. Accepted
outcomes are labeled with |1〉 in the ancilla qubit. Therefore,
the function of this oracle can be achieved by local operations
in the ancilla qubit. Explicitly, such operation is

Sψ0 = (I⊗n ⊗ (XZX )). (19)

Notice that the X gates can be deleted since they only provide
a global sign.

For the case of the operator S0 we must remark a detail
that greatly simplifies this computation. The operator S0 is
normally defined using |0〉 since most quantum algorithms
start on that state, as depicted in Eq. (15). However, a more
apt definition should instead include |initial〉 as a basis for
operator S0, the state onto which the algorithm A is first
applied. For the unary case, if we isolate the first extra X gate,
we can consider the algorithm as starting in that state of the
unary basis, heavily simplifying the overall construction. That
being the case, S0 can be constructed out of two single-qubit
gates and one entangling gate.

With the operator Q constructed, amplitude estimation
schemes can be performed. Since the unary algorithm is
aimed towards NISQ devices, we use an amplitude estimation
scheme without quantum phase estimation, explained in detail
in Appendix D. The main idea consists in applying operator
Q a different amount of m times, and process the data in order
to get an advantage over ordinary sampling.

C. Error mitigation

NISQ era algorithms need to be resilient against gate errors
and decoherence since fault-tolerant logical qubits are still far

from being a reality. Error mitigation techniques have been
studied in past literature (see Refs. [58,59]), and some of
them might find valid applications in the unary algorithms as
well. However, the unary representation we are proposing here
turns out to offer an additional, native, postselection strategy
that manages to mitigate different types of errors. This feature
is not present in its binary counterpart.

The key idea behind the possibility of accomplishing error
mitigation is that unary algorithms should ideally work within
the unary subspace of the Hilbert space. As a consequence,
the readout of any measurement should reflect this fact. It
is then possible to reject any outcome that does not fulfill
this requirement. As a matter of fact, a number of failed
repetitions of the experiment could be discarded, what results
in a tradeoff between reduction of errors and loss of accepted
samples.

A scheme for the full circuit is depicted in Fig. 6. In
summary, the circuit is composed by one first X gate that
initializes the unary basis, one set of amplitude distributor
(D) and payoff calculator (C + R), and m rounds of ampli-
tude estimation Q = AS0A†Sψ0 . Readout in all qubits is a
requirement for postselection to reduce errors.

We will investigate in detail the performance of unary vs
binary circuits for option pricing in Sec. V. There we will find
out that the unary representation is advantageous to the binary
one, when targeting the same realistic precision and errors are
taken into account.

IV. UNARY AND BINARY COMPARISON

We compare here the unary algorithm for option pricing
described in Sec. III to the binary one stated in Sec. II C, in
terms of the necessary circuit design as well as the number of
gates required to apply the algorithm and successfully perform
amplitude estimation.

A. Ideal chip architecture

The structure of the unary algorithm allows for a simple
chip design. In order to upload the desired probability distri-
bution to the quantum register, only local interactions between
first-neighbor qubits are required. Therefore, qubits can be
arranged on a single one-dimensional (1D) line with two local
interactions. Such a connectivity is perfectly suited to carry
out the algorithm. In order to compute the expected payoff, the
ancillary qubit needs to interact with the rest of the quantum
register. This structure is outlined in Fig. 7 for an arbitrary
number of qubits.

The simplicity of the architecture needed to implement the
unary algorithm might yield an advantage over alternative al-
gorithms in NISQ computers. Note also that superconducting
qubits allow for a natural implementation of the partial-iSWAP

gate [47]. This realization of the quantum circuit would result
in a decrease in the number of needed gates by factor of 6 in
the amplitude distributor module.

On the other hand, the binary algorithm for payoff cal-
culation needs nonlocal chip connectivity. For the sake of
comparison with the simplest chip architecture presented for
the unary algorithm, the most basic connectivity needed to
perform the steps described for the binary scheme is displayed
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FIG. 6. Full circuit for the option pricing algorithm in the unary representation. The gate D is the probability distributor, and C + R
represent the computation of the payoff. After applying the algorithm, the oracle Sψ0 , the reverse algorithm, and S0 follow. The last step
is applying the algorithm again. This block Q is to be repeated for amplitude estimation. Measurements in all qubits are a requirement for
postselection. The qubit labeled as q3 is the one starting the unary representation.

in Fig. 8. The number of necessary qubits for the binary algo-
rithm scales better asymptotically than in the unary approach,
despite the increasing number of ancillary qubits required.
Nevertheless, the need for Toffoli gates and almost full con-
nectivity may eliminate this advantage in practical problems
for NISQ devices.

B. Gate count

The unary algorithm needs O(n) partial-SWAP gates in or-
der to distribute the amplitude and O(κn) controlled-Ry gates
to encode the payoff in an ancillary qubit, where 0 � κ �
1 depends on the strike price K . However, actual quantum
devices operate using a native set of gates that are used to
construct any other unitary. We present in Table I, left, the gate
count of the full circuit as a function of the number of qubits,
using either controlled-NOT (CNOT) or partial-iSWAP as the
native entangling gate. The gate count assumes the simple
ideal chip structure (see Fig. 7) that requires first-neighbor
interactions and an ancilla connected to the rest of the qubits.

The partial-iSWAP gate introduces a substantial gain for
the amplitude distributor but requires more gates in order to
implement the payoff calculation. If both partial-iSWAP inter-
action between nearest neighbors and CNOT-based connection
with the single ancilla are implemented, the best scaling of
the full algorithm would be achieved. To be precise, the total

FIG. 7. Ideal chip architecture to implement the unary algorithm
for option pricing. Only a single ancilla qubit, labeled as a in the
image, has to be nonlocally controlled by the rest of the qubits. All
other interactions are first-nearest-neighbor gates.

number of gates would be (4κ + 1)n + 1, and the depth of the
circuit would become (4κ + 1

2 )n.
The scaling of the gate count for the binary algorithm is

displayed in Table I, right. We compare the scaling when using
CNOT or partial-iSWAP as native gates. The CNOT gate turns out
to be more convenient for the binary algorithm. These results
include the part of the algorithm that produces the uploading
of the probability distribution into the quantum register (hence
the dependence on the number of layers of the variational
circuit), but it does not take into account the training required
by the qGAN. In both unary and binary cases, the counting
for single-qubit gates was made compiling several successive
single-qubit gates into a single one.

This gate count is performed assuming full connectivity, or
at least the connectivity presented in Fig. 8. Existing quantum
devices need to implement extra SWAP gates to account for
insufficient connections, which are not taken into account in
these calculations. Therefore, the gate counting on a computer
with less than this ideal connectivity will result in a worse
scaling.

FIG. 8. Ideal chip architecture to implement the binary algorithm
for option pricing with four qubits of precision, q0, q1, q2, q3, where
a and c stand for ancillary and carrier qubit, respectively, and b is
another ancilla. The algorithm requires a number of ancillary and
carrier qubits equal to the number of precision qubits plus two, 4+2
in this example. Full connectivity is needed between the precision
qubits and two ancillas.

032414-7



SERGI RAMOS-CALDERER et al. PHYSICAL REVIEW A 103, 032414 (2021)

TABLE I. Scaling of the number of one- and two-qubit gates and circuit depth as a function of the number of qubits n representing the
asset value in unary and binary representations, for the amplitude distributor D, payoff estimator C + R, and amplitude estimation operators
Sψ0 and S0. Ideal chip architectures are assumed. We compare this scaling in case CNOT or partial-iSWAP gates are implemented. In case the
experimental device can implement both CNOTand partial-iSWAP basic gates, the total amount of gates and total depth would be reduced. For
the unary circuit, the parameter 0 � κ � 1 depends on the position of the strike in the qubit register. In the binary case, note the large overheads
due to the use of Toffoli gates. The parameter 0 � κ � 1 characterizes the number of 1’s in the binary representation of the strike price. For
the amplitude distributor, l is the number of layers of the qGAN.

CNOT Partial-iSWAP

Unary D C + R Sψ0 S0 D C + R Sψ0 S0

One-qubit gates 2n 2κn 1 4 1 κ10n 1 9
Two-qubit gates 4n 2κn 0 1 n κ5n 0 2
Circuit depth 3n 4κn 1 5 n/2 15κn 1 10

CNOT Partial-iSWAP

Binary D C + R Sψ0 S0 D C + R Sψ0 S0

One-qubit gates 3nl (16 + 5κ )n 1 20n–23 8nl (86 + 5κ )n 1 80n–113
Two-qubit gates nl 14n 0 12n–18 2nl 28n 0 24n–36
Circuit depth nl + l (27 + 2κ )n 1 24n–30 6nl + l (97 + 2κ )n 1 90n–129

Let us emphasize that the gate overhead for the unary
representation is much lower than the one for the binary case.
This is due to the fact that the unary circuit does not require
any three-qubit gate. This simplification is eclipsed by the
gain in precision for large n, provided an efficient uploading of
probability distributions is found for the binary case. The de-
tailed gate count comparing unary vs binary circuits is shown
in Fig. 9, where we have taken κ = 1

2 and l = log2 n
2 , where l

is the number of layers of the qGAN. In order to compare like
with like, the comparison of scaling is made as follows. For a
given number of n bins, which directly relate to precision, we
take n qubits in the unary representation and only log2 n in the
binary one. Note that the overhead in the binary representation
makes the unary one more convenient for a number of bins
less than ∼100. This scaling behavior confirms that this unary
representation would get outperformed by the binary one
for a large number of bins, provided the devices performed
gates with no error. However, if quantum resources are lim-
ited, as in NISQ devices, circumstances are favorable for the
unary representation. Moreover, in practice, the connectivity
requirements further benefit the unary representation over the
binary one.

V. SIMULATIONS

The circuits we present in this paper can be simulated using
the tools provided by the Python package QISKIT [60]. We first
consider the unary and binary algorithms in ideal conditions,
that is, we verify the performance of the quantum circuits
in the absence of any noise. Then, we test them both under
increasing amounts of different sources of noise in order to as-
sess which of the two procedures may be more advantageous
for NISQ devices.

The simulations in this work were carried out using a
simple yet descriptive model. In the case of single-qubit and
two-qubit gate errors, we consider depolarizing noise. That is
equivalent to transforming the state after each gate applica-
tion by ρ → (1 − ε)ρ + ε Trρ I

d , with d the dimension of the
Hilbert space. Measurement errors are 10 times more likely
to happen (10ε), and they are symmetric, i.e., the probabil-
ity of measuring an incorrect |0〉 or |1〉 is identical. Let us
remark here that we have not included thermal relaxation or
thermal dephasing. The reason is that, given the shallow depth
of the simulated circuits, the execution times are far below
current coherence times of qubits (the latter being ∼1000

5 10 15 20 25 30 35 40
No. bins

200

400

600

800

1000

N
o.

ga
te

s

unary

binary

0 25 50 75 100 125 150 175 200
No. bins

0

1000

2000

3000

4000

5000

N
o.

ga
te

s

unary

binary

0 20 40 60 80 100 120 140
No. bins

0

200

400

600

800

1000

1200

1400

N
o.

ga
te

s

unary

binary

FIG. 9. Scaling of the number of gates required for the full algorithm, including a step m = 1 of amplitude estimation, with the number
of bins, for different native gates: CNOT gates (left), partial-iSWAP gates (center), and the best possible combination (right), in which one is
allowed both CNOT and iSWAP gates as native to the device. The scaling is calculated assuming ideal connectivity, which would largely hinder
the binary implementation were that not the case.
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times the duration of a single-qubit gate), and thermal errors
are therefore negligible. This description was adjusted to be
comparable to state-of-the-art quantum devices [49].

The accuracy of the expected payoff estimation is used to
benchmark both algorithms against the aforementioned errors,
as a function of the interpolation parameter ε. The simulations
were performed with eight and three qubits in the unary and
binary basis, respectively, using their ideal chip structures (see
Sec. IV). Notice that both cases correspond to eight bins.
Recall as well that the unary approach includes postselection,
which results in a clear improvement of the algorithm’s per-
formance.

The results presented in this section consider depolariz-
ing and measurement errors together. A separate analysis of
these errors can be found in Appendix E. The code is pub-
licly available in Ref. [61]. It allows to perform simulations
with different combinations of several errors, namely, bitflip,
phaseflip, bitphaseflip, thermal and measurement errors, iso-
lated or as part of custom error models.

A. Amplitude distribution loading

The log-normal probability distribution used for the sim-
ulations is generated in accordance with the Black-Scholes
model discussed in Sec. II A. We work with a particular ex-
ample, chosen such that the asset price at T = 0 is S0 = 2,
the volatility of the asset is σ = 40%, the risk-free market
rate is r = 5%, the maturity time is T = 0.1 years, and the
accorded strike price for the asset is K = 1.9. The simulation
of the asset price ranges up to three standard deviations from
the mean value of the distribution.

The capability of quantum computers to approximate a
given probability distribution in the presence of noise can be
quantified by the Kullback-Leibler (KL) divergence [62]. This
quantity measures the distance between two probability distri-
butions, vanishing when they are indistinguishable. Figure 10
plots the KL divergence for the unary and binary approxima-
tions to the log-normal distribution. For the maximum allowed
error, the KL divergence of the binary algorithm is one order
of magnitude larger than that of the unary one.

B. Expected payoff calculation

In terms of payoff calculation, the algorithms diverge
slightly. Classically, with a precision of 104 bins, the estimated
payoff for this financial option is 0.1595, that we take as
the exact value for comparison with the quantum strategies.
Recall that in order to compare like with like, on the quantum
side we have eight unary qubits and three binary qubits, that
both correspond to eight bins.

In Fig. 11, we show the error of the expected payoff as
a function of the number of bins in the probability distribu-
tion, for the classical computation. This precision depends
on the binning and the position of the strike. Therefore, at a
large enough number of bins, the results fall within a reason-
able percentage of the actual value. At 100 bins, errors for
the option price go well below 1%. This shows that the unary
algorithm can be implemented in the range where it uses less
quantum gates than the binary algorithm, and still have low
discretization errors coming from the binning.

FIG. 10. Kullback-Leibler divergence between the target proba-
bility distribution and those achieved by the quantum algorithms, for
equivalent eight unary qubits and three binary qubits, and different
levels of depolarizing error. Crosses stand for average results, and
the shaded regions encompass the central 70% of the instances. Each
probability distribution is estimated using 100 experiments with 104

samples each. For noiseless computers, the KL divergence almost
vanishes, but gets larger as noise is added. For the maximum allowed
error, the KL divergence of the binary algorithm is one order of
magnitude larger than that of the the unary one.

Robustness against noise

We show in Fig. 12 the average of the relative error of
the expected payoff computation when compared to the clas-
sical value. The x axis of Fig. 12 depicts the single-qubit
gate error percentage ε, but two-qubit and readout errors are
also included following the model explained previously. The
shaded region includes 70% of the total instances used for the
average. It can be seen that the unary algorithm, in general, has
less deviation form the mean value than the binary algorithm.
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FIG. 11. Percentage error from the exact value of the expected
payoff, for the classical computation, as a function of the number of
bins in the probability distribution. With only ∼50 bins, errors for
the option price below 0.5% are already reached.
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FIG. 12. For equivalent eight-qubit unary and three-qubit binary
algorithms, percentage error in the payoff calculation for depolar-
izing and measurement errors, up to 0.5% for single-qubit gates,
1% for two-qubit gates, and 5% for readout errors, consistent with
state-of-the-art devices. The calculations were averaged over 100
repetitions with 104 runs each. The shaded regions encompass the
central 70% of the instances in each case. The unary algorithm is
more robust against these errors.

C. Amplitude estimation

This section comprises results obtained for the amplitude
estimation algorithm, that can be divided in three parts. First,
results are shown for the case of noiseless devices, converging
to the expected value within errors due to binning and Taylor
approximation, the latter only in the binary case. All results
were obtained for eight bins, unless stated otherwise. Second,
an analysis on the effect that quantum errors induce on the
estimated value of a has been performed, both for unary

and binary approaches. Third, an analysis on the statistical
uncertainty incurred in the estimation has been also included.

Only amplitude estimation without phase estimation can
be performed on NISQ devices. In these simulations, we have
used a procedure based on weighted averages that consider
both mean values and uncertainties, for a given series of AE
steps (see Appendix D for further details). In our results, every
instance has been repeated 100 times. The choice of mj is
linear, mj = j, with j = {0, 1, 2, . . .}, in order to control how
the performance evolves. The confidence level was adjusted
to 1 − α = 0.95.

In Fig. 13 it is shown how amplitude estimation increases
the precision of the measured outcome, converging to the
actual value as more iterations of AE are used. The results of
this simulation unveil that amplitude estimation reduces with
every iteration the uncertainty in the value of the expected
payoff.

The next step of the analysis is to assess the robustness
of both the unary and binary representations against noisy
circuits. The results for the deviations in the outcomes of a
obtained for noisy circuits are depicted in Fig. 14, taking into
account depolarizing and readout errors together. The number
of iterations has been limited to M = 4. Two very different be-
haviors can be observed. In the case of the unary approach, the
outcomes endure the noise of the device for M = 0, 1, 2, 3, 4
and for low error rates, while entering into an erratic regime
for large ones. For instance, at M = 2, a result that is very
close to the optimal value and with low uncertainty is ob-
tained up to error parameter ε ∼ 0.3%. In contradistinction,
the binary approach loses its robustness for very small noise
levels and M � 1. This can be attributed to the postselection
scheme and to the lower number of applied gates, that benefit
the unary algorithm significantly. The decrease of the uncer-
tainties is detailed in Fig. 21 in the Appendix.

From these results we can infer that the amplitude estima-
tion procedure, when performed on NISQ devices, provides a
quantum advantage only for the unary representation and for

FIG. 13. Left: mean and uncertainty of the outcomes of the expected payoff, obtained with Eq. (D3) and proper transformations. The dashed
lines indicate the exact values. Unary and binary approaches are depicted, and convergence to the optimal values are obtained for both. Notice
that these values are not the same since the outcomes of both algorithms are not equally related to the payoff. The shaded regions correspond
to the statistical uncertainty. Right: statistical uncertainties in the expected payoff. The dotted lines indicate the uncertainty given by classical
sampling, while the dotted-dashed lines represent the optimal uncertainty provided by amplitude estimation. Results of the simulations lie
in-between. In this figure we compare procedures with the same number of applications of the A or A† operators, for noiseless circuits.

032414-10



QUANTUM UNARY APPROACH TO OPTION PRICING PHYSICAL REVIEW A 103, 032414 (2021)

FIG. 14. Results of the errors in the expected payoff respect to the optimal value, for the unary (left) and binary (right) representation,
with M iterations of amplitude estimation for both the unary and binary approaches. Depolarizing and readout errors have been considered.
Scattering points stand for average values, while the shaded region corresponds to the statistical uncertainties of the results. The behavior of
both approaches is very different. In the unary case, the expected payoff is resilient to errors. On the other hand, the binary approach returns
acceptable results for M = 0, while M � 1 rapidly saturates to the outcome of a random circuit.

limited noise levels in the device, specifically, similar to those
present in available state-of-the-art machines [49].

Simulations have been extended to several different num-
bers of bins in the unary representation. We show in Fig. 15
how the deviation in the payoff from the exact value evolves
when larger quantum systems are taken into account. In this
example, the error parameter was adjusted to ε = 0.3%. We
have considered depolarizing and measurement errors. Each
experiment was repeated only 10 times to reduce computa-
tional costs. In Fig. 15 it is possible to see that the deviation in
the payoff increases as more bins are added. This corresponds
to the expected trend since systems with more qubits require a
larger number of gates, and thus errors are more likely to hap-
pen. Larger errors are observed for numbers of bins between
13 and 18. This behavior is expected to reach a saturation

FIG. 15. Results for the error of the expected payoff for increas-
ing number of bins for up to M iterations of amplitude estimation
for the unary approach, considering depolarizing and readout errors
together. Scattering points represent the mean values obtained for the
experiment, while shadowed areas include 70% of the instances.

regime for large enough error rates. In the binary case, since
the circuit is prone to large errors, the output becomes indistin-
guishable from one of a random circuit. However, this regime
has not been reached yet in the unary representation. Con-
cerning the sampling uncertainty, it is larger as the number of
bins increase. This reflects that the more bins, the more errors
may occur, and thus more instances are to be discarded via
the postselection mechanism, which translates into a slower
convergence rate. The decrease of the uncertainties is detailed
in Fig. 22 in the Appendix.

VI. CONCLUSIONS

Finance stands as one of the fields where quantum compu-
tation may be of relevance. We have here presented a quantum
algorithm that allows for the pricing of European options
whose defining trait is that it works in the unary representation
of the asset value.

We have illustrated our algorithm in the particular case
of a single European option, whose maturity price for the
underlying asset is obtained as the solution of a Black-Scholes
equation and its expected return depends on a prefixed strike
value. The global structure of our algorithm is divided in three
steps: (a) generation of the amplitude distribution of the asset
value at maturity, (b) evaluation of the expected return given
the strike value, and (c) amplitude estimation. Our algorithm
relies on several ideas to make this strategy concrete.

The very first step is to define the level of precision the
algorithms should aim at. This precision is related to n, the
number of qubits in the circuit. The more qubits, the more
resolution we can get.

The next step corresponds to building the amplitude dis-
tribution of the asset at maturity. We have proposed to handle
this problem using a circuit of depth n/2 that operates as a dis-
tributor of probability amplitude. Given a classical description
of the probability distribution, this step of the algorithm sub-
stitutes the classical Monte Carlo generation of probabilities.
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The computation of the expected return is particularly sim-
ple in the unary representation. It only needs a series of n
conditional two-body gates from the original qubit register to
an ancilla. It then follows iterative amplitude estimation.

The use of unary representation seems at odds with per-
forming precise computations. This is not so, as the precision
of the expected return is an average over a sampled probability
distribution which does not need to have too high a resolution.
We verify this statement in detail to find that less than 100
qubits are enough to have competitive computations.

The unary algorithm aims to be used during a middle
stage between current quantum computers and fault-tolerant
devices. The algorithm is designed to find applicability with a
relatively low, while still useful, number of bins. Thus, we
have designed a circuit which is simple in terms of logic
operations and requires a much less sophisticated connectivity
than its binary counterpart.

Unary representation definitely offers relevant advantages
over the binary one. First, it allows for a simple distribution of
probability amplitudes. Second, it provides a trivial computa-
tion of expected returns. Third, unary representation should
only trigger one output qubit, while reading the expected
return in the ancilla. This offers a consistency check. If no
output, or more than one are triggered, the run is rejected. The
ability to postselect faithful runs mitigates errors and increases
the performance of the quantum algorithm. In addition, am-
plitude estimation may be performed successfully only in the
unary basis, considering error levels in NISQ devices, since
the procedure is more resilient to errors than the binary one.

There are a number of further improvements that may
be included in the algorithm. It is possible, for instance, to
increase precision by taking the qubits to represent nonequi-
spaced elements in the probability distribution. It is enough
to populate more densely the subtle regions of the sample
distribution to gain some precision. Ideas to include multiasset
computations are also available [63].

Finally, let us mention that our unary option pricing algo-
rithm could be tested experimentally on quantum computers
recently presented.

The code for this work is available in Ref. [61].
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APPENDIX A: CLASSICAL OPTION PRICING

The evolution of asset prices in financial markets is usually
computed using a model established by Black and Scholes
in Ref. [32]. This evolution is governed by two properties
of the market, the interest rate and the volatility, which are
incorporated into a stochastic differential equation. The equa-
tions controlling a set of assets are usually solved using Monte
Carlo methods.

1. Black-Scholes model

The Black-Scholes model for the evolution of an asset is
based on the following stochastic differential equation [32]:

dST = ST r dT + ST σ dWT , (A1)

where r is the interest rate, σ is the volatility, and WT describes
a Brownian process. Let us recall that a Brownian process WT

is a continuous stochastic evolution starting at W0 = 0 and
made of independent Gaussian increments. To be specific, let
N (μ, σs) be a normal distribution with mean μ and standard
deviation σs. Then, the increment related to two steps of the
Brownian processes is WT − WS ∼ N (0, T − S), for T > S.

The above differential equation can be solved analytically
up to first order using Ito’s lemma [64], whereby WT is treated
as an independent variable with the property that (dWT )2 is of
the order of dT . Thus, the approximated derivative dST can
be written as

dST =
(

∂ST

∂T
+ 1

2

∂2ST

∂W 2
T

)
dT + ∂ST

∂WT
dWT . (A2)

By direct comparison to Eq. (A1), it is straightforward to see
that

∂ST

∂WT
= ST σ, (A3)

∂ST

∂T
+ 1

2

∂2ST

∂W 2
T

= ST r. (A4)

Using the initial condition S0 at T = 0, and the ansatz

ST = S0 exp [ f (T ) + g(WT )], (A5)

the solution for the asset price turns out to be

ST = S0e(r− σ2

2 )T eσWT ∼ S0eN ((r− σ2

2 )T,σ
√

T ). (A6)

This final result corresponds to a log-normal distribution.

2. European option

An option is a contract where in its call or put form, the
option holder can buy or sell an asset before a specific date
or decline such a right. As a particular case, European options
can be exercised only on the specified future date, and only
depend on the price of the asset at that time. The price that
will be paid for the asset is called exercise price or strike. The
day on which the option can be exercised is called maturity
date.

A European option payoff is defined as

f (ST , K ) = max(0, ST − K ), (A7)

where K is the strike price and T is the maturity date. An
analytical solution exists for the payoff of this kind of option.

The expected payoff is given by

C(ST , K ) = averageST �K (ST − K )

=
∫ ∞

d1

(ST − K )
1√
2π

e
−x2

2 dx, (A8)

yielding the analytical solution

C(ST , K ) = S0CDFN (d1) − Ke−rT CDFN (d2), (A9)
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with

d1 = 1

σ
√

t

[
ln

S0

K
+

(
r + σ 2

2

)
T

]
, (A10)

d2 = d1 − σ
√

T , (A11)

CDFN (x) = 1√
2π

∫ x

−∞
e

−u2

2 du. (A12)

APPENDIX B: DETAILS FOR THE BINARY ALGORITHM

For the sake of completeness, we now present a binary
algorithm for option pricing, as introduced in Ref. [33]. The
binary algorithm is also divided in three parts, namely, (a) am-
plitude distribution loading, (b) expected payoff computation,
and (c) amplitude estimation. The main difference is that all
computational-basis states are used to codify the discretized
probability distribution of an asset price at maturity time. This
implies steps (a) and (b) will require completely different
quantum circuitry. We now proceed to describe these steps for
the binary case.

1. Amplitude distribution loading

Uploading probability distributions onto quantum states is
a very general problem that was considered in Ref. [65]. In
this work, it was claimed that any probability distribution
that is efficiently integrable on a classical computer, e.g.,
log-concave distributions, can be loaded efficiently onto a
quantum state. However, several authors [66,67] have pointed
out that the method proposed there requires precalculating a
number of integrals that grow exponentially with the number
of qubits. In the case of option pricing, a reasonable precision
requires a moderate number of qubits in the unary represen-
tation and many less in the binary representation. But, as a
matter of fact, the reduction to a logarithmic number of qubits
in the binary representation is, at least partially, compensated
by the effort needed to prepare the probability distribution.
That is, in practice, both unary and binary representations
require similar effort to preprocess the probability distribution
to later encode it in the quantum register.

An alternative method to encode a probability distribution
in a quantum state is the use of so-called quantum genera-
tive adversarial networks (qGANs) [39–41]. In this scheme,
two agents, a generator and a discriminator, compete against
each other. The generator learns to produce data that mimics
the underlying probability distribution, trying to deceive the
discriminator into believing that the new data are faithful.
On the other hand, the discriminator has to learn how to tell
apart the real data from the data produced by the genera-
tor. This quantum adversarial game has a unique end point:
Nash equilibrium is reached when the generator learns to
produce states that deliver probability outcomes that are in-
distinguishable from the desired probability distribution, and
the discriminator cannot tell them apart. In order to upload
probability distributions onto quantum states using qGANs, a
parametrized quantum circuit may play the role of a generator,
whereas the discriminator may be a classical neural network.

At present, there is still a lack of precise understanding on
how to efficiently upload probability distributions on a quan-

tum computer in binary representation, which makes rigorous
complexity analysis in terms of the number of gates difficult.

2. Payoff computation

A useful feature of the unary algorithm is that, given a
strike K , one can directly know which qubits will not con-
tribute to the expected return of the option, and therefore
adjust the quantum circuit. This is only possible since the
unary representation maps directly to the asset price. In a
binary encoded setting one needs to compute explicitly which
basis elements will make a nonzero contribution to the ex-
pected payoff. Hence, the need of a quantum comparator C
that singles out the values of ST that are smaller than the strike
price K . This comparator requires the use of n + 1 ancillary
qubits, one of which is retained after the computation. Its
action is given by

|ψ〉|0〉 C−−−−→
∑
Si<K

√
pi |ei〉|0〉 +

∑
Si�K

√
pi |ei〉|1〉, (B1)

where {|ei〉} is the computational basis and {Si} are the asset
values at maturity associated to computational-basis vectors.
The quantum circuit implementing Eq. (B1) can be con-
structed using CNOTs, Toffoli gates, and OR gates (see Fig. 16).
In order to understand the way this circuit works, let us
consider the case where the discretization of the interval
[Smax − Smin] is uniform. In this case, the relation between {Si}
and {|ei〉} is

Si = Smin + ei (Smax − Smin)

2n
. (B2)

This implies that

Si > K ⇔ ei >
2n (K − Smin)

Smax − Smin
≡ K ′. (B3)

The idea goes as follows. First, we classically compute the
two’s complement of K ′, i.e., 2n − K ′, and store it in bi-
nary format in a classical array of n bits, t[ j] with j ∈
[0, 1, . . . , n − 1]. Then, using n ancillas, |a0 . . . an−1〉, initial-
ized to |0 . . . 0〉, we compute the carry bits of the bitwise
addition between t and {ei}, and store them in superposition
into |a0 . . . an−1〉. If ei > K ′, then necessarily an−1 = 1.

The exact circuit needed for a given strike will depend upon
the values of the bits in t . If t[ j] = 0, then there will be a carry
bit at position j if and only if there is a carry bit at position
j − 1 and the jth bit of ei is 1. This is computed with a Toffoli
gate. On the other hand, if t[ j] = 1, there will be a carry bit at
position j if and only if there is a carry bit at position j − 1 or
the jth bit of ei is 1. This is computed with an OR gate, shown
in Fig. 17. Finally, there will be a carry bit at a0 if and only
if t[0] = 1 and the first bit of ei is 1. This is achieved with a
simple CNOT gate. As explained above, if ei � K ′, then an−1

must be equal to 1. Hence, applying a CNOT gate controlled by
the qubit |an−1〉 and targeted at the ancilla, the desired state in
Eq. (B1) is obtained.

Once C has been applied, the next step is to encode the
expected payoff of the option into the amplitudes of a new
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FIG. 16. Quantum comparator C. The OR gates appearing are three-qubit gates acting on nonadjacent qubits.

ancilla. The final state to be created should be∑
Si<K

√
pi |ei〉|0〉[cos(g0)|0〉 + sin(g0)|1〉]

+
∑
Si�K

√
pi |ei〉|1〉{cos[g0 + g(i)]|0〉 + sin[g0 + g(i)]|1〉},

(B4)

where

g0 = π

4
− c, g(i) = 2c (ei − K ′)

emax − K ′ , (B5)

with c a constant such that c ∈ [0, 1]. Thus, the probability of
measuring the second ancilla in the |1〉 state in Eq. (B4) is

Prob(1) =
∑
Si<K

pi sin2(g0) +
∑
Si�K

pi sin2[g0 + g(i)] . (B6)

Using the approximation

sin2

(
c f (i) + π

4

)
= 1

2
+ c f (i) + O[c3 f 3(i)] (B7)

to first order, which follows from Taylor expanding
sin2[ f (x) + π

4 ] around f (x) = 0, the probability becomes

Prob(1) �
∑
Si<K

pi

(
1

2
−c

)
+

∑
Si�K

pi

(
1

2
+c

[
2 (ei − K ′)
emax − K ′ − 1

])

= 1

2
− c + 2c

emax − K ′
∑
Si�K

pi (ei − K ′). (B8)

It is important to note that the approximation made in Eq. (B8)
is valid since c f (i) = c[ 2 (ei−K ′ )

emax−K ′ − 1] ∈ [−c, c]. Reversing the

x

OR

x X • X

y y = X • X

0 x or y X

FIG. 17. Decomposition of the OR gate in terms of single-qubit
and Toffoli gates.

change from Eq. (B3), namely,∑
Si�K

pi (Si − K ) = Smax − Smin

2n

∑
Si�K

pi (ei − K ′), (B9)

the expected payoff function, i.e.,
∑

Si�K pi (Si − K ), can be
recovered from the probability of measuring 1 in the ancilla,
Eq. (B8), since c, K, Smax are all known. The quantum circuit
that produces the final state (B4) from Eq. (B1) is composed of
n ccRy gates, plus one Ry and one cRy gate, shown in Fig. 18.
The decomposition of a ccRy gate in terms of CNOTs and cRy
gates is shown in Fig. 19.

3. Amplitude estimation

The oracle operator Sψ0 acts on the binary algorithm in
the same manner as its unary analog, as defined in Eq. (19).
The case of the operator S0 is slightly different. The target
state to flip is that with only |0〉. Thus, a multicontrolled
Toffoli gate is required. This multicontrolled gate constitutes
the computationally most-costly piece of the circuit. This gate
can be decomposed in simpler gates [68].

In order to reduce the complexity of the circuit as much as
possible, it is necessary to choose the optimal representation
of this gate. The most efficient decomposition consists in a
chain of standard Toffoli gates that store their outcomes in
ancilla qubits. The number of ancillas required is c − 2, where
c is the number of control qubits. Depending on whether these
ancillas are initialized in 0 or not, the number of Toffoli gates
is different. In the case of the binary algorithm, a sufficient
number of ancillas is available from the comparator. In ad-
dition, the short version of the Toffoli gate can be used. The

FIG. 18. Encoding of the expected return of a European option
into the amplitudes of an ancilla qubit in binary representation.
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• • • •
• = • •

Ry(θ) Ry(θ/2) Ry(−θ/2) Ry(θ/2)

FIG. 19. Decomposition of a ccRy gate in terms of CNOTs and
cRy gates.

reason is as follows. The operator S0 is applied only after the
sequence A†Sψ0A, that leaves the ancillas unchanged as the
oracle includes only a phase and does not add any entangle-
ment, making all operations involving the ancillas classical.
In other words, there is no need to add any circuit piece
that undoes the auxiliary computations stored in the ancillary
qubits because the structure of the circuit itself accomplishes
this goal.

The full circuit for the binary algorithm, including ampli-
tude estimation, is depicted in Fig. 20.

APPENDIX C: DETAILS FOR THE AMPLITUDE
DISTRIBUTOR IN THE UNARY BASIS

Let us consider Fig. 3. In the unary basis, every qubit
represents the basis element in which the qubit is |1〉. Thus,
the coefficient of every element depends on as many angles
as partial-SWAP gates are needed to reaching its corresponding
qubit. Thus, the central qubits of the circuit will depend only
on two angles, and the number of dependencies increases one
by one as we move to the outer part of the circuit. The very last
two qubits depend on the same angles. As we move away from
the middle, each qubit inherits the same angle dependency
than the previous ones plus an additional rotation. Starting
from the two edges, their coefficients verify the following
ratios:

∣∣∣∣ψ0

ψ1

∣∣∣∣
2

= tan2(θ1/2), (C1)∣∣∣∣ψn−1

ψn−2

∣∣∣∣
2

= tan2(θn−1/2). (C2)

Then, we identify |ψi|2 = pi, where {pi} is the target proba-
bility distribution of the asset prices at maturity. The next step
corresponds to considering the qubits 1 and 2, as well as n − 3,
n − 2. The relations for their coefficients must obey∣∣∣∣ ψi

ψi+1

∣∣∣∣
2

= cos2(θi/2) tan2(θi+1/2), (C3)∣∣∣∣ψn−1−i

ψn−2−i

∣∣∣∣
2

= cos2(θn−i/2) tan2(θn−1−i/2). (C4)

Then, it is straightforward to back-substitute parameters step
by step until we arrive to the central qubits. This procedure
fixes all the angles for the partial-SWAP gates used in the
amplitude distributor. The exact algorithm to be followed can
be also found in the provided code [61].

Once the exact solution for the angles is inserted into the
circuit depicted in Fig. 3, the amplitude distributor algorithm
is completed. The quantum register then reads as

|�〉 =
n−1∑
i=0

√
pi|i〉. (C5)

Note that describing a probability distribution with squared
amplitudes of a quantum state allows for a free phase in every
coefficient of the quantum circuit. For simplicity, we will set
to zero all these relative phases by only operating with real-
valued partial-SWAP gates.

Let us turn our attention to the gates which are needed
in the above circuit. Sharing probability between neighbor
qubits can be achieved by introducing a two-qubit gate based
on the SWAP and Ry operations. This variant on the SWAP

gate performs a partial SWAP operation, where only a piece
of the amplitude is transferred from one qubit to another. This
operation preserves unarity, that is, the state remains as a su-
perposition of elements of the unary basis. This partial-SWAP

can be decomposed using CNOT as the basic entangling gate
as

(C6)

|q0〉
D

C

R R†

C†

D†

X • X

D

C

R

m

|q1〉 X • X

|q2〉 X • X

|b0〉
|b1〉
|b2〉
|b〉 R R† R
|a〉 R Sψ0 R† S0 R

Q︸ ︷︷ ︸

FIG. 20. Full circuit for the option pricing algorithm in the binary representation. The gate D is the probability distributor, C is the
comparator, and R the rotation step. C and R together represent the computation of the payoff. After applying the algorithm, the oracle Sψ0 ,
the reverse algorithm, and S0 follow. The last step is applying the algorithm again. This block Q is to be repeated for applying amplitude
estimation.
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Algorithm 1. Algorithm for amplitude estimation based on
Gaussian distribution of the measurements.

1 GaussianAmplitudeEstimation (Nshots, J , mj , α)
2
3 z←CDF−1

N (1−α/2)
4 Ensure m0 = 0
5 a ← |〈1|A|0〉|2 with Nshots samples
6 θ (0)

a ← arcsin
√

a �θ (0)
a = z

2
√

Nshots

7 for j ← 1 to J do
8 a ← |〈1|Qm j A|0〉|2 with Nshots samples
9 θarray ← MultipleValuesArcsin (a, mj−1)
10 θa ← min (|θarray − θ ( j−1)

a |)
11 �θa ← z

2(2m j+1)
√

Nshots

12 θ
(m j )
a ←

θa
�θ2

a
+ θ

( j−1)
a

(�θ
( j−1)
a )2

1
�θ2

a
+ 1

(�θ
( j−1)
a )2

13 �θ
(m j )
a ← ( 1

�θ2
a

+ 1

(�θ
( j−1)
a )2

)
−1/2

14 [aj,�aj] ← [sin2 θ j
a , sin(2θ j

a )�θ ( j)
a ]

15 return [aj, �aj]

where the usual CNOT gate in the center of the conventional
SWAPgate has been substituted by a controlled y rotation,
henceforth referred to as cRy gate. In turn, the cRy operation
can be reworked as a combination of single-qubit gates and
CNOT gates [68]:

(C7)

This decomposition will come into play for the expected pay-
off calculation algorithm as well, albeit with angle φ in the
payoff circuit.

For the purposes of this algorithm, both the CNOT and
partial-iSWAP basis gates are analogous, but the direct mod-
eling to partial-iSWAPs can economize the total number of
required gates for the amplitude distributor. Partial-iSWAP

gates can be used to decompose CNOT gates. More explicitly,
a CNOT gate can be reproduced with two iSWAP gates, and five
single-qubit gates.

APPENDIX D: SELECTION OF RESULTS FOR THE
ITERATIVE AMPLITUDE ESTIMATION

We present here a method for obtaining the most probable
value of a in an iterative fashion following similar methods
as other amplitude estimation without QPE algorithms. We
base this procedure in the theory of confidence intervals for a
binomial distribution assuming normal distributions [69].

Let us consider a binomial distribution with probability a,
i.e., for every sample the chance of obtaining 1 is a, while the
chance of obtaining 0 is 1 − a. Then, if an estimate â of a
was obtained using N samples, the true value of a lies in the
interval

a = â ± CDF−1
N (1 − α/2)

√
â(1 − â)

2
√

N
, (D1)

with confidence (1 − α).
From this result we can construct an iterative algorithm

returning the optimal value of a using quantum amplitude
estimation. Let us take a set of mj for j = 0, 1, 2, 3, . . . . For

every mj the probability of obtaining |1〉 is sin2[(2mj + 1)θa],
where a = sin2(θa). Let us move to the θ space. For a given m
the values and error of θ obtained are

θa = 1

2m + 1
arcsin(

√
a),

�θa = 1

2m + 1

CDF−1
N (1 − α/2)

2
√

N
. (D2)

It is important to understand two main properties of Eq. (D2).
First, there are 2m + 1 possible values for θa within the inter-
val θa ∈ [0, π/2] as the sin2(·) function is π periodical. For
every new iteration it will be necessary to choose one of them.
It is very important to set mj = 0 at first because this case is
the only one for which θa corresponds to the expected value
for a. Otherwise, several possible values of a arise and it is
not possible to tell which one is correct. Combining results
for several values of mj , it is possible to bound the uncertainty
to be as small as desired.

The algorithm is based on the following statements. For a
given collection of measurements and uncertainties {θi,�θi},
the weighted average and uncertainty from the first j terms is

θ̃ j =
∑ j

i=0 θi/�θ2
i∑ j

i=0 1/�θ2
i

, �θ̃ j =
(

j∑
i=0

1/�θ2
i

)−1/2

. (D3)

Notice also that this relation is recursive, as θ̃ j+1 can be
obtained by combining θ̃ j and θ j+1. The same holds for un-
certainties. Thus, the interpretation of this algorithm is that
for every new step j a new term is added to the series {θ,�θ}.
The individual uncertainties decrease as ∼[(2m + 1)−1], and
the final global uncertainty is obtained as

�θ = CDF−1
N (1 − α/2)√

N

(
J∑

j=0

(2mj + 1)2

)−1/2

, (D4)

where J denotes the last iteration performed. The full recipe
for the algorithm is described in Algorithms 1 and 2.

In the case of a linear selection of mj , i.e., mj = j, j =
(0, 1, 2, . . . , J ), the asymptotic behavior of this uncertainty
is �θ = O(N−1/2M−3/4), with M the sum of all m. For
discovering it we just have to compute

J∑
j=0

( j + 1)2 = 4
J∑

j=0

j2 + 4
J∑

j=0

j +
J∑

j=0

1. (D5)

We now take the identities
∑J

j=0 j = J (J + 1)/2 = M and∑J
j=0 j2 = J (2J + 1)(J + 2)/6. Then, it is direct to check

that
�θ = O(N−1/2J−3/2) = O(N−1/2M−3/4). (D6)

This behavior already surpasses the tendency of the classical
sampling, but does not reach the optimal amplitude estima-
tion.

In the case of an exponential selection of mj , i.e., mj =
{0} ∪ {2 j}, j = (0, 1, 2, . . . , J ), we can take the identities∑J

j=0 2 j = 2J − 1 = M and
∑J

j=0 22 j = (22J − 1)/3. Then,
it is direct to check that

�θ = O(N−1/22−J ) = O(N−1/2M−1). (D7)
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Algorithm 2. Extracting multiple values for the arcsin, auxiliary function needed in Algorithm 1.

1 MultipleValuesArcsin (a, m) θ0 ← arcsin
√

a // The value of θ0 is bounded between 0 and π/2
2
3 The arcsin function has several solutions θarray ← [0] ∗ (2m + 1)θarray[0] ← θ0

4 for k ← 1 to m do
5 θarray[2k − 1] ← kπ − θ0

6 θarray[2k] ← kπ + θ0

7 θarray ← θarray/(2m + 1)
8 return θarray

Extension to error-mitigation techniques

The error-mitigation procedure proposed for the unary al-
gorithm discards some of the algorithm instances to retain
outcomes within the unary basis. This reduces the precision
achieved in the algorithm with respect to the ones predicted in
Eqs. (D6) and (D7) in order to maintain accuracy. This section
provides some lower bounds on how many AE iterations can
be done while still reaching quantum advantage.

We will work now in the scheme where mj = j. Let us
assume that, in every iteration of amplitude estimation, only a
fraction p̃ j of the shots are retained. The equivalent version of
Eq. (D4) is now

�θ = CDF−1
N (1 − α/2)

(
J∑

j=0

(2mj + 1)2N p̃ j

)−1/2

. (D8)

As more errors are bound to occur, p̃ j decreases as mj in-
creases, we can state a bound for the accuracy as

�θ � CDF−1
N (1 − α/2)√

N p̃J

(
J∑

j=0

(2mj + 1)2

)−1/2

(D9)

since the precision is at least as good as the one obtained for
the worst-case scenario. Comparing the trends, both in the

linear and the exponential cases, with the classical scaling,
it is possible to see that quantum advantage is still achieved
provided

p̃J � M1−2α, (D10)

with α = 3
4 in the linear case and α = 1 in the exponential

case.
The probability of retaining a shot is at least the probability

of having no errors in the circuit, considering that some double
errors may lead to erroneous instances but in the unary basis.
This zero-error probability in the worst-case scenario, that is,
at the last iteration of AE, is written as

p0 = [(1 − pe)an+b]mJ , (D11)

where pe is the error of an individual gate, and a and b are
related to the gate scaling (see Table I for the details). In
principle, one can expand the calculation of p0 by considering
different kinds of errors for different gates, but for the sake of
simplicity we will focus on this analysis. Rearranging together
the results for Eqs. (D6), (D7), and (D10) it is possible to
see that quantum advantage is obtained if the individual gate
errors are bounded by

pe < 1 − m
2−4α

(an+b)mJ
J . (D12)

FIG. 21. Results of the sampling uncertainties of the expected payoff, for the unary (left) and binary (right) representation, with M iterations
of amplitude estimation for both the unary and binary approaches, considering depolarizing and readout errors together. Scattering points
represent the uncertainties obtained for the experiment while dashed-point lines represent theoretical bounds, where each line is accompanied
with the corresponding marker. For every color and symbol, the lower bound is for optimal quantum advantage, and the upper bound is for
sampling. For M = 0, both bounds are equivalent. In every case, a new iteration of the amplitude estimation reduces the uncertainty. For
the unary case, the scattering points present a tendency to return larger uncertainties as the errors increase, while for the binary case the
uncertainties do not explicitly depend on the single-qubit gate error. This difference is a direct consequence of postselection.
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FIG. 22. Results for the sampling uncertainties of the expected
payoff for increasing number of bins for up to M iterations of am-
plitude estimation for the unary approach, considering depolarizing
and readout errors together. Scattering points represent uncertainties
obtained and dashed-point lines represent theoretical bounds, where
each line is accompanied with the corresponding marker. For every
color and symbol, the lower bound is for optimal quantum advantage,
and the upper bound is for sampling.

APPENDIX E: INDEPENDENT ANALYSIS OF ERRORS
FOR AMPLITUDE ESTIMATION

In this Appendix we present results that extend the ones
depicted in Sec. V. It is also interesting to see how the un-
certainties of the measurements decrease as more iterations of
amplitude estimations are allowed. We must remark that those
errors are exclusively due to the uncertainty in the sampling.
This can be observed in Fig. 21, where the obtained uncer-

tainties are bounded between the classical sampling and the
optimal amplitude estimation.

Furthermore, a very remarkable behavior of the uncertain-
ties in the unary approach must be noticed. The obtained
uncertainties present a tendency to increase as errors get
larger. In contradistinction, the binary algorithm does not
present this feature. The reason lies in the postselection that is
only applicable in the unary representation. As errors become
more likely to happen, the postselection filter rejects more in-
stances. The direct consequence is that the number of accepted
shots drops for large errors, causing less certain outcomes.
The joint action of these processes is that the uncertainty
decreases more slowly for the unary algorithm than for the
binary one. This behavior contrasts with the error obtained in
Fig. 14, where the binary results reflect a very poor perfor-
mance.

The apparently contradictory result shown in Fig. 22 is
related to the distinction between accuracy and precision.
Accuracy stands for how close a measurement is to the exact
value of a quantity, and precision encodes the dispersion of
different measurements. Amplitude estimation is an algorithm
to increase the precision of a measurement with respect to
the number of samples, but it does not provide any further
information regarding the accuracy. Amplitude estimation for
the binary algorithm reflects the expected tendency for the
increase in precision, but comes with very poor results in
accuracy. The unary algorithm grows slower in terms of pre-
cision, but maintains more accurate results. This decrease in
precision might lead to losing the quantum advantage pro-
vided by AE in the presence of significant error. We study
further in Appendix D the limit of AE iterations that can be
performed given the error rates of the quantum device while
still maintaining quantum advantage for the unary representa-
tion.
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