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Gaussian state entanglement witnessing through lossy compression
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(Received 15 December 2020; revised 12 February 2021; accepted 26 February 2021; published 12 March 2021)

We study the possibility of witnessing Gaussian entanglement between two continuous-variable systems with
the help of two spatially separated qubits. Its key ingredient is a local lossy state transfer from the original
systems onto local qubits. The qubits are initially in a pure product state, therefore by detecting entanglement
between the qubits we witness entanglement between the two original systems.
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I. INTRODUCTION

Entanglement is considered one of the key resources in
quantum information science [1]. It naturally emerges in the
majority of many-body systems [2] and can be engineered
on various experimental platforms [3–8]. However, despite
the fact that entanglement seems to be all around us, its
detection is challenging, especially in high-dimensional and
continuous-variable systems. Detection of entanglement often
requires a partial tomography of the system’s state [9], whose
full description is determined by the number of measurements
which grows exponentially with the dimension (and is infinite
in the continuous case).

In this article we focus on the problem of how to extract
information about entanglement in the state of a complex
bipartite system A. The main idea is to pair A with a sim-
ple system B [10]. A is assumed to be difficult to analyze,
whereas B allows a full analysis. In other words, we limit the
interaction with A to a minimum, whereas we are allowed to
perform full tomography on B. The goal is to learn whether
A is entangled by studying solely B. At this point we stress
that the two subsystems A and B can be defined as separate
particles, or as different degrees of freedom of a single particle
(e.g., path/polarization, time/polarization, etc., see Ref. [8]).

In particular, we propose a method to detect entanglement
between two continuous-variable systems in a Gaussian state
(see also Refs. [11–13] for comparison) by transferring their
state onto a state of two qubits and then by analyzing the
resulting two-qubit state. In order to develop some intuition,
we first show how to design a protocol to detect entangle-
ment between two qudits and then we generalize it to the
continuous-variable case. The qubits are initially prepared in
a separable state. Hence, any entanglement arising between
them must stem from the initial entanglement between the
more complex systems. Notably, a somewhat reverse idea of

coupling and performing operations on continuous-variable
systems via the simplest discrete-variable system has been
introduced in Ref. [14] in the context of the implementation
of an interface between a quantum optical field and a qubit.

It is clear that such a state transfer cannot be perfect since
the dimension of the system onto which the transfer is made
is lower than the dimension of the original system. Therefore,
the above process can be considered a lossy compression,
which aims to preserve only the relevant information. In this
case, we want to keep the information about entanglement and
discard anything else.

II. d-LEVEL SYSTEMS

Before we analyze entanglement and continuous-variable
systems, let us first discuss a single qudit (A) and a single qubit
(B). We will introduce a unitary coupling operation which
allows us to transfer some properties of the system A to the
system B. Later we will generalize the scheme to a pair: Two
qudits–two qubits.

A. Single system

As a coupling operator we use a controlled rotation (CROT),
i.e., a rotation of the qubit controlled by the state of the qudit.
More precisely, CROT is defined for a bipartite system AB
composed of a controlling d-level qudit state A, and a target
qubit B, the state of which is rotated along the y axis, by

UCROT =
d−1∑
j=0

| j〉〈 j| ⊗ exp (−iσyξ j )

=
d−1∑
j=0

| j〉〈 j| ⊗ (cos ξ j1 − i sin ξ jσy), (1)
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where the rotation parameter ξ j depends on the original state
of the qudit, ξ j = jπ

2(d−1) . After the coupling we ignore the
subsystem A by tracing it out, and perform an analysis on the
qubit B.

The above operation resembles the von Neumann mea-
surement apparatus [15], with the exception that the pointer
is not a continuous-variable system, but a single qubit. As
a result, the measurement of the observable (in this case
A = ∑

j j| j〉〈 j|) cannot be perfect due to the fact that one can
encode at most a single bit of classical information on a single
qubit. Nevertheless, we are going to show that after the CROT

operation some important information about the qudit’s state
can be decoded from the qubit’s state.

As an example let us consider a d-level system being in the
state

|ψ (p)〉A =
d−1∑
k=0

√(
d − 1

k

)
pk (1 − p)d−1−k |k〉, (2)

parametrized by a single unknown parameter p. The prob-
ability amplitudes are given by the Bernoulli distribution.
Applying the coupling operation (1) on the qudit-qubit pair
|ψ (p)〉A ⊗ |0〉B, we get

|�〉AB = UCROT[|ψ (p)〉A ⊗ |0〉B]

=
d−1∑
j=0

√(
d − 1

j

)
pj (1 − p)d−1− j | j〉A

⊗ (cos ξ j |0〉B + sin ξ j |1〉B). (3)

The reduced density matrix of the system B is given by

ρB = TrA|�〉AB〈�| =
d−1∑
j=0

(
d − 1

j

)
pj (1 − p)d−1− j

×
(

cos2 ξ j
1
2 sin 2ξ j

1
2 sin 2ξ j sin2 ξ j

)
, (4)

allowing us to extract information about the parameter p by,
for example, a measurement along σz, Tr(ρBσz ). In the limit
of infinite dimensions d ,

ρB
d→∞=

(
cos2

(
π p
2

)
1
2 sin(π p)

1
2 sin(π p) sin2

(
π p
2

))
, (5)

ρB becomes a pure state |�〉B = cos ( π p
2 )|0〉 + sin ( π p

2 )|1〉.
Hence, p = (1/π ) arccos Tr(ρBσz).

B. Entangled systems

Let us now suppose the system A is composed of a pair
of d-dimensional qudits in the state |ψ〉A = ∑d−1

j,l=0 a jl | jl〉,
which we want to couple with a pair of qubits B. In order
to do this, we use the coupling operator U ⊗2

CROT for each pair
of subsystems, such that the CROT operator couples the first
(second) qudit to its respective qubit.

If both qubits are initially in the state |0〉, then an applica-
tion of U ⊗2

CROT to the total system |ψ〉A|00〉B results in

|�〉AB = U ⊗2
CROT(|ψ〉A ⊗ |00〉B)

=
d−1∑
j,l=0

a jl | jl〉A ⊗ [cos ξ j cos ξl |00〉B

+ cos ξ j sin ξl |01〉B + sin ξ j cos ξl |10〉B

+ sin ξ j sin ξl |11〉B]. (6)

In general, the state |�〉AB can be highly four-partite entan-
gled, which results in separable subsystems. Therefore, if we
want to transfer entanglement from the system A to B, we are
obligated to do a conditional (projective) measurement on the
system A. One of the good candidates is the local projection
onto the state |++〉A = |+〉|+〉 with |+〉 = 1/

√
d

∑d−1
k=0 |k〉.

After successful projection, the resulting state reads

N |++〉A

d−1∑
j,l=0

a jl [cos ξ j cos ξl |00〉B

+ cos ξ j sin ξl |01〉B + sin ξ j cos ξl |10〉B

+ sin ξ j sin ξl |11〉B], (7)

where (1/N )2 is the probability of projecting the system A of
two qudits onto |+〉|+〉.

At this point it is worth considering an example. Let A be in
the maximally entangled state corresponding to a jl = δ jl/

√
d .

Then, after the coupling operation, the overlap of the resulting
state |�〉B with the maximally entangled state 1√

2
(|00〉 + |11〉)

decreases with d , but asymptotically approaches π2/(π2 +
4) ≈ 0.712 as d → ∞. Also we must note that the probability
of finding the first system in the desired state depends on its
dimension d . For a general pure state of two qudits |ψ〉A =∑d−1

j=0 ai j |i j〉, it equals |∑d−1
i, j=0 ai j |2/d2, which for the maxi-

mally entangled state, ai j = 1/
√

d , scales as 1/d . Note also
that the success probability is optimal for full-rank maximally
entangled states. In particular, for an entangled state of rank
k, namely |ψ〉A = 1√

d

∑k−1
j=0 | j j〉, the probability equals k

d2 .
Notice that in the special case of d = 2, the operation

swaps the state of the system A to the system B,

|�〉B
d=2= N

1∑
j,l=0

a jl

[
cos

( jπ

2

)
cos

(
lπ

2

)
|00〉

+ cos
( jπ

2

)
sin

(
lπ

2

)
|01〉

+ sin
( jπ

2

)
cos

(
lπ

2

)
|10〉

+ sin
( jπ

2

)
sin

(
lπ

2

)
|11〉

]
= a00|00〉 + a01|01〉 + a10|10〉 + a11|11〉. (8)

For a general d the resulting state |�〉B is separable if the
input state |ψ〉A is separable. This is because a factorization of
the amplitudes a jl = a′

ja
′′
l allows us to factorize the resulting
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state |�〉B,

|�〉B
|ψprod〉A=

d−1∑
j=0

a′
j (cos ξ j |0〉 + sin ξ j |1〉)

⊗
d−1∑
l=0

a′′
l (cos ξl |0〉 + sin ξl |1〉). (9)

Let us now consider a general mixed state of two qudits,
i.e., ρA = ∑d−1

i, j,k,l=0 ρi j,kl |i〉〈 j| ⊗ |k〉〈l|. If we denote ρAB as
the state of the total system after the coupling,

ρAB = U ⊗2
CROT(ρA ⊗ |00〉B〈00|)(U ⊗2

CROT

)†
, (10)

projecting the subsystem A onto | ++〉 results in subsystem B
becoming

ρB =
d−1∑

i, j,k,l=0

1∑
m,n,p,q=0

ρi j,kl am
i an

kap
j a

q
l |m〉〈p| ⊗ |n〉〈q|, (11)

where

aα
β =

{
cos βπ

2(d−1) , for α = 0,

sin βπ

2(d−1) , for α = 1.
(12)

Note that for d = 2, we have ρB = ρA, the same as in the case
of pure states.

Additionally, we also show that a separable state of two qu-
dits is mapped onto a separable state of two qubits. Consider
the separable state of two qudits ρ

sep
A = ∑

λ pλρ
λ
1 ⊗ ρλ

2 , where

ρλ
1 =

d−1∑
i, j=0

ρλ
1,i j |i〉〈 j|, (13)

ρλ
2 =

d−1∑
k,l=0

ρλ
2,kl |k〉〈l|, (14)

and hence

ρ
sep
A =

∑
λ

pλ

d−1∑
i, j,k,l=0

ρλ
1,i jρ

λ
2,kl |i〉〈 j| ⊗ |k〉〈l|. (15)

Performing analogous calculations as in the general case for
mixed states and taking into account the linearity of all oper-
ations, we get a separable state:

ρB
ρ

sep
A=

∑
λ

pλ

×
d−1∑

i, j,k,l=0

1∑
m,n,p,q=0

ρλ
1,i jρ

λ
2,kl am

i an
kap

j a
q
l |m〉〈p| ⊗ |n〉〈q|

=
∑

λ

pλ

(
d−1∑

i, j=0

1∑
m,p=0

ρλ
1,i j am

i ap
j |m〉〈p|

)

⊗
(

d−1∑
k,l=0

1∑
n,q=0

ρλ
2,kl an

kaq
l |n〉〈q|

)
. (16)

Please note that the condition for ρA to be separable so that
the resulting ρB is also separable is only sufficient, not nec-
essary. There are instances of entangled states ρA which are

not mapped into entangled ρB, hence the scheme effectively
works as an entanglement witness.

III. CONTINUOUS-VARIABLE SYSTEMS

We will now generalize our scheme to the case in which the
system A is being described by a continuous-variable state. In
this regard we limit our considerations to the broad family of
Gaussian states.

A. Single system

If the first subsystem has a continuous spectrum, the cou-
pling operator reads

UCROT =
∫ ∞

−∞
dx|x〉〈x| ⊗ (cos x1 − i sin xσy). (17)

Next, consider a Gaussian state

|ψ (σ, m)〉A =
∫

dx
1

(2πσ 2)1/4
e− (x−m)2

4σ2 |x〉 (18)

specified by two parameters (σ, m). After applying the cou-
pling operation to |ψ (σ, m)〉A ⊗ |0〉B, we get

UCROT[|ψ (σ, m)〉A ⊗ |0〉B]

=
∫

dx
1

(2πσ 2)1/4
e− (x−m)2

4σ2 |x〉 ⊗ (cos x|0〉 + sin x|1〉). (19)

The reduced state of the qubit B is

ρB = 1

2

[
1 + e−2σ 2

(
cos 2m sin 2m
sin 2m − cos 2m

)]
(20)

and can be visualized by a Bloch vector 
b lying in the xz plane.
The vector 
b makes an angle 2m with the z axis and its norm
is e−2σ 2

. The parameters of the original Gaussian state can
be recovered from a tomography on the qubit. In particular,
σ 2 = −(1/4) ln ||
b||2 and m = arccot(bz/bx )/2.

B. Entangled systems

Now, we consider the lossy entanglement transfer from the
bipartite Gaussian state onto the two-qubit state. In order to do
this, we use the coupling operator of (17) for each respective
pair of subsystems, U ⊗2

CROT, such that the first (second) compli-
cated subsystem interacts with its respective qubit.

After the coupling operation, we project the system A of
the two particles onto a product of Gaussian states

|x+
1 x+

2 (�)〉 =
∫

dx1

∫
dx2

1

(2π�2)1/2
e− (x2

1+x2
2 )

4�2 |x1〉|x2〉. (21)

This is an analogy to the projection onto a uniform super-
position that we used in the two-qudit case. This time the
projection is parametrized by a single parameter �, which
corresponds to the standard deviation. Note that in the limit
� → ∞ the Gaussian function becomes a uniform superposi-
tion over the whole space, akin to what was considered in the
qudit case. Such a projection can be interpreted as a projection
onto a ground state of a harmonic oscillator, for which the
parameter � can be manipulated by the oscillator’s frequency.
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As an example we consider two particles in an entangled
Gaussian state,

|ψ (σ,)〉A

=
∫ ∞

−∞
dx1

∫ ∞

−∞
dx2

1

(2πσ)1/2
e− (x1+x2 )2

8σ2 e− (x1−x2 )2

82 |x1〉|x2〉.

(22)

This state is entangled whenever σ �= . Since it is a pure
state, its entanglement can be measured by the purity of a
subsystem, which in this case is given by [16]

P = 2σ

σ 2 + 2
. (23)

After the coupling operation, the state |ψ (σ,)〉A ⊗ |00〉B

becomes

U ⊗2
CROT[|ψ (σ,)〉 ⊗ |00〉]

=
∫

dx1

∫
dx2

1

(2πσ)1/2
e− (x1+x2 )2

8σ2 e− (x1−x2 )2

82 |x1〉|x2〉
⊗[cos x1 cos x2|00〉 + cos x1 sin x2|01〉
+ sin x1 cos x2|10〉 + sin x1 sin x2|11〉]. (24)

After projecting the system A onto |x+
1 x+

2 (�)〉, the state of
system B becomes

N (a+|00〉 + a−|11〉), (25)

where

a± = ±e− 2σ2�2

σ2+�2 + e− 22�2

2+�2√
(σ 2+�2 )(2+�2 )

σ�2

. (26)

The probability of successful projection onto a desired state
equals 4σ�2

(σ 2+�2 )(2+�2 ) , and is maximal for � = √
σ, for

which it reads 4σ
(σ+)2 . Notice that due to a similarity with the

purity of the subsystem (23), we have the trade-off: The higher
the entanglement of the original system (in other words, the
lower the purity), the lower is the probability of successfully
projecting the state as desired by the protocol. Fortunately,
the probability of successful projection drops below 10% only
for a strongly entangled Gaussian state with the purity of a
subsystem P < 0.05. This corresponds to the ratio σ/ = 38.
If σ/ = 5, the original state is still highly entangled (P ≈
0.38) and the probability of successful projection is above
50%.

After the projection, the purity of the qubit subsystem B is

Pq = 1

2

[
sech2

(
2�4(σ − )(σ + )

(σ 2 + �2)(2 + �2)

)
+ 1

]
, (27)

which becomes in the limit of � → ∞,

lim
�→∞

Pq = 1
2

{
sech2[2(σ − )(σ + )] + 1

}
. (28)

In Fig. 1 we present how the purity of a subsystem depends
on �. We analyze the extreme case (σ − ) → ∞. In this
case the purity is 1

2 [sech2(2�2) + 1] and decreases with �.
Already for � above 1, the purity is close to 1/2.

1.0

0.8

0.9

0.7

0.6

0.5
0.2 0.4 0.6 0.8 1.0 1.2 1.40

Pq

�

FIG. 1. The purity of a subsystem for the resulting state with σ −
 → ∞ in a function of the projection parameter �.

C. Comparison to other methods

Given that our method of entanglement witnessing rests
on the analysis of the ancillary system B, which is coupled to
the original system A, we may compare this to other methods
of detecting entanglement. The most obvious one would be
to measure the purity of the original state itself, in which case
the entanglement is being witnessed whenever the purity of
the subsystem of A is less than 1. In Fig. 2(a) we show the
purity of the corresponding subsystem (23) which indicates
entanglement present in the system A whenever  �= σ .
In our method, however, the entanglement of A is inferred
from measuring the purity of the subsystem of the ancillary
two-qubit state (system B), which is presented in Fig. 2(b).
As we see, entanglement is witnessed for any  �= σ . Also,
in both cases the situation σ −  → ∞ corresponds to the
maximally entangled states.

One can also compare our method with the necessary and
sufficient condition for the entanglement of bipartite Gaus-
sian states, which is based on coefficients of the quadrature
components of the wave function [17,18]. In particular, the
system is entangled whenever (σ 2 − 2)2 � 0, which brings
the discussion back to the previous case.

D. Possible realization

Here, we give examples for possible implementations of
the above scheme. The first concept is in a sense an inverted
Stern-Gerlach scenario. We focus on a single system, since the
entangled case is a straightforward generalization.

FIG. 2. The purity of a subsystem in a function of σ and  for
(a) the original and (b) resulting state.
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Consider a spin-1/2 particle, say, a silver atom, propagat-
ing along the z axis. The continuous-variable state of interest
is encoded in the transversal degree of freedom, say, a spatial
state along the x axis |ψ (x)〉. The spin of the particle is
initially pointing up along the z axis. In addition, consider a
region in which there is a nonzero magnetic field 
B = B(x)ŷ
pointing along the y axis with a gradient along the x axis.
We assume that in the region in which |ψ (x)〉 is supported
one can use the approximation B(x) ≈ B0x. This magnetic
field region starts at z = z0 and ends at z = z1 (0 < z0 < z1).
Outside of this region there is no magnetic field. The particle
starts at z = 0 and moves towards the magnetic field region
with velocity v. It spends the time t = (z1 − z0)/v within the
magnetic field region. The magnetic field causes a position-
dependent rotation of spin about the y axis,

|↑z〉 → cos α(x)|↑z〉 + sin α(x)|↓z〉, (29)

where α(x) ∝ B0x(z1 − z0)/v. This conditional rotation can
be associated with the CROT operation. This way the state
|ψ (x)〉 is lossy transferred onto the spin state.

Another possible implementation is the interaction of dif-
ferent degrees of freedom of photons. A natural choice for the
degree of freedom of the d-level system is using path encoding
as it easily allows us to manipulate, say, the polarization state
of the photon depending on the path state using wave plates
for building up the CROT operation as given in Eq. (1). This
general concept can be combined with a plethora of different
degrees of freedom. Wavelength division multiplexers allow
coupling frequency-bin encoded qudits to qubits using this
scheme. Similarly, when using, e.g., orbital angular momen-
tum (OAM) for the qudit system, the OAM encoding can
first be translated to path encoding using a mode sorter [19].
Recently, a controlled-X̂ gate between the radial degree of
freedom of light and its OAM has been shown [20], providing
another perfect test bed for our coupling.

In a recent work, a high-finesse cavity has been used to
couple a 87Rb atom to the coherent state of a light field
reflected at the cavity for creating Schrödinger cat states [21].
This technique may also allow us to couple the state of the
light field to the atom using the CROT operation as given in
Eq. (17). Our proposal could hence facilitate probing for the
entanglement of two light fields.

Furthermore, our proposal can also be used if both sys-
tems A and B are actually qudits. For example, entanglement
of a system of two high-dimensional trapped ions could be
probed by properly designing the interaction with two other

ions using a suitably modified CROT operation such that the
qudits of system B make use of only a two-level submanifold
of the ion. This greatly simplifies their read-out as they can
now be treated as qubits. This procedure is applicable also to
other high-dimensional systems such as, say, superconducting
transmon qudits.

Finally, we would like to mention that our approach also
works for multiqubit systems, in which the entanglement be-
tween two specific subsets of particles is to be analyzed. The
entanglement between a set A1 of qubits and a set A2 of qubits
can be studied by first compressing the multiqubit states ρA1

and ρA2 into the single qubits B1 and B2, respectively, using a
CROT operation. Afterwards, the verification of entanglement
of those two single-qubit systems implies entanglement be-
tween the initial multiqubit systems.

IV. CONCLUSIONS

In this paper we address the problem of detecting entangle-
ment properties of a complex system by analyzing an auxiliary
system coupled to the original one. In order to do this we
define a coupling operator which transforms the auxiliary sys-
tem so that after the operation the measured properties of the
coupled system provide relevant information about the nature
of the original one. Since the auxiliary system is chosen to
be of lower dimensionality than the original one, the transfer
of information through the coupling operator cannot be exact,
hence we can consider the operation a lossy compression. In
the process, however, we are being offset by the reduction
of the number of measurements required to analyze the en-
tanglement properties of the measured system. Moreover, the
scheme works also when we intend to detect entanglement
between two continuous-variable systems in a Gaussian state,
which in principle can be partially encoded in a simple two-
qubit state.
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and M. Żukowski, Rev. Mod. Phys. 84, 777 (2012).

[9] O. Gühne and G. Toth, Phys. Rep. 474, 1 (2009).
[10] S. Agarwal and J. H. Eberly, Phys. Rev. A 86, 022341

(2012).
[11] C. Weedbrook, S. Pirandola, R. Garcia-Patron, N. J. Cerf, T. C.

Ralph, J. H. Shapiro, and S. Lloyd, Rev. Mod. Phys. 84, 621
(2012).

032412-5

https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1103/RevModPhys.80.517
https://doi.org/10.1103/RevModPhys.73.565
https://doi.org/10.1038/nature07125
https://doi.org/10.1126/science.1231930
https://doi.org/10.1126/science.1231364
https://doi.org/10.1038/nphys3705
https://doi.org/10.1103/RevModPhys.84.777
https://doi.org/10.1016/j.physrep.2009.02.004
https://doi.org/10.1103/PhysRevA.86.022341
https://doi.org/10.1103/RevModPhys.84.621


WALDEMAR KŁOBUS et al. PHYSICAL REVIEW A 103, 032412 (2021)

[12] G. Adesso, S. Ragy, and A. R. Lee, Open Syst. Inf. Dyn. 21,
1440001 (2014).

[13] L. Lami, A. Serafini, and G. Adesso, New J. Phys. 20, 023030
(2018).

[14] M. Barbieri, N. Spagnolo, F. Ferreyrol, R. Blandino, B. J. Smith,
and R. Tualle-Brouri, Sci. Rep. 84, 15125 (2015).

[15] J. von Neumann, Mathematical Foundations of Quantum
Mechanics (Princeton University Press, Princeton, NJ,
1955).

[16] C. K. Law, Phys. Rev. A 71, 034306 (2005).

[17] R. Simon, Phys. Rev. Lett. 84, 2726 (2000).
[18] R. W. Rendell and A. K. Rajagopal, Phys. Rev. A 72, 012330

(2005).
[19] G. C. G. Berkhout, M. P. J. Lavery, J. Courtial, M. W.

Beijersbergen, and M. J. Padgett, Phys. Rev. Lett. 105, 153601
(2010).

[20] F. Brandt, M. Hiekkamäki, F. Bouchard, M. Huber, and R.
Fickler, Optica 2, 98 (2020).

[21] B. Hacker, S. Welte, S. Daiss, A. Shaukat, S. Ritter, L. Li, and
G. Rempe, Nat. Photonics 13, 110 (2019).

032412-6

https://doi.org/10.1142/S1230161214400010
https://doi.org/10.1088/1367-2630/aaa654
https://doi.org/10.1038/srep15125
https://doi.org/10.1103/PhysRevA.71.034306
https://doi.org/10.1103/PhysRevLett.84.2726
https://doi.org/10.1103/PhysRevA.72.012330
https://doi.org/10.1103/PhysRevLett.105.153601
https://doi.org/10.1364/OPTICA.375875
https://doi.org/10.1038/s41566-018-0339-5

