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Point-to-point quantum privacy communication over a standard telecommunication fiber link can be imple-
mented by continuous-variable quantum key distribution (CV QKD). However, as communication networks
develop, the two-party CV QKD system may hardly meet the requirements of secret key sharing of multiple users
(at least three users). In this paper, we consider a protocol called quantum secret sharing (QSS) which allows a
legitimate user, a so-called dealer, to share a secret key with multiple remote users through an insecure quantum
channel. These users can correctly recover the dealer’s secret key only when they work cooperatively. We carry
out QSS with discretely modulated coherent states (DMCSs) because they are easy to prepare and resilient to
losses. An asymptotic security proof for the proposed DMCS-based QSS protocol against both eavesdroppers
and dishonest users is presented. Numerical simulation based on a linear bosonic channel shows that the maximal
transmission distance of the DMCS-based QSS protocol reaches more than 100 km, and it can be further
lengthened by exploiting a higher-dimensional discrete modulation strategy. Moreover, the composable security
of the DMCS-based QSS protocol is also presented.
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I. INTRODUCTION

Continuous-variable quantum key distribution (CV QKD)
[1] is designed to implement point-to-point secret key dis-
tribution over an insecure quantum channel; its security is
guaranteed by the laws of quantum physics [2]. Specifically,
the sender, Alice, usually encodes secret key bits in the phase
space of coherent states, and the receiver, Bob, measures the
incoming signal states using coherent detection techniques.
After postprocessing, Alice and Bob can share an identical
string of a secret key. One of the advantages of CV QKD
is that it is compatible with most state-of-the-art commercial
telecommunication technologies [3]; therefore, one may apply
the CV QKD system to current practical communication links
in use.

In general, CV QKD can be further divided into two
types according to the different modulation approaches, i.e.,
Gaussian-modulated CV QKD [4,5] and discretely modulated
CV QKD [6,7]. The first type has been widely studied; since
the repetition rate in Gaussian-modulated CV QKD is usually
higher, it might potentially obtain a higher secret key rate. It
is worth noticing that the first protocol of CV QKD (“GG02”
protocol presented in Ref. [8]) belongs to the Gaussian-
modulated CV QKD, and it has been proven to be secure
in both the asymptotic limit [9] and the finite-size regime
[10]. Moreover, the composable security proof for Gaussian-
modulated CV QKD was presented in [11], which showed
that the theoretical security issue of Gaussian-modulated CV
QKD is completely solved. For the second type, discretely
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modulated CV QKD prepares several nonorthogonal states
and encodes secret key bits in the sign of the quadrature
of each state. This modulation approach is probably more
suitable for long-distance transmission because the sign of
the quadrature is already discrete, so most existing error-
correcting codes might work well even at a low signal-to-noise
ratio. The preliminary security proof for discretely modulated
CV QKD was suggested in [12], which showed that discretely
modulated CV QKD is secure against Gaussian attacks for
any linear quantum channel. After that, Ref. [13] showed
that discretely modulated CV QKD with decoy states is se-
cure against arbitrary collective attacks, which implies the
unconditional security of discretely modulated CV QKD in
the asymptotic limit. Very recently, the asymptotic security of
discretely modulated CV QKD (without decoy states) against
arbitrary collective attacks was proven. Reference [14] es-
tablished a lower bound on the asymptotic secret key rate
of discretely modulated CV QKD. This bound is obtained
by formulating the problem as a semidefinite program, while
Ref. [15] applied a numerical method to analyze the security
of discretely modulated CV QKD, paving the way for a full
security proof with finite-size effects. The latest security proof
for discretely modulated CV QKD was presented in [16];
it provides a composable security analysis in the finite-size
regime assuming the realistic, but restrictive, hypothesis of
collective Gaussian attacks.

However, with the rapid development of communication
networks, the point-to-point CV QKD system may hardly
meet the specific requirements of multiple users (at least three
users). Imagine a scenario in which a legitimate user, a so-
called dealer, wants to share a secret key with two remote
users through an insecure quantum channel. The dealer knows
one of them may not be entirely honest. The dealer therefore
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splits the secret key into two parts and individually sends
each user a part. Consequently, no one can obtain the whole
secret key unless they collaborate. Such situations widely
exist in business, the military, and politics. To achieve this
goal, single-qubit sequential secret sharing was suggested and
experimentally demonstrated in Ref. [17], but some tough se-
curity issues have not been completely resolved yet, especially
for Trojan horse attacks in which a malicious eavesdropper
could send multiphoton signals to the polarization rotation
device of the targeted party and unambiguously determine the
corresponding polarization rotation by measuring the output
signals [18].

Considering the growing demand for securely sharing a
secret key with multiple users, in this paper, we extend two-
party CV QKD, which has been proven to be secure, to at least
three users and thus consider a protocol called quantum secret
sharing (QSS). QSS, which is a kind of secret-sharing protocol
using quantum-based technology, can securely deliver multi-
ple secret keys to a group of remote users; these users can
jointly share an identical secret key with the dealer only when
they cooperatively work together. That is to say, a single user
or even part of the users in the group cannot recover the correct
secret key without the whole group’s knowledge. In particular,
we implement the QSS protocol with discretely modulated co-
herent states (DMCSs); the nonorthogonal nature of coherent
states is the basis for many of these applications, particu-
larly those involving communication security [19]. DMCSs
are ideal for quantum communications because they are easy
to prepare and measure, and they are resilient to losses,
so they can maximize the information transmitted over the
long-distance communication channel. We then present a the-
oretical security proof for the proposed DMCS-based QSS
protocol against both eavesdroppers and dishonest users. Nu-
merical simulation based on the linear bosonic channel shows
that the maximal transmission distance of the DMCS-based
QSS protocol reaches more than 100 km, and it can be fur-
ther lengthened by exploiting a higher-dimensional discrete
modulation strategy. Moreover, the composable security of
the DMCS-based QSS protocol against collective Gaussian
attacks is also presented.

This paper is structured as follows. In Sec. II, we detail the
proposed DMCS-based QSS protocol. In Sec. III, we derive
the calculations of the secret key rate of the proposed protocol.
Performance analysis and discussion are presented in Sec. IV,
and final conclusions are drawn in Sec. V.

II. DMCS-BASED QSS PROTOCOL

Since our protocol is extended by CV QKD, it is nec-
essary to show the principles of CV QKD. To make the
derivation self-contained, we first introduce coherent states
and show how they work in discretely modulated CV QKD
with quadrature-phase-shift keying (QPSK). After that, we
detail the proposed DMCS-based QSS protocol and consider
its security.

A. Coherent states in discretely modulated CV QKD

In general, coherent states can be generalized to one with N
quantum states |αN

k 〉 = |αei2kπ/N 〉, where k ∈ {0, 1, . . . , N −

FIG. 1. Description of coherent states with QPSK and the parti-
tion of phase space in four quadrants.

1} and α is a positive number related to the modulation vari-
ance of the quantum state as VM = 2α2 [20].

In the prepare-and-measure (PM) version of discretely
modulated CV QKD, Alice first selects a random bit string
a = (a0, a1, . . . , a2L−1) of length 2L; the coherent states are
subsequently encoded according to the successive pairs of bit
strings a with the form |αN

k 〉, where kl = 2a2l + a2l+1. Alice
sends these modulated coherent states to remote Bob through
a lossy and noisy quantum channel. When Bob receives these
states, he can apply a heterodyne detector to measure each
output mode. The mixture state that Bob receives can be
expressed by the following form:

ρN = 1

N

N∑
k=1

∣∣αN
k

〉〈
αN

k

∣∣. (1)

Note that the discrete modulation strategy of QPSK requires
four nonorthogonal coherent states so that we have N =
4; the presentation of QPSK in phase space is depicted in
Fig. 1. After the measurement, Bob obtains a 2L string c =
(c0, c1, . . . , c2L−1) ∈ R2L. This string can be transformed into
a raw key of 2L bits b = (b0, b1, . . . , b2L−1), given by [14]

(b2l , b2l+1) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(0, 0) if c2l+1 < c2l , c2l+1 � −c2l ,

(0, 1) if c2l+1 � c2l , c2l+1 > −c2l ,

(1, 0) if c2l+1 > c2l , c2l+1 � −c2l ,

(1, 1) if c2l+1 � c2l , c2l+1 < −c2l .

(2)

Bob then broadcasts the absolute values of c2l ± c2l+1 through
a classical authenticated channel. This side information allows
Alice and Bob to turn the information reconciliation problem
into a well-studied channel coding problem for the binary-
input additive white-noise Gaussian channel (see Ref. [21] for
how it works). After several postprocessing steps such as pa-
rameter estimation, reconciliation, and privacy amplification,
Alice and Bob can establish a correlated sequence of a random
secure key.
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FIG. 2. The proposed DMCS-based QSS protocol, which can
distribute multiple parts of a security key to different users, thereby
allowing them to cooperatively share a security key with the dealer.
Each user can also individually send DMCSs to achieve the purpose
of point-to-point CV QKD with the dealer. HABS denotes highly
asymmetric beam splitter.

B. DMCS-based QSS and its security

Inspired by the principle of discretely modulated CV QKD
[12] and single-qubit sequential quantum secret sharing [17],
we propose a DMCS-based QSS protocol using a QPSK mod-
ulation strategy. It allows the dealer to share a string of a
secret key with a group of remote users over a long-distance
commercial fiber-link transmission. As shown in Fig. 2, a
dealer is connected to n users through a single communication
fiber channel. The procedure of our protocol is detailed as
follows.

Step 1. For each quantum transmission, the user who is far-
thest away from the dealer (user 1) prepares a DMCS with the
QPSK format |x1 + ip1〉 and sends it to his nearest neighbor
(user 2).

Step 2. User 2 also independently prepares a DMCS with
the QPSK format and couples it to the same spatiotemporal
mode as the incoming signal state prepared by user 1 via a
highly asymmetric beam splitter (HABS). The mixed signal
is then sent to the next user.

Step 3. All other users who connected to the link perform
similar operations, so that they can inject their locally pre-
pared DMCSs into the spatiotemporal mode corresponding to
the signal from user 1.

Step 4. Since each user can introduce displacement of
(x j, p j ) by carefully controlling the modulation variance and
having knowledge of the reflectivity of its HABS, the arriving
signal state from the dealer’s station can be expressed as
| ∑n

j=1

√
Tjx j + i

∑n
j=1

√
Tj p j〉, where Tj denotes the channel

transmittance that the signal experiences between the jth user
and the dealer. The dealer then measures both the amplitude
and phase quadratures of the received signal state using het-
erodyne detection, thereby obtaining the measurement result
(xd , pd ).

Step 5. After many rounds of the above steps, the dealer
and users hold sufficient related raw data.

Note that steps 1–5 belong to a quantum operation which
aims to generate the related data by taking advantage of
quantum optics. The remaining steps address these data with
classical postprocessing technologies.

Step 6. The dealer and all users disclose a group of related
data to estimate the respective channel transmittance Tj [18].
Note that these disclosed data have to be discarded after this
step.

Step 7. Assume the jth user is honest and the remaining
n − 1 users are dishonest. The dealer further picks another
group of raw data and requests all users except user j dis-
close their corresponding values. This operation allows the
dealer to displace his measurement results of the group to
xbj = xd − ∑n

s �= j

√
Tsxs and pbj = pd − ∑n

s �= j

√
Ts ps, where

s = 1, 2, . . . , n. By doing so, a point-to-point CV QKD link
between the dealer and user j is actually established. There-
fore, we can estimate a lower bound of the secure key rate
Rj using the security analysis technology of QPSK-modulated
CV QKD [12]. After that, all participants discard the disclosed
data.

Step 8. By performing step 7 n times, the dealer establishes
n CV QKD links to each user and obtains the estimated secret
key rates {R1, R2, . . . , Rn}. For security reasons, the dealer
should choose the smallest value among {R1, R2, . . . , Rn} as
the final secret key rate R of the QSS protocol.

Step 9. If the value of R is positive, the dealer can share
different secret keys with each user using the rest of the
undisclosed data. For each CV QKD link, the dealer converts
the raw data into bit strings according to Eq. (2) and then
broadcasts the values of |xbj ± pbj | [14]. These absolute val-
ues are used for the reverse reconciliation in which classical
information goes from the dealer to the users [21]. Note that
this process can be finished without users’ cooperation. Af-
ter the standard postprocessing procedures in CV QKD, the
dealer shares an independent secret key Kj with each user.

Step 10. Finally, the dealer generates a new key accord-
ing to the formula K = K1 ⊕ K2 ⊕ · · · ⊕ Kn and subsequently
encodes the message M via the expression E = M ⊕ K . The
dealer then announces the encrypted message E to all users.
As a result, the encrypted message E can be decoded by the
whole group of users only when they work cooperatively.

Directly analyzing the security of the proposed DMCS-
based QSS protocol is intuitively complicated because there
are multiple participants and we actually do not know how
many users are untrusted and how powerful an attack suffered
during the transmission could be. Fortunately, by tactfully
exploiting the well-established security proof of discretely
modulated CV QKD, the security of the DMCS-based QSS
protocol can be proven. Let us address the problem of dis-
honest users first. As mentioned in step 7, a point-to-point
CV QKD link between the dealer and user j is actually
established. This statement is based on the assumption that
the jth user is the only user who can be trusted. This is
the most pessimistic assumption since the protocol is useless
if all users are dishonest. Therefore, this two-party link can
be deemed a model of CV QKD involving two legitimate
users, i.e., the sender, Alice (user j), and the receiver, Bob
(the dealer). Now the problem is whether the remaining n − 1
dishonest users can gain the information between Alice and
Bob and thereby recover the secret key shared by Alice and
Bob. Note that the dealer requests all users except user j to
publicly disclose their corresponding values in this CV QKD
transmission, so that user j holds the complete information
of all users, while the remaining n − 1 users cannot deduce
the information between user j and the dealer by knowing
only the revealed information. Therefore, Alice and Bob can
share a secret key regardless of the existence of n − 1 dis-
honest users (the worst situation). As for eavesdroppers, it is
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reasonable to consider the quantum attack in each CV QKD
link separately. This suggests that we can use the existing
security proof for QPSK-modulated CV QKD to evaluate the
security key rate Rj . As we mentioned in Sec. I, the security
of discretely modulated CV QKD was investigated in several
works. For simplicity, the main tools we chose for solving
the eavesdropper issue is the method presented in [12], so
a linear bosonic channel assumption is necessary. Note that
the proposed QSS protocol should be secure for any honest
user, so the dealer is required to evaluate the secret key rate
of each CV QKD link and selects the smallest one as the
lower bound of the final secret key rate of the QSS protocol.
Therefore, the security of the DMCS-based QSS protocol
against collaborative attacks launched by the eavesdropper
and any n − 1 (or fewer) dishonest users can be guaranteed
if the final secret key rate is positive. Moreover, by injecting
locally prepared DMCSs into the circulating optical mode, the
modulators within the secure stations cannot be reached by the
probing signals from the eavesdropper. That is to say, the user
who is assumed to be honest can prevent eavesdroppers from
accessing the signal state preparation process, thereby making
our protocol immune to Trojan horse attacks [18].

III. CALCULATION OF THE SECRET KEY RATE

As the carrier of the secret key, the derivation of DMCSs
is the first issue to be considered. Remember that the received
DMCS in the PM version of discretely modulated CV QKD
is expressed as Eq. (1); this form, however, is not suitable for
security analysis [22]. Fortunately, the PM version is equiv-
alent to the entanglement-based (EB) version, which is more
convenient for security analysis [23–25]. In what follows, we
first consider the EB version of DMCSs with the QPSK format
and then present the calculation of the secret key rate of the
proposed DMCS-based QSS protocol.

In the EB version, a DMCS with the QPSK format can be
deem a pure state, defined as [13]

|�4〉 =
3∑

k=0

√
λk

∣∣φ4
k

〉∣∣φ4
k

〉

= 1

2

3∑
k=0

∣∣ψ4
k

〉∣∣α4
k

〉
, (3)

where the states

∣∣ψ4
k

〉 = 1

2

3∑
m=0

ei(1+2k)mπ/4
∣∣φ4

m

〉
(4)

are the non-Gaussian states and the state |φ4
m〉 is given by

∣∣φ4
k

〉 = e−α2/2

√
λk

∞∑
n=0

(−1)n α4n+k

√
(4n + k)!

|4n + k〉, (5)

with

λ0,2 = 1
2 e−α2

[cosh(α2) ± cos(α2)], (6)

λ1,3 = 1
2 e−α2

[sinh(α2) ± sin(α2)]. (7)

Consequently, the mixture state ρ4 can be expressed by

ρ4 = Tr(|�4〉〈�4|)

=
3∑

k=0

λk

∣∣φ4
k

〉〈
φ4

k

∣∣. (8)

Let A and B respectively denote the two output modes of
the bipartite state |�4〉 and â and b̂ denote the annihilation
operators applicable to modes A and B, respectively. We have
a covariance matrix 	4

AB of the bipartite state |�4〉 with the
following form:

	4
AB =

(
XI Z4σz

Z4σz Y I

)
, (9)

where I and σz represent diag(1, 1) and diag(1,−1), respec-
tively, and

X = 〈�4|1 + 2a†a|�4〉 = 1 + 2α2,

Y = 〈�4|1 + 2b†b|�4〉 = 1 + 2α2,

Z4 = 〈�4|ab + a†b†|�4〉 = 2α2
3∑

k=0

λ
3/2
k−1λ

−1/2
k . (10)

Note that the addition arithmetic should be operated with
modulo 4.

According to step 8, the final secret key rate R of the
DMCS-based QSS protocol has to be the smallest secret key
rate of two-party CV QKD between the dealer and each user.
Assuming that each user introduces an equal amount of noise
ξ0, obviously, the smallest CV QKD key rate can be obtained
when the distance of the CV QKD link is the longest. Nev-
ertheless, it is worth noticing that the smallest CV QKD key
rate in a practical QSS system must be estimated from realistic
data, so it may not belong to the farthest CV QKD link. For
theoretical analysis, we consider only the situation in which
the introduced noise of each user is identical. Let Alice be the
farthest user and Bob be the dealer (their distance is denoted
as L), and all the other n − 1 users are located between them
at equal intervals; the secret key rate of the proposed QSS
protocol can be estimated by reasonably exploiting the secu-
rity analysis technology of the discretely modulated CV QKD
between Alice and Bob. Therefore, the lower bound of the
asymptotic secret key rate of the QSS protocol can be given
by [12]

R = βIAB − χBE , (11)

where β is the reverse reconciliation efficiency, IAB is the
Shannon mutual information between Alice and Bob, and χBE

is the maximum information available to the dishonest users
and eavesdroppers on Bob’s measurement. Assuming that the
transmittance of HABS at each user’s station is t ∼= 1, the
channel transmittance of the jth user can be expressed as

Tj = 10
−δl j

10 , (12)

where l j = n− j+1
n L is the distance between the dealer and the

jth user and δ is the attenuation coefficient of the fiber link.
Therefore, the excess noise contributed by the jth user, when
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referred to the channel input, can be calculated by [18]

ξ j = Tj

T1
ξ0, (13)

so that the channel-added noise, referred to as the channel
input, can be given by

χline = 1

T1
− 1 +

n∑
j=1

ξ j, (14)

and the noise added by Bob’s heterodyne detector (referred to
as Bob’s input) is given by

χhet = (2 − μ + 2vel )/μ, (15)

where μ is the detection efficiency and vel is the electronics
noise of the imperfect detector. Hence, the overall noise, re-
ferred to as the channel input, can be expressed as

χtot = χline + χhet

T1
. (16)

We now can calculate the Shannon mutual information be-
tween Alice and Bob using the following equation [9]:

IAB = log2
V + χtot

1 + χtot
, (17)

where V = 1 + VM .
The term χBE in Eq. (11) is bounded by the Holevo quantity

[26],

χBE = S(ρE ) −
∫

dxB, pBP(xB, pB)S
(
ρ

xB,pB
E

)
, (18)

where xB, pB denotes Bob’s measurement result. P(xB, pB)
is the probability density of the measurement, ρ

xB,pB
E is the

eavesdropper’s state conditional on Bob’s measurement result,
and S is the von Neumann entropy of the quantum state ρ4.
Assuming that the loss and noise of Bob’s detector are trusted
and cannot be accessed by the eavesdropper, Eq. (18) can be
further expressed as [27]

χBE =
2∑

j=1

G

(
ξ j − 1

2

)
−

5∑
j=3

G

(
ξ j − 1

2

)
, (19)

where G(x) = (x + 1)log2(x + 1) − xlog2x and ξ1,2 are sym-
plectic eigenvalues of the covariance matrix,

	4
AB′ =

(
XI

√
T1Z4σz√

T1Z4σz T1(Y + χline )I

)
. (20)

As is known, the Holevo information χBE is maximized if
state ρ4 shared by Alice and Bob is Gaussian. Therefore, χBE

can be bound by a function of the covariance matrix (20) in
which Z4 would be replaced by the correlation of a two-mode
squeezed vacuum ZEPR = √

V 2 − 1. The correlation of Z4 for
state |�4〉 does not take such a simple mathematical form but
turns out to be almost equal to ZEPR for small variance [12].
Hence, for a sufficiently low modulation variance, the bound
on χBE is almost identical to the one obtained for a Gaussian
modulation. So we have

ξ 2
1,2 = 1

2
[A ±

√
A2 − 4B], (21)

with

A = V 2 + T 2
1 (V + χline )2 − 2T1Z2

4 (22)

and

B = T 2
1

(
V 2 + V χline − Z2

4

)2
. (23)

The calculation of ξ3,4,5 using the security analysis technol-
ogy of CV QKD is quit redundant; we here present only the
final equations, and a detailed derivation can be found in our
previous work [28]. So we have

ξ 2
3,4 = 1

2
[C ±

√
C2 − 4D], ξ5 = 1, (24)

where

C = 1

T 2(V + χtot )2

{
Aχ2

het + B + 1

+ 2χhet
[
V

√
B + T (V + χline ) + 2T Z2

4

]}
, (25)

D =
(

V + √
Bχhet

T (V + χtot )

)2

. (26)

For now, we can evaluate the performance of the proposed
DMCS-based QSS protocol.

IV. PERFORMANCE ANALYSIS AND DISCUSSION

In this section, we discuss the performance of the proposed
DMCS-based QSS protocol in terms of both the asymp-
totic limit and finite-size regime. Before performing the
numerical simulation, several global parameters have to be
assigned according to the realistic experimental environment
[9]. Therefore, we set the attenuation coefficient of a standard
fiber link to δ = 0.2 dB/km, the detection efficiency and elec-
tronics noise of the imperfect heterodyne detector to μ = 0.6
and vel = 0.05, the reconciliation efficiency to β = 0.98, and
excess noise to ξ0 = 0.001. Figure 3 shows the asymptotic
performance of the DMCS-based QSS protocol; these results
are optimized by considering the optimal modulation variance
in each transmission distance (shown in the inset). Note that
the optimal modulation variances are very small (ranging
from 0.35 to 0.75) because the established security proof of
discretely modulated CV QKD [12] has shown that small
modulation variance is beneficial for preventing information
from being overheard by Eve. The maximal transmission dis-
tance of the DMCS-based QSS protocol reaches more than
100 km (blue line) when only two users cooperatively work
in the QSS network. However, the performance decreases as
the number of users increases; especially, when the number of
users is 40 (green line), the transmission distance is reduced
to less than 20 km. This is actually to be expected; as we
mentioned in Sec. II, the secret key rate of the QSS protocol
has to be the smallest secret key rate among all two-party CV
QKD links. For security, the other n − 1 dishonest users in
each CV QKD link are deemed to be untrusted, thereby intro-
ducing amounts of noise. That is to say, the more untrusted
users that exist, the more noise will be introduced. To verify
the above inference, we plot (Fig. 4), for the proposed DMCS-
based QSS protocol (solid lines) and point-to-point CV QKD
protocol (black dashed line), the resistance to noise as a
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FIG. 3. Asymptotic secret key rate of the DMCS-based QSS
protocol as a function of transmission distance. Inset: Optimal mod-
ulation variance of the DMCS-based QSS protocol as a function of
the transmission distance. From right to left in both the main figure
and inset, the solid lines denote the number of users: n = 2, n = 5,
n = 10, n = 20, and n = 40.

function of the channel losses, which gives the excess noise
ξ0 given a null secret key for a given channel of transmittance.
We observe that the best resistance can be obtained when
n = 1; this situation represents the point-to-point CV QKD
where only one user and the dealer share a random secret
key over an insecure quantum channel, while the resistance
continuously degenerates as the number of users increases.
Actually, the ability of the proposed DMCS-based QSS pro-
tocol to resist the channel-added noise caused by the channel
should be identical if each newly added untrusted user does

FIG. 4. Tolerable excess noise ξ0 of the DMCS-based QSS pro-
tocol as a function of the channel losses (measured in decibels). The
black dashed line (the number of users n = 1) denotes point-to-point
CV QKD where only one user and the dealer share a random secret
key. From top to bottom, the solid lines denote n = 2, n = 5, n = 10,
n = 20, and n = 40.

FIG. 5. Secret key rate as a function of the transmission distance.
Dashed lines denote the composable secret key rate of the DMCS-
based QSS protocol (the number of users n = 2). For comparison,
the black solid line denotes the asymptotic secret key rate of point-
to-point discretely modulated CV QKD (the number of users n = 1).
The red dotted line denotes the Piradola-Laurenza-Ottaviani-Banchi
(PLOB) bound [29]. From right to left, dashed lines correspond to
block lengths of 1014, 1012, 1010, 108, and 106.

not introduce any excess noise; this, obviously, is impossible.
The introduced excess noise caused by an untrusted user will,
to some degree, influence the protocol’s resistance capacity.
Therefore, having in mind the results of Fig. 4, it is not a
surprise that the proposed DMCS-based QSS protocol gives
the maximal transmission distance when n has the smallest
value of 2.

The above performance analysis is based on an assumption
that one considers the security of the QSS protocol in the
asymptotic regime of infinitely many signals exchanged by
users and the dealer. However, the practical security of QSS
implementations is, in fact, jeopardized due to the finite length
of the data blocks. Therefore, it is necessary to consider the
impact of the finite-size effect on the proposed DMCS-based
QSS protocol. Thanks to the recently established composable
security proof for discretely modulated CV QKD [16], we
therefore can further derive its composable security under the
finite-size effect. The calculation for the composable security
key rate of the proposed QSS protocol is presented in Ap-
pendix A. As an example, the dashed lines in Fig. 5 depict
the composable secret key rates of the DMCS-based QSS
protocol in the situation in which only two users cooperatively
communicate with the dealer. This situation belongs to the
simplest QSS network, thereby maximizing the performance
of the QSS protocol in theory. We find that the maximal trans-
mission distance increases as the data block length increase,
and it will be infinitely close to the asymptotic secret key rate
shown by the blue line in Fig. 3. A similar trend also occurs
when the number of users increases. That is to say, the data
block length is a crucial parameter that would dramatically
impact the performance of a realistic DMCS-based QSS sys-
tem. It is worth noticing that this composable security of the
DMCS-based QSS protocol is restricted to the hypothesis of
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FIG. 6. Asymptotic secret key rates of the 8PSK-modulated
QSS protocol (solid lines) and the QPSK-modulated QSS protocol
(dashed lines) as a function of transmission distance. Inset: Optimal
modulation variance of the 8PSK-modulated QSS protocol as a func-
tion of the transmission distance. From right to left in both the main
figure and inset, the solid lines and dashed lines denote the number
of users n = 2, n = 5, n = 10, n = 20, and n = 40.

collective Gaussian attacks. Under this assumption, we can ef-
ficiently estimate the parameters of the channel via maximum
likelihood estimators and bound the corresponding error in the
final secret key rate.

In addition, it is worth noting that the modulation strategy
of DMCSs used for the above analysis is QPSK. Actually,
there exist higher-dimensional discrete modulation strategies
for DMCSs, such as eight-phase-shift keying (8PSK). Com-
pared with QPSK, 8PSK allows each coherent state to carry
three bits of information, thereby improving the transmission
efficiency. Therefore, it will be valuable to investigate the
proposed QSS protocol using the 8PSK-modulated state. A
detailed derivation of the 8PSK-modulated state is presented
in Appendix B. We do not present the whole process of the
8PSK-modulated QSS protocol here since it is very similar to
QPSK-modulated QSS protocol described in Sec. II B. Now
the question is whether the 8PSK-modulated QSS protocol is
secure or not. As we analyzed before, the theoretical security
of the QSS protocol depends on its longest two-party CV
QKD link. That is to say, if we could find a way to prove
the security of this CV QKD link, the 8PSK-modulated QSS
protocol would be secure. Fortunately, the eight-state pro-
tocol, which exploits 8PSK-modulated coherent states as an
information carrier in CV QKD, has been proven to be secure
in the asymptotic limit [30]. Therefore, the security of the
8PSK-modulated QSS protocol can be proven by taking ad-
vantage of the security analysis technology of the eight-state
protocol. Figure 6 depicts the asymptotic performance of the
8PSK-modulated QSS protocol and its optimal modulation
variance at each transmission distance. For comparison, we
also plot the asymptotic performance of the QPSK-modulated
QSS protocol, shown by dashed lines. As expected, the 8PSK-
modulated QSS protocol outperforms the QPSK-modulated
QSS protocol in terms of both secret key rate and transmission

distance when they have the same number of users. Therefore,
the performance of the DMCS-based QSS protocol can be en-
hanced by adopting a higher-dimensional discrete modulation
strategy.

V. CONCLUSION

In this work, we considered a quantum secret-sharing pro-
tocol which enables remote users to cooperatively share a
secret key with the dealer. In particular, we implemented
this protocol with discretely modulated coherent states. By
tactfully exploiting the well-established security analysis
technology of discretely modulated CV QKD, we proved the
theoretical security of the proposed DMCS-based QSS proto-
col against both eavesdroppers (collective Gaussian attacks)
and dishonest users. Mainly, the QPSK-modulated QSS pro-
tocol was analyzed; we showed that its maximal transmission
distance in the asymptotic limit reaches more than 100 km but
will be reduced when we consider its composable security.
We also investigated the performance of the 8PSK-modulated
QSS protocol; the result showed that the proposed QSS pro-
tocol can be enhanced by using a higher-dimensional discrete
modulation strategy.

In summary, the proposed DMCS-based QSS protocol
can meet the requirement of metropolitan quantum key shar-
ing between multiple users. In a possible future study, we
will introduce some non-Gaussian operations, such as pho-
ton subtraction and quantum catalysis, to further enhance the
performance of the QSS protocol.
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APPENDIX A: CALCULATION OF THE COMPOSABLE
SECRET KEY RATE

FOR THE DMCS-BASED QSS PROTOCOL

As we analyzed in the main text, the security of the DMCS-
based QSS protocol can be guaranteed if the lowest secret
key rate in all CV QKD links remains positive. Therefore,
to consider the composable security of the proposed QSS
protocol, we need to calculate the composable secret key rate
of the longest CV QKD link in theory.

Let M be the total number of transmitted signals and m be
the number of signals that are taken advantage of by parameter
estimation with failure probability εPE . Setting r = m/M, the
composable secret key rate of this link can be expressed as

Rcomp � (1 − r)p

[
RεPE − �AEP

(
pε2

s /3, |L|)√
M(1 − r)

+ log2

[
p
(
1 − ε2

s /3
)] + 2log2

√
2εh

M(1 − r)

]
, (A1)
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FIG. 7. Description of nonorthogonal states with the 8PSK for-
mat and the partition of phase space in four quadrants.

where p denotes the success probability of error correction
and RεPE is the finite-size expression of the key rate R of
Eq. (11) which accounts for the imperfect parameter esti-
mation and the reduced number of signals. This is given by
replacing

R → (1 − r)RεPE . (A2)

We have

�AEP(εs, |L|) := 4log2(2
√

|L| + 1)
√

log
(
2/ε2

s

)
, (A3)

where the parameter |L| is the cardinality of Bob’s outcome;
it is equal to 4 for QPSK. In our numerical simulation, the
related parameters in Fig. 5 are set to r = 0.01, p = 0.9, and
εs = εh = εPE = 10−10.

It is noteworthy that the above-mentioned parameter esti-
mation, which is a crucial step for CV QKD, was detailed
in both Refs. [12,16]; however, the former is designed for
Gaussian-modulated protocols, while the latter is for protocols
with discrete alphabets assuming a Gaussian channel. As our
proposed DMCS-based QSS is based on discretely modulated
CV QKD, our calculation is derived from Ref. [16].

APPENDIX B: DERIVATION OF THE 8PSK-MODULATED
NONORTHOGONAL STATE

As we presented in Sec. II A, DMCSs can be generalized
to the one with N quantum states |αN

k 〉 = |αei2kπ/N 〉. One can
consequently infer |α8

k 〉 = |αei2kπ/8〉 in the 8PSK modulation
strategy. Figure 7 depicts a diagram of DMCSs using 8PSK
modulation in phase space.

Similarly, DMCSs using 8PSK modulation can be deemed
a pure state which defined as

|�8〉 = 1

4

7∑
k=0

∣∣ψ8
k

〉∣∣α8
k

〉
, (B1)

where the states

∣∣ψ8
k

〉 = 1

2

7∑
m=0

ei(1+4k)mπ/4
∣∣φ8

m

〉
(B2)

are orthogonal non-Gaussian states. State |φ8
m〉 can be de-

scribed as follows:

∣∣φ8
k

〉 = e−α2/2

√
λk

∞∑
n=0

e
α(8n+k)√

(8n+k)! |8n + k〉, (B3)

with

λ0,4 = 1

4
e−α2

[
cosh(α2) + cos(α2)

± 2cos

(
α2

√
2

)
cosh

(
α2

√
2

)]
, (B4)

λ1,5 = 1

4
e−α2

[
sinh(α2) + sin(α2)

±
√

2cos

(
α2

√
2

)
sinh

(
α2

√
2

)

±
√

2sin

(
α2

√
2

)
cosh

(
α2

√
2

)]
, (B5)

λ2,6 = 1

4
e−α2

[
cosh(α2)− cos(α2)± 2sin

(
α2

√
2

)
sinh

(
α2

√
2

)]
,

(B6)

λ3,7 = 1

4
e−α2

[
sinh(α2) − sin(α2)

∓
√

2cos

(
α2

√
2

)
sinh

(
α2

√
2

)

±
√

2sin

(
α2

√
2

)
cosh

(
α2

√
2

)]
. (B7)

The sender prepares bipartite state |�8〉 with variance V =
VM + 1, where VM = 2α2. The sender implements projective
measurements on one of the set |ψ8

k 〉〈ψ8
k | for k ∈ Z to the first

half of |�8〉 and projects the second half of the set |ψ8
k 〉〈ψ8

k |
on one of the eight nonorthogonal states |α8

k 〉. The modu-
lated state is subsequently sent through an untrusted quantum
channel. The covariance matrix of the modulated state can be
expressed by

	8
AB =

(
XI Z8σz

Z8σz Y I

)
, (B8)

where

X = Y = 1 + 2α2,

Z8 = 2α2
7∑

k=0

λk−1
3/2λk

−1/2. (B9)

Here the addition arithmetic should be operated with modulo
8, and the remaining calculations are the same as for the
QPSK-modulated state.
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