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Sequential measurement-device-independent entanglement detection by multiple observers
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Violation of a Bell inequality certifies that the underlying state must be entangled in a device-independent way,
although there exist some entangled states which do not violate such an inequality. However, for every entangled
state, it is possible to find a Hermitian operator called an entanglement witness that can detect entanglement
through some local measurements in a device-dependent method, but implementation of wrong measurements
may lead to fake detection of entanglement. To avoid such difficulties, measurement-device-independent entan-
glement witness (MDI-EW) based on a semiquantum nonlocal game was proposed, which is not only robust
against wrong measurements but also against a specific kind of lossy detectors. We employ here a measurement-
device-independent entanglement witness to detect entanglement in a scenario where half of an entangled pair is
possessed by a single observer while the other half is with multiple observers performing unsharp measurements,
sequentially, independently, and preserving entanglement as much as possible. Interestingly, we find that the
numbers of successful observers who can detect entanglement, measurement-device-independently, both with
equal and unequal sharpness parameters of the noisy measurements, are greater than that obtained with standard
and Bell-inequality-based entanglement detection methods, reflecting its robustness. The entanglement contents
of the sequentially shared states are also analyzed. Unlike other scenarios, our investigations also reveal that
in this measurement-device-independent situation, states having entanglement in proximity to maximal remain
entangled until there are two sequential observers, even if they measure sharply.
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I. INTRODUCTION

The existence of entangled states [1] is one of the most
nonclassical features of the quantum mechanical description
of nature, which, e.g., can lead to violation of Bell inequal-
ity [2], testable in the laboratory. The violation implies that
quantum theory cannot be replaced by a local realistic model,
compatible with classical theory, and this feature of quantum
theory enables various quantum information processing tasks
like generation of true randomness [3–6], secure key distribu-
tion [7–11], and possibly quantum communication [12–16].

Over the years, it has been established that one of the effi-
cient ways to detect entanglement in the laboratory is through
entanglement witnesses (EWs), which can be implemented
through local measurements performed on the individual
systems that constitute the composite system [17–20]. How-
ever, implementing an EW requires proper characterization of
the measurement devices and some prior information of the
shared states. On the other hand, violation of Bell inequality
certifies entanglement device-independently while paying a
cost; viz., there exist entangled states, where entanglement
cannot be probed via violation of a Bell inequality [21–26].
See Ref. [27] in this regard.

It is known that corresponding to every Bell inequality,
there is a nonlocal game, and for each nonlocal game, one can
construct a Bell inequality [28]. Extending the Bell scenario,
Buscemi has recently proposed a “nonlocal semiquantum
game,” where every entangled state yields a higher payoff
compared to all separable states [29]. In this game, two

observers share a bipartite state and on top of that, instead
of classical inputs, like in a standard Bell scenario, a “ref-
eree” gives them quantum inputs. Each party then measures
jointly on the respective inputs and their part of the shared
state. Outputs of the observers together with inputs are used
to constitute the payoff function, which shows an advantage
for any entangled state over all separable states. Note that
except for the quantum inputs, other devices are untrusted in
this scenario. Such a semiquantum nonlocal game can also be
extended to the multiparty scenario [29].

Since all entangled states are “nonlocal” according to the
semiquantum game [29], i.e., since the payoff function pro-
vides a higher value for any entangled state than all separable
states, it can be a witness for detecting entanglement. We refer
to such a situation—a higher value of the payoff function than
all separable states—as “Buscemi nonlocality,” and contrast
it with the previous notion of “Bell nonlocality” [2], which
referred to a violation of Bell inequality. It is known that there
exist EWs for every entangled state [17–20,30]. Given such an
EW, in Ref. [31], Branciard et al. constructed a new EW, based
on Buscemi’s game, which does not depend on the internal
functioning of measurement devices, i.e., it is a measurement-
device-independent EW (MDI-EW), and it will not announce
any separable state as entangled even under implementation
of wrong measurements. However, in practical situations,
detectors may suffer from malfunctioning, which may lead
to loss of some outcomes. The performance of standard
EWs or violations of Bell inequality under the presence of
losses in the outcome of measurements has been investigated.
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It has been shown that lossy detectors can wrongly indicate
a separable state as entangled [32,33]. Recently, it was also
shown that under certain losses, even the MDI-EWs may show
a separable state to be entangled [34].

In quantum information processing tasks, it is important
to distribute resource states among several parties. In the
literature, there are various protocols to do that. In an un-
conventional scenario [35], Silva et al. showed that when an
entangled pair is shared between a single observer (say, Alice)
at one side and several other observers (say, Bobs) at the other,
acting sequentially and unsharply, no more than two Bobs
can exhibit violation of the Bell-CHSH inequality with Alice
[36]. See also Ref. [37], and for experimental verification,
see Refs. [38,39]. Note that by “acting unsharply,” we mean
that the performed measurements are noisy in a particular
way, viz., the intended measurements are admixed with white
noise. Later, the concept of sequential unsharp action has been
extended to other contexts, like Bell-type inequalities with
more than two settings at each site [40], quantum steering
[41,42], and entanglement witnesses [43]. However, it has
recently been shown that there are some information process-
ing tasks, notably in the context of self-testing instruments,
sharpness parameters, and randomness generation, where ad-
vantages can be exhibited invoking a sequential measurement
scenario which cannot be obtained in the standard situation.
See, e.g., Refs. [44–50].

In the present work, we focus on an information gain to
disturbance trade-off within a sequential measurement sce-
nario. Moreover, we investigate how the power of MDI-EWs
can be reflected in the case of this unconventional resource
distribution pioneered by Silva et al. [35]. In Ref. [43], it was
found that at most 12 Bobs can detect entanglement sequen-
tially, when standard EWs were employed. We also, likewise,
consider pure entangled states as the initial state and find
the maximal number of Bobs allowed in this protocol. The
behavior of entanglement content of the subsequent shared
states is also observed. We find that the maximal number of
Bobs who can identify entanglement with a single Alice can
go up to 14 in a measurement-device-independent way when
the shared initial state has entanglement more than or equal to
93.5% of the singlet. We also study the case when all the Bobs
measure with a common sharpness parameter. For an initially
shared maximally entangled state, the maximum number of
Bobs who can sequentially detect entanglement while using
a common sharpness parameter is six, which is greater than
when the same task is considered with standard EWs.

Let us mention here that in the case of detecting entan-
glement, using unsharp versions of EWs [43], if any of the
Bobs measures sharply, i.e., projectively, then there is no
possibility of detecting entanglement by any subsequent Bob,
as there is no residual entanglement between Alice and the
subsequent Bob. Therefore, if the Bobs have to detect en-
tanglement sequentially, then all of them except the last one
must measure unsharply [51]. On the other hand, at each step,
a very unsharp measurement may rule out the possibility of
detecting entanglement, and this can be interpreted as another
face of the well-known trade-off between information gain
and disturbance [52–54]. Hence, every Bob has to measure
with a threshold sharpness parameter, so that Alice and he can
detect entanglement in the sequential process. Interestingly,

in the context of MDI-EWs, we find that even if the first
Bob measures sharply, then the second Bob also can detect
entanglement, which was not the case when standard EWs
were employed [43].

It is to be noted, however, that the possibility of a certain
number of Bobs being able to detect entanglement does not
imply that all of them will be able to perform any task that uti-
lizes entanglement as a resource. The latter possibility exists
but needs to be separately checked for every task. This is much
like in entanglement detection in the standard (nonsequential,
single-Bob) scenario, where the existence of entanglement
between Alice and Bob often provides the possibility of per-
forming a nonclassical task, say, quantum dense coding [55],
but whether the same is actually possible needs to be checked
directly.

We also note here that the setup of sequential measure-
ments by several Bobs and single Alice can in a way tell us
about the robustness of the underlying entanglement detection
scheme, i.e., the ability to witness the entanglement even
after the measurements (to detect entanglement) of earlier
observer or observers. Our results compare the performance of
entanglement witnesses (EWs) and MDI-EWs under a given
task. Under the same assumptions, it was shown that an EW
can be used to detect entanglement at most by 12 sequential
observers to detect entanglement with a separated observer,
but with the corresponding MDI-EW, a maximum of 14 such
observers can detect entanglement with the same separated
observer. Therefore, apart from guaranteeing entanglement
independent of any measurements, MDI-EWs also perform
better than EWs in sequential detection of entanglement. We
believe that this gives us an operational way in which MDI-
EWs can be fundamentally differentiated from EWs.

Let us mention here two potential applications of using
sequential measurements in MDI-EWs. One is that generation
of randomness can also be devised in the MDI scenario with
sequential measurements. Second, MDI quantum key distribu-
tion has already been investigated in the literature. See, e.g.,
Ref. [56]. That task can also be devised within a sequential
scenario, where Alice can establish secure keys with many
Bobs.

The remaining part of the paper is organized as follows. In
Sec. II, we briefly discuss MDI-EWs and the unsharp mea-
surement formalism adopted for the purpose of our work. In
Sec. III, the scenario of entanglement sharing in the context of
MDI-EW is discussed. In Sec. IV, we find the maximum num-
ber of sequential and independent single-laboratory observers,
who are able to detect the bipartite entanglement shared with
the common distant-laboratory observer using MDI-EWs. In
Sec. V, we analyze the change in entanglement content due to
an unsharp measurement required for the MDI-EW procedure,
in the states shared between the common observer and the se-
quential observers. In Sec. VI, the case of sequential observers
measuring with equal sharpness is considered, and finally we
end with conclusion in Sec. VII.

II. ESSENTIALS

Let us begin by discussing the necessary ingredients re-
quired to detect bipartite entanglement shared between Alice
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at the one side and multiple Bobs at the other side in a
measurement-device-independent scenario.

A. Measurement-device-independent entanglement witness

An entanglement witness operator, W , is defined as a Her-
mitian operator such that for all states σAB ∈ S, tr(σABW ) � 0,
while there exists at least one entangled state, ρAB, in the same
bipartition, such that tr(ρABW ) < 0, where S is the set of
separable states in the bipartition, A : B [17–20,30], but such
witness operators have at least two disadvantages. First, to
implement them, one requires characterized devices as well
as some prior information about the state to be detected, and
second, in the case of lossy measurements, the expectation
value of witness operators for separable states may turn out
to be negative, leading to a false positive detection of entan-
glement [32]. To avoid such uncertainties, Branciard et al.
introduced the concept of measurement-device-independent
entanglement witnesses [31]. Specifically, given an EW, the
semiquantum nonlocal game of Buscemi [29] is used to obtain
as MDI-EW.

A complete set of density matrices can be used to span the
space of Hermitian operators. Let an entanglement witness op-
erator, W , act on the tensor-product Hilbert space HA ⊗HB,
with the dimensions of HA and HB being two each. Consider
any two complete sets of density matrices, {τs}3

s=0 acting on
HA and {ωt }3

t=0 acting on HB, such that W can be expanded
as

W =
∑

st

βstτ
T
s ⊗ ωT

t , (1)

where the superscript, T, over the states denotes their trans-
poses and βst are real coefficients. Now, consider the scenario
where two parties, Alice and Bob, possess a shared state ρAB

operating on the Hilbert space HA ⊗HB. Further, Alice and
Bob receive quantum inputs, from a “referee,” in the form
of a state from a set of qubit states, {τs}3

s=0 and {ωt }3
t=0,

respectively. They then perform a joint measurement on their
respective parts of the shared state and the state obtained from
the referee, with the referee providing the state randomly from
the respective sets. The conditional probability that Alice and
Bob obtain the classical outcomes a and b respectively, given
that the input states to them are respectively τs and ωt , is
denoted by P(a, b|τs, ωt ).

Let us now consider a situation where one chooses joint
measurements that have only two outcomes, i.e., either 0 or 1.
The “MDI-EW function” for the state ρAB is then shown to be
given by [31]

I (ρAB) =
∑
s,t

βst P(1, 1|τs, ωt ). (2)

Here,

P(1, 1|τs, ωt )= tr[(|�+〉〈�+| ⊗ |�+〉〈�+|)(τs ⊗ ρw
AB ⊗ ωt )],

(3)
where outcome 1 indicates the successful projection of the
joint measurements by any observer on her or his respective
part of the shared state and an input state onto the maximally
entangled state, |�+〉 = 1√

2
(|00〉 + |11〉). It can be shown

after doing a bit of algebra that [31]

I (ρAB) = tr(ρABW )

4
. (4)

Therefore, entangled states detected by standard entanglement
witness operator, W , are also detected by the MDI-EW func-
tion I , i.e., I < 0 and 〈W 〉 < 0 occur for the same set of
states. Additionally, in case of the MDI-EW function, what-
ever be the measurements performed by each party, I � 0
for all separable states [31]. Hence, the function I guarantees
entanglement of state independent of measurements that are
being performed. The above construction of MDI-EW can
easily be generalized to higher dimensions and to cases of
states with a higher number of parties [31].

B. Unsharp measurement and modified MDI-EW

It can be seen that evaluation of the MDI-EW function,
I (ρAB), given by Eq. (2), requires a two-outcome projective
measurement, with projectors

P+ = |�+〉〈�+|,
P− = I4 − |�+〉〈�+|, (5)

where P+ and P− are assumed to correspond to outcomes 1
and 0 respectively. Note that P+ corresponds to the projector
of one of the Bell states, precisely |�+〉, whereas P− corre-
sponds to the projector onto the span of the remaining three
Bell states, being therefore the sum of the projectors of those
three Bell states. Now in real experiments, the measurements
may not be perfect; that is, the measurement apparatuses may
be noisy. In particular, we assume that the projectors corre-
sponding to each of the four Bell states are mixed with a white
noise, I4

4 , with equal weight. Therefore, we consider an un-
sharp version of the above projective measurement, described
by “effect” operators {E+

λ , E−
λ }, relative to {P+, P−}, given

by

E+
λ = λP+ + 1 − λ

4
I4,

E−
λ = λP− + 3

1 − λ

4
I4, (6)

where E+
λ and E−

λ correspond to outcomes 1 and 0 respec-
tively, and 0 � λ � 1. Id denotes the identity operator on Cd .

Though there are information processing tasks which
consider less restrictive measurements and classical commu-
nication between Bobs to obtain any number of successful
detection of entanglement [35,45], our goal is slightly dif-
ferent. First, unsharp measurements of the type considered in
our paper, i.e, Eq. (6), arise very naturally in the case of a
nonideal set up. E.g., if the apparatus is of the Stern-Gerlach
type, then the unsharpness characterises the overlap between
spatial wave packets associated to the up and down spins.
Second, our motivation is to understand the way in which
unsharp measurements lead to a nontrivial information-gain
versus disturbance trade-off, which put limits on the number
of Bobs.

The parameter, λ, determines the sharpness quotient of
the measurement, i.e., if λ = 1, then one obtains the ideal
measurement given by Eq. (5). Now, it is interesting to study
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the MDI-EW given in Eq. (2) by considering the fact that ob-
servers perform unsharp measurements. An unsharp version
of the projective measurement, given in Eq. (6), will cause a
lesser reduction in the amount of shared entanglement than
the projective measurement itself. Therefore, the maximum
number of pairs of observers who can detect an initially
shared entanglement, may be more if unsharp measurements
are performed. But, on the other hand, the measurements
have to be sharp enough [close enough to the projective
measurements, given in Eq. (5)] to detect the entanglement
present in the state. This will lead to a restriction on the
number of pairs who can detect entanglement starting from
an initially entangled state, because whenever measurements
are performed to collect information, they reduce the shared
entanglement. Therefore, it can be of practical as well as of
theoretical interest to study the maximum number of pairs
of such observers. For simplicity, we assume that Alice can
perform her measurement perfectly but the sequential Bobs
have noisy measurement apparatuses. Given the situation that
Alice and Bob respectively receive states τs and ωt as inputs
and Alice measures in {P+, P−} on her part of ρAB and τs

while Bob performs an unsharp measurement with {E+
λ , E−

λ }
on his part of ρAB and ωt , the conditional probability that Alice
and Bob both obtain outcome 1 is then given by

Pλ(1, 1|τs, ωt ) = tr[(P+ ⊗ E+
λ )(τs ⊗ ρAB ⊗ ωt )]. (7)

Therefore, the modified MDI-EW function for the case when
one of the parties performs an unsharp measurement, with
{E+

λ , E−
λ }, on his part of the state ρAB and the input from the

referee, reads

Iλ(ρAB) =
∑
s,t

βst Pλ(1, 1|τs, ωt ). (8)

1. Postmeasurement state

In our sequential-measurement scenario, the postmeasure-
ment state plays an important role and hence lets us identify
the rule for assigning the postmeasurement state to a measure-
ment outcome. Suppose an unsharp joint measurement with
{E+

λ , E−
λ } is performed at one side of the shared state and

on the quantum input, denoted by η. According to the von
Neumann–Lüders transformation rule [57], up to a unitary, if
the + outcome occurs, the postmeasurement state is given by(

I ⊗
√
E+

λ

)
η
(
I ⊗

√
E+

λ

)
. (9)

C. MDI-EW for Werner states

Consider the (bipartite) Werner states, given by

ρw
AB = q |
−〉〈
−| + 1 − q

4
I4, (10)

where q is the mixing probability of the singlet, |
−〉 =
1√
2
(|01〉 − |10〉), in ρw

AB. The MDI-EW function, I (ρw
AB), for

this state can be represented as [31]

I (ρw
AB) = 5

8

∑
s=t

P(1, 1|τs, ωt ) − 1

8

∑
s �=t

P(1, 1|τs, ωt ), (11)

where s, t take values 0, 1, 2, and 3, and

τs = σs
I2 + �σ · �n

2
σs, ωt = σt

I2 + �σ · �n
2

σt , (12)

with σ0 = I2, �σ = (σ1, σ2, σ3) being the usual Pauli matrices,
and �n = 1√

3
(1, 1, 1).

The expression for the MDI-EW function in Eq. (11) can
be simplified and written in terms of the state parameter q, as

I (ρw
AB) = 1 − 3q

16
. (13)

This will be useful in our later calculations.

III. SCENARIO

Consider a scenario where, initially, a bipartite entangled
state is shared between two spatially separated laboratories,
overseen respectively by Alice (A) and the Bobs (Bi, i =
1, 2, . . . , n). A measures projectively on her part and several
Bobs (Bi), in the other laboratory, measure sequentially and
independently. The aim is to find the maximum number of
Bobs, n, such that each ABi pair is able to witness Buscemi
nonlocality or MDI entanglement between them. As opera-
tions are local and strong enough to fetch information about
the entanglement content of a state shared by A and Bi, it is
expected that the state shared by A and Bi+1 (next Bob in
sequence) will have less entanglement than that of ABi. The
unsharp measurement has to be strong enough to detect the
shared state’s entanglement, and at the same time, it has to be
weak enough so that the postmeasured state shared between
Alice and the next Bob retains as much entanglement as pos-
sible, so that the remnant resource can be used subsequently.
This observation tells us that there may exist an upper bound
on the maximum number of Bobs, such that each of them can
detect entanglement by combining their and Alice’s statistics.
Note that A can do her part of measurements at any time, i.e.,
independent of any of the Bi’s measurement, as operators from
HA and those fromHB commute with each other.

A. Subsequent shared states due to unsharp measurement

Let us consider the cases where Alice, A, and the first
Bob, B1, share a pure entangled state. It will be seen in the
following paragraph that subsequent weak measurements by
each observer produce a mixed state with a mixture of initial
entangled state, shared by the AB1 pair, and white noise.

Suppose that Alice and the first Bob share the state |
〉 =
α|01〉 − √

1 − α2|10〉, for 0 < α � 1√
2
, or equivalently, ρ

wα

AB1
,

being given by

ρ
wα

AB1
= q1|
〉〈
| + 1 − q1

4
I4, (14)

with q1 = 1. Now, let B1 measure the unsharp POVM (pos-
itive operator valued measurement) with effect operators
{E+

λ1
, E+

λ1
}BB′ , and sharpness parameter λ1, on his part of the

shared state and input system B′ (from the referee) in state ωt .
The quantum input ωt has four random choices, say, for each
t = 0, 1, 2, and 3, occurring with equal probability. As each
Bob measures independently, the average state ρAB2 that A and
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the next Bob B2 share is given by

trB′

{
1

4

3∑
t=0

[(
I2 ⊗

√
E+

λ1

)(
ρ

wα

AB1
⊗ ωt

)(
I2 ⊗

√
E+

λ1

)

+ (
I2 ⊗

√
E−

λ1

)(
ρ

wα

AB1
⊗ ωt

)(
I2 ⊗

√
E−

λ1

)]}
, (15)

simplifying which again turns out to be a state of form in
Eq. (14), viz.,

ρ
wα

AB2
= q2|
〉〈
| + 1 − q2

4
I4,

with q2 = f (λ1)q1, where

f (λ) = 1

2

[
1 +

√
(1 + 3λ)(1 − λ) + √

(3 − 3λ)(3 + λ)

4

]
.

(16)

The above structure is iterative, and therefore the state that
the ABi duo possesses reads

ρ
wα

ABi
= qi|
〉〈
| + 1 − qi

4
I4,

where

qi = f (λi−1)qi−1, (17)

with f (λi ) being given in Eq. (16).

B. Modified MDI-EW for nonmaximally entangled states mixed
with white noise

In this subsection, we show how MDI-EW can be modified
for unsharp measurements on a shared state ρ

wα

AB . Note that the
Werner states, ρw

AB, are a mixture of a singlet with white noise.
For this class, the MDI-EW, I (ρw

AB), is an optimal witness
[30,31].

Further, as the MDI-EW is independent of measurements,
the bound for separable states remains zero even when one of
the parties perform unsharp measurements. Hence, the mod-
ified measurement-device-independent entanglement witness
for states, ρwα

AB , with B doing an unsharp measurement is given
by

Iλ(ρwα

AB ) = 5

8

∑
s=t

Pλ(1, 1|τs, ωt ) − 1

8

∑
s �=t

Pλ(1, 1|τs, ωt ),

(18)
where P(1, 1|τs, ωt ) for state ρw

AB in Eq. (11) is just replaced
by Pλ(1, 1|τs, ωt ) for state ρ

wα

AB . We find that

Iλ(ρwα

AB ) = −λqα
√

1 − α2

4
+ 1 − λq

16
. (19)

It can be seen that for λ = 1 and α = 1√
2
, Eq. (19) reduces to

Eq. (13). It gives a lower bound on the sharpness parameter,
which we refer to as the “threshold sharpness parameter,”
λth = 1

q(1+4α
√

1−α2 )
, such that Iλ(ρwα

AB ) < 0, ∀λ > λth. Note

that for the maximal resourceful state, i.e., the singlet, λth =
1
3 , which is the lowest for any entangled state of the form ρ

wα

AB .

FIG. 1. Sequential witnessing of entanglement in a
measurement-device-independent scenario. We plot here the
maximum number n in the MDI scenario vs the entanglement, E (α),
of the initial shared state |
〉. The vertical axis is dimensionless,
while the horizontal one is in ebits.

IV. WITNESSING BUSCEMI NONLOCALITY
SEQUENTIALLY WITH INITIALLY SHARED ENTANGLED

PURE STATE

We now move on to study the maximum number (n) of
Bobs who can act independently and sequentially to wit-
ness shared entanglement with a single observer, Alice, in
the measurement-device-independent scenario. Note that this
maximum is achieved only when all of the Bobs measure
with their respective threshold sharpness parameters. The ini-
tial state shared between the two laboratories is assumed to
be pure entangled state, |
〉 = α|01〉 − √

1 − α2|10〉, where
0 < α � 1/

√
2. The entanglement in this state is measured by

the von Neumann entropy of the reduced density matrix (en-
tanglement entropy) and is given by E (α) = −α2 log2 α2 −
(1 − α2) log2 (1 − α2).

In Fig. 1, we depict the maximum number of Bobs that can
detect entanglement in an MDI-way for a given entanglement
content E (α). In particular, we find that if the initial shared
state is close to the maximally entangled state, viz. if E (α) �
0.9349, the maximum number of Bobs, n, which can keep the
state entangled, reaches 14, the highest in the given scenario.
In a similar study using standard EWs [43], which can be
termed a “device-dependent (DD) scenario,” the maximum
number again remains fixed for a certain finite range of initial
shared entanglement (of the AB1 pair). However, it is inter-
esting to notice that in the DD case, the maximum number of
Bobs that can identify entanglement is 12, which is less than
that in the MDI scenario considered here. For any initially
shared pure entangled state, the maximum number of Bobs in
the device-dependent scenario of Ref. [43], denoted by nDD,
is either less or equal to that in the MDI scenario considered
here; i.e., nDD � n for any given initial entanglement.

The lower value of nDD than n for arbitrary initially shared
pure entanglement deserves a comment. This is arguably due
to the fact that the number of successful Bobs detecting en-
tanglement with a single Alice depends on the choice of the
witness, and in particular, on how the measurement disturbs
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the shared state. In the standard DD scenario considered
in Ref. [43], the sharp limit of the unsharp measurements
are rank-1 projective measurements, while the MDI scenario
considered here involves quantum inputs, and the sharp mea-
surement limit on the portion of the shared state in possession
of the Bobs becomes a POVM of nonunit rank. A nonunit
rank measurement has a general tendency to affecting the
entanglement of the shared state less, and potentially affects
the MDI procedure when we are far from the beginning Bob
in the sequence of Bobs. It is to be remembered that the later
Bobs are required to make sharper measurements to detect
entanglement. Another point to mention in this respect is that
the MDI scenario uses quantum inputs at both the laboratories
possessing the bipartite state, and the subsequent measure-
ments at both the laboratories are on C2 ⊗ C2. In contrast, the
DD scenario of Ref. [43] considers single-qubit measurements
at both the laboratories. Consequently, a comparison between
the two scenarios is made difficult by another roadblock.

Comparing the results in Ref. [43] with ours, we can com-
ment that the MDI scenario for witnessing entanglement is
more robust in the context of unsharp measurements than that
of the device-dependent witness. As we mentioned earlier,
MDI-EW was also shown to be robust against standard EW
in the case of lossy detectors [31].

V. REDUCTION IN ENTANGLEMENT BY UNSHARP
MEASUREMENT: LIMIT ON SUCCESSFUL DETECTION

OF ENTANGLEMENT SEQUENTIALLY

In this section, we study the entanglement content of bipar-
tite states shared by Alice and each of the sequential Bobs. We
investigate the reduction in bipartite entanglement, occurring
due to the unsharp measurement performed at one side. For
this purpose, we calculate the negativity [58–61], N , which
for the state, ρ

wα

ABi
, is given by

N (ρwα

ABi
) = max

{
qi(1 + 4α

√
1 − α2) − 1

4
, 0

}
. (20)

For simplicity of notation, we will use Ni instead of N (ρwα

ABi
),

i = 1, 2, . . . , n. The change in the negativity, denoted by
�Ni(λi ), due to an unsharp measurement by Bi which is
“valid” for 0 � λi � 1 and “required” to satisfy λi > λth

i to
witness entanglement in ρ

wα

ABi
, is defined as the difference in

the negativities of the states before and after this measure-
ment, i.e.,

�Ni(λi ) = Ni − Ni+1. (21)

Here, by “valid,” we mean that the parameters λi in the
measurement are to be chosen in the given range (0 � λi �
1) for the measurement to be to be quantum mechanically
allowed, and by “required,” we mean that the sharpness pa-
rameters λi are to be chosen such that entanglement present
can be detected. Surely, �Ni(λi ) is a positive quantity, as local
measurements can only keep or decrease entanglement. The
negativity of the state that observers A and Bi+1 share can be
obtained by the above equation if one knows the negativity
of the state that A and Bi share, and the change in negativity
due to the measurement by Bi. This procedure is repeated
by subsequent Bobs, until the negativity of the state shared

between some Bi+1 and A, after an unsharp measurement by
Bi, reduces to zero.

The change in the negativity of ρ
wα

ABi
, due to a “valid” and

“required” measurement by Bi, can be evaluated to be

�Ni(λi) = 1 + 4Ni

4
(1 − f (λi)), Ni+1 �= 0;

= Ni, Ni+1 = 0. (22)

It can be easily checked that �Ni(λi ) > 0 for 1/3 > λi �
1 for any Ni �= 0. Therefore, subsequent measurements to
witness the shared entanglement result only in lowering of
entanglement content. This is expected, as negativity is an en-
tanglement monotone and therefore its value either decreases
or remains the same under local quantum operations and
classical communication, as mentioned earlier. One can also
observe that it is an increasing function of λi, and therefore
sharper measurements correlate with greater decrease in the
entanglement content.

Note that the unsharp measurement parameter, λi, for each
i, should be equal to the threshold unsharpness parameter, λth

i ,
for the purpose of witnessing the shared entanglement sequen-
tially in the optimal scenario (to obtain the maximum number
of Bi who can sequentially witness the shared entanglement
with A), discussed in the previous section. The threshold un-
sharpness parameter further depends on the negativity of the
shared state, ρ

wα

ABi
, via the relation

λth
i = 1

4Ni + 1
. (23)

Therefore, in the optimal scenario, the change in negativity of
state, ρ

wα

ABi
, with negativity, Ni, when Ni+1 �= 0, turns out to be

�Ni
(
λth

i

) = 1
8 [1 + 4Ni −

√
Ni(1 + Ni ) −

√
3Ni(1 + 3Ni )].

(24)

Note that given a state with negativity Ni, �Ni(λth
i ) is al-

ways positive, and a strictly increasing function of the discrete
variable i (for Ni+1 �= 0), which guarantees that Nj = 0 can be
reached at some finite number of Bj .

VI. EQUISTRENGTH UNSHARP MEASUREMENTS

The optimal scenario where subsequent observers are al-
lowed to measure with the threshold value of sharpness
parameter can be experimentally challenging as well as costly.
It can be challenging because each subsequent Bob needs to
tune the apparatus precisely to attain the maximum number of
Bobs, which can be costly if they need to use separate appa-
ratuses for the different sharpness parameter. In this section,
therefore, we put some more restrictions on the Bobs. Specifi-
cally, independence of the sequential observers is lifted, to the
extent that they are required to measure with equal sharpness
parameter, λ ∈ ( 1

3 , 1]. In Fig. 2, the maximum number, n, of
such sequential observers with the same sharpness parameter,
λ, is plotted for fixed entanglement contents of the initial
state, namely E (α) = 0.935 and 1 ebit. In the former case,
the maximum n over all parameter range of λ, denoted by
say, nmax, is found to be five, whereas in the latter, the same
maximum is six. Note that for any given initial entangle-
ment, n is the maximum number of Bobs measuring at any
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FIG. 2. How weak can effective and equally strong Bobs be to
maximize their number? We plot here the maximum number of
observers, n, making unsharp measurements, against the common
sharpness parameter, λ. The Bobs are required to do unsharp mea-
surements of equal strength. The green circles represent situation for
which the shared initial state has E (α) = 1, while the blue line is for
initial states having E (α) = 0.935. Both axes represent dimension-
less quantities, while E is in ebits.

common sharpness parameter, λ, whereas nmax denotes the
maximum n over all λ. We can see that for initially shared
nearly maximally entangled states, nmax = 6. Again, this is
better when compared to the same task in a device-dependent
scenario, where a maximum of five observers can witness the
entanglement with equal unsharp measurements for initially
shared nearly maximally entangled states [43].

In the DD case, observers performing the sharpest mea-
surement (measurement with sharpness parameter equal to
1) cause shared entanglement between two laboratories to
vanish. That is, only the first Bob can detect the entanglement
with Alice and the rest Bobs cannot. On the other hand, here
we observe that even after the sharpest measurement, the
shared entanglement will exist for some initial shared entan-
gled states. This can be seen in Fig. 2; e.g., when the initial
state possesses nearly maximal or maximal entanglement, two
Bobs can detect entanglement with sharpness parameter being
equal to unity. The fact that entanglement can be nonzero even
after a sharp measurement suggests a better robustness of the
MDI-EW compared to the device-dependent witness operator.

Note that for any initially shared pure entangled state,
n = nmax is reached for intermediate values (not very high
and not very low) of sharpness measurement parameter, λ;
i.e., n = nmax is never achieved for values of λ close to 1/3
or close to 1 (see Fig. 2). Specifically, as one moves away
from the intermediate values of λ on the either side, i.e., either
higher or lower values, maximum number of observers, n,
measuring unsharply with equal strengths, either decrease or
remain the same. This suggests that in order to achieve the
maximum of n over all the values of sharpness parameter,
the observers should not set their sharpness parameter too
high or too low. Such observation can be explained by the
results reported in Sec. V. If the first observer, B1, sharing a
state with A having negativity N1, measures unsharply with a

FIG. 3. Variation of the range of the common sharpness pa-
rameter with respect to the initial entanglement in the equistrength
unsharp measurements scenario. The range of common sharpness pa-
rameter, �λn, is plotted against the initial entanglement, E (α), of the
shared state with n as the parameter. The ordinate is dimensionless
while abscissa is in ebits.

parameter λ1, then the state that is at the disposal of A and
B2 surely possesses, on average, a lower value of negativity,
N2, compared to N1, i.e., N2 < N1. This can be seen from the
relation given in Eq. (22). Since the negativity is decreasing
with subsequent measurements, the new threshold parameter,
λ2, is greater than λ1 [see Eq. (23)]. Therefore, if B1 fixes
the sharpness parameter to be at the threshold value at which
he can detect the shared entanglement, i.e., at λth

1 , then only
he can witness the entanglement while others cannot, as the
threshold sharpness parameter to detect entanglement will be
greater for subsequent Bobs. This explains the occurrence of
the least number of Bi at lower values of sharpness parameter.
On the other hand, if B1 chooses to measure sharply, i.e.,
λ1 = 1, then the state is disturbed to the maximum possible,
as discussed in Sec. V, and therefore, a lower number of Bis
can only witness entanglement sequentially with the same λ.

Let us now study the dependence of the length or the range
of common sharpness parameter, denoted by �λn, on the
initial entanglement, E (α), of the shared state, with n being
the parameter. For n = nmax, �λn decreases with decrease in
E (α), and for the rest of the values of n, �λn increases with
decrease in E (α). See Fig. 3.

VII. CONCLUSION

Entangled states have already been established as a re-
source in several quantum information processing tasks.
Therefore, detection of entanglement in laboratory setups
is an important task. If partial knowledge of an entangled
state is available, employing entanglement witnesses for en-
tanglement detection is, in principle, possible with trusted
devices. On the other hand, violation of Bell inequality cer-
tifies entanglement in a device-independent way but at the
cost that not all entangled states violate a Bell inequal-
ity. To bridge this gap, a measurement-device-independent
entanglement witness (MDI-EW) has recently been intro-
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duced which yields a higher payoff for every entangled state
compared to separable states by invoking a semiquantum
nonlocal game. Here we employed a MDI-EW to detect entan-
glement in a entanglement distribution scenario where half of
a pure entangled state is measured by a single observer, while
the other half is measured by several observers sequentially
and independently. We found that the number of observers
who successfully detect entanglement with the other party is
larger than in the similar sequential scenarios considered for
violation of Bell inequality and for device-dependent entan-
glement witness operators. More interestingly, we observed
that without employing unsharp measurements, one can still
have detection of entanglement up to two observers, which
was not the case for the two other entanglement identification
schemes. Both these results established that the MDI-EW

method is more robust than the other methods of entanglement
detection. The sequential sharing of entanglement was studied
both in the cases when all the observers are free to choose
their optimal unsharp measurements and when all of them are
constrained to choose a specific unsharp measurement. Our
results show that sequential sharing of quantum states in a
measurement-device-independent way can be beneficial for
quantum information processing tasks.
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