
PHYSICAL REVIEW A 103, 032405 (2021)

Neural-network-based multistate solver for a static Schrödinger equation

Hong Li
Department of Computer Science, Wenzhou University, Wenzhou 325035, China

and Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

Qilong Zhai
School of Mathematics, Jilin University, Changchun, Jilin 130012, China

Jeff Z. Y. Chen *

Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

(Received 29 September 2020; accepted 12 February 2021; published 8 March 2021)

Solving a multivariable static Schrödinger equation for a quantum system, to produce multiple excited-state
energy eigenvalues and wave functions, is one of the basic tasks in mathematical and computational physics. Here
we propose a neural-network-based solver, which enables us to cover the high-dimensional variable space for this
purpose. The efficiency of the solver is analyzed by examples aimed at demonstrating the concept and various
aspects of the task: the simultaneous finding of multiple excited states of lowest energies, the computation of
energy-degenerate states with orthogonalized wave functions, the scalability to handle a multivariable problem,
and the self-consistent determination and automatic adjustment of the imbedded Monte Carlo procedure. The
solver adheres to the computational techniques developed in machine learning and is vastly different from
traditional numerical methods.

DOI: 10.1103/PhysRevA.103.032405

I. INTRODUCTION

The expansion of machine-learning research [1–5] into
computational physics has created an arena in which inno-
vative computational methods have started to emerge. The
ability of an artificial neural network (NN) to perform a com-
plex numerical task opens the door to numerical maneuvers on
which traditional methods are unable to perform. For example,
solving differential equations can now be approached by using
machine-learning algorithms designed to train a deep neural
network (see, e.g., [6–22]). In another example, in statistical
physics, the use of artificial neural networks has also inspired
fundamentally different ways to calculate the partition func-
tion [23–25] and to conduct Monte Carlo (MC) simulations
[26–31]. Solving the Schrödinger equation, the topic covered
here, can now be performed with neural network approxima-
tions [32–39]. In this paper, we propose a universal solver
for obtaining the eigenvalues and eigenfunctions of the static
Schrödinger equation without the a priori knowledge of the
actual or guessed solutions, when the potential energy is given
for a D-dimensional problem. To overcome the difficulty in
efficient sampling of the multiple-variable space, importance
Monte Carlo sampling is incorporated into the algorithm, tak-
ing advantage of the continuous wave-function representation
by a neural network.

The importance of the Schrödinger equation in describing a
quantum-mechanical system needs no introduction. A typical

*jeffchen@uwaterloo.ca

eigenproblem is to solve the differential equation,

Ĥ�n(r) = En�n(r), (1)

where Ĥ is the Hamiltonian operator acting on the wave func-
tion �n(r), which is a function of a D-dimensional variable
r. The dimensionality D depends on the problem at hand,
and could actually be, for example, the dimensionality of
the variable space of two coherent particles moving in three-
dimensional space, which makes D = 6. The eigenvalues, En,
once found, are arranged from the ground-state energy E0

and up, where the symbolic n represents a set of quantum
numbers in a multidimensional problem. A large body of
literature has documented the anatomy of traditional numer-
ical methods. To deal with correlated many-body problems,
a well-developed field in computational physics is quantum
Monte Carlo (QMC) methods [40,41].

In broad strokes, the numerical approach proposed in
this paper shares the same general idea of the classical
variational method. The eigenvalues are expressed as En =∫

�∗
n Ĥ�ndr/

∫
�∗

n �ndr. Known trial functions, which con-
tain a number of variational parameters, are used to replace
the unknown wave functions �n. The integrals in the above
are then carried out. The resultant eigenvalues En become
functions of these variational parameters. Minimization of
the eigenvalues leads to determination of the variational pa-
rameters, and hence produces the approximation of the wave
functions and eigenvalues. Special care must be taken to en-
sure that the wave functions are orthogonal to each other.
As the number of variational parameters increases, the exact
solution is numerically approached.

2469-9926/2021/103(3)/032405(16) 032405-1 ©2021 American Physical Society

https://orcid.org/0000-0002-7994-6231
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.103.032405&domain=pdf&date_stamp=2021-03-08
https://doi.org/10.1103/PhysRevA.103.032405

HONG LI, QILONG ZHAI, AND JEFF Z. Y. CHEN PHYSICAL REVIEW A 103, 032405 (2021)

FIG. 1. Schematics of the deep NN used in the current paper. An
input layer contains nodes for the spatial variables x1, x2, x3, . . . , xD,
which are fully connected to the first hidden layer. An output layer
gives the N + 1 wave functions �0, �1, �3, . . . , �N . The solid black
arrow represents a typical sigmoid function and the dashed line rep-
resents a weighted linear mixing function; all are defined in Sec. II B.
The number of hidden layers is L (depth) and the number of nodes
per hidden layer is Nh (width).

In detail, there are three basic components in the artificial
NN solver presented here.

(a) The ability of a deep NN to model complex functions is
exploited to analytically represent the trial functions �n(r; �),
which contain a large number of network parameters (i.e.,
variational parameters), symbolically represented by the set
�. In principle, as the network parameter space expands, any
functions can be accurately approximated by the nonlinear
accumulation of the intrinsic NN functions (mostly sigmoid
functions), which contain these network parameters [42–44].
This is conceptually illustrated in Fig. 1 and explained in
Sec. II B. In this paper a single deep NN is used for all
different eigenfunctions of interest. This can be contrasted
with specially designed wave functions, e.g., the Bijl-Dingle-
Jastrow trial function, used in a typical QMC approach [45].

(b) The second component is minimization of a target
function, which contains the sum of eigenvalues, with respect
to the network parameters, �. A number of constraints, for
example, those used to make all eigenfunctions orthogonal,
are considered together at this level. This step, known in
machine learning as a supervised learning session, is used here
simply to minimize the eigenvalues. Once the minimization is
done, a set of optimized � is obtained, which produces the ap-
proximate eigenvalues and eigenfunctions for the Schrödinger
equation. The machine (i.e., the deep NN) then makes a “deep
learning” [46] of (i.e., finds) the approximate solutions. The
structure of the differential equation is embedded into the op-
erator Ĥ . No initial guess of the wave functions or eigenvalues
is required. Hence, the task of solving the Schrödinger equa-
tion is mapped onto a nonlinear statistical regression problem
of reduced complexity [47]. The form of the target function
and the auxiliary conditions are described in Secs. II A and
II C.

(c) The third component is to design an efficient algorithm
to carry out the integrals over the variable space r, required in

the target function. When the dimensionality D of the r space
becomes large, dividing the r space into computational grids
requires a computational resource (storage space and compu-
tational time) that grows exponentially in D, producing a crisis
known as the curse of dimensionality [19,20,48]. To combat
this deficiency, the main idea of QMC is followed here. A
large but finite number of MC sampling points are adopted in
the r space. In concert with recent NN-based solvers [37–39],
the importance-sampling technique is introduced to convert
an integration into a summation to find MC means. Our im-
plementation has a single MC weight function that is written
in terms of the wave functions themselves, here for multiple
states. This crucial step bypasses the need to divide the r
space into computational grids. The self-consistent procedure
introduced here determines the weight function and the wave
functions simultaneously, and controls the distribution of the
sampling coordinate points in the variable space r automati-
cally. No manual decision making on the range of the variable
space to be sampled is required. The implementation of the
analytic NN representation of the wave functions is critical
to the success of this component. As the Monte Carlo sam-
pling points move in the r space, the differential operations
such as ∇2�n(r; �) are carried out analytically, which do not
require finite-difference schemes typically used in, e.g., the
finite-difference method. Details can be found in Secs. II D
and II E.

Using NN to solve the Schrödinger equation is not a new
topic. The representation of wave functions analytically by
NN [(a) above] has been proposed in recent years and has
become a common feature in NN-based solvers [32–39,49].
Some recent progress is summarized in Table I, where the
main features of each work are compared. The original
paper by Lagaris et al. recommended treating ||Ĥ�n(r) −
En�n(r)||2 (i.e., the entire differential equation) as the main
component of the cost function [32], for an excited state n.
The Schrödinger equation is solved by driving the module
to zero. This is similar to the treatment taken in solving
other types of differential equations [7]. Similar cost functions
are used in [33–35] as well. Here our approach differs from
this idea by directly treating a summed collection of En =∫

�∗
n Ĥ�ndr/

∫
�∗

n �ndr as the cost function, in a spirit closer
to the variational method. The use of a variational En itself as
the target function is an idea that has recently surfaced in the
literature, either for the ground state only [37–39] or for an
individual excited state (see [50], though it uses Slater-Jastrow
parametrization instead of NN.) Here we propose to consider
the sum of all En as a single target function, up to the n = N
excited level.

Beyond the ground state, one challenge is to push for a
calculation of the eigenproblems of the N excited states of
low-energy values. The schemes used in finding the excited
states have been quite different. Lagaris et al. suggested to
construct an excited-state wave function, �n(r), with embed-
ded orthogonality to previously calculated wave functions,
and then to take the target function ||Ĥ�n(r) − En�n(r)||2
for the calculation of state n. Each �n(r) requires a new NN
separately from the previous ones [32]. Shirvany et al. used
a numerically expensive method of moving E incrementally
to minimize the target function, in an effort to numerically
find the solution of an excited state; each move would require

032405-2

NEURAL-NETWORK-BASED MULTISTATE SOLVER FOR A … PHYSICAL REVIEW A 103, 032405 (2021)

TABLE I. A summary of representative neural network (NN) approaches in solving the Schrödinger equation, either for a given potential
or for an ab initio electron Hamiltonian (abH). In some, coupled harmonic oscillators (HOs) were used as examples. The column with a “Spin”
heading refers to whether the wave functions are constructed to follow antisymmetry properties of half-integer-spin particles (fermions). Most
work produces energy levels which are then compared to known results (CKR). For the ground and excited states, wave functions are required
to be orthogonal (OR) to each other.

Main target Sampling Spin Excited Example Scale-up Error Network
First author function technique states potentials analysis analysis type

Lagaris
∫

dr[(Ĥ − En)�n]2; Fixed grids No Up to Morse; three- CKR Separate, three-layer
[32] �n are OR N = 2 dimensional forward NNs

by construction anharmonic oscillators for each n
Nakanishi

∫
dr[(Ĥ − E)�n]2; Fixed grids No Up to One-dimensional CKR Three-layer forward NNs

[33] no OR required N = 13 HO; double-well for microgeneric
algorithm

Shirvany
∫

dr[(Ĥ − E)�n]2; Fixed grids No Up to Square-well CKR Three-layer NNs
[35] no OR required N = 5 for moving E
Mills Mapping of Fixed grids No Ground Two-dimensional CKR Convolution
[36] solutions state only HO, etc. NN
Teng

∫
dr〈�0|Ĥ |�0〉 MC weight No Ground HOs in CKR Three-layer NN

[37] �2
0 state only electric field (radial basis)

Pfau
∫

dr〈�0|Ĥ |�0〉 MC weight Yes Ground abH for CKR Deep NN
[38] ∼�2

0 state only LiH, etc. (FermiNet)
Hermann

∫
dr〈�0|Ĥ |�0〉 MC weight Yes Ground abH for Scaling on CKR Deep NN

[39] �2
0 state only H10, etc. e numbers (PauliNet)

This paper
∫

dr[
∑

n〈�n|Ĥ |�n〉 Single No Up to D-coupled Scalings on Self-assessed; Single five-layer
+∑

nm〈�n|�m〉2] MC weight N = 31 HOs both D and N CKR deep NN for∑
n �2

n all n

a new NN solution [35]. Here we suggest to use a single
cost function, augmented by the summed constraints to ensure
orthogonality of the wave functions [(b) above], all within
the same NN. This approach avoids separate parametrization
and new optimization for each new excited state [50]. The
advantage of our approach is the systematic numerical discov-
ery of the low-energy states up to a truncated level, avoiding
accidental trapping in a high-energy eigensolution. This is
demonstrated in Sec. III by examples where up to 32 energy
levels are simultaneously found in an ascending order. A study
of the computational cost for finding high excited states is also
documented in that section.

A recent perspective paper captures the progress in using
machine learning to solve the Schrödinger equation [51]. Most
previous studies used one- or two-dimensional examples, for
which the variable space r can be efficiently handled by
finite-element or finite-difference methods. A common fea-
ture in QMC approaches is to incorporate the weighted MC
method into the algorithm, avoiding variable-space division
that would otherwise encounter the difficulty of the curse of
dimensionality. Recently developed NN schemes to handle
high-dimensional problems contain MC method in the NN
design [37–39]. The particular version of the MC weight
that we use here is the algebraic sum of all squared wave
functions of the ground and excited states, which enables the
self-consistent determination of the entire eigenproblem under
one single NN design and one single MC weight. This can
be contrasted to the usage of separate parametrization and
separate MC weights suggested in [50]. The idea of using the
squared wave functions coincides with the use of squared pro-
jection of the ground-state wave function in [37] and squared

ground-state wave functions in [38,39], where, however, their
main concern is the ground state.

Two important issues are also addressed here. The first
is that with the use of the MC sampling and the NN learn-
ing procedure one needs to establish a convergence criterion
to self-assess the errors of the numerical results, and hence
determine when to truncate the calculation. This is particu-
lar important when the NN solver is used for an unknown
problem. A general procedure of the convergence criterion is
recommended in Sec. III B.

The second is, when a unique convergence criterion is
established, how the computational cost scales as a function
of the total number (N) of the excited states calculated and
the dimension (D) of the variable space. Intertwined with the
computational complexity of the problem is the dependence
on the network size. The scalability of the current approach
to high N and high D is explored in Sec. VI, up to N =
31 and D = 128. Unfortunately, previously these two issues
were seldom addressed carefully for NN-based solvers of the
Schrödinger equation, as far as we know.

II. BASIC FORMALISM

A. NN representation of the eigenvalue problem

The general mathematical problem is to solve the partial
differential equation in (1), where, in Cartesian coordi-
nates, the position vector is expressed by its component r =
(x1, x2, . . . , xD). The Hamiltonian operator

Ĥ = − h̄2

2m
∇2 + V (r), (2)

032405-3

HONG LI, QILONG ZHAI, AND JEFF Z. Y. CHEN PHYSICAL REVIEW A 103, 032405 (2021)

where ∇2 is a Laplacian operator

∇2 = ∂2

∂x2
i

(3)

and V (r) is the potential energy (known from a given prob-
lem), a scalar function of r. For simplicity, we use the same
m for the overall coefficient of ∇2; the above form is for one
particle of mass m moving in a D-dimensional space, strictly.
The procedure described below can be easily adopted for solv-
ing the Schrödinger equation of multiple, interacting particles
where the coefficients of the second-order partial derivatives
in ∇2 can differ from each other, generally. The subscript n
in (1) represents a set of quantum numbers that describe the
quantum states. The question is whether one can solve the
above eigenproblem to obtain the eigenfunctions �n(r) and
eigenvalues En, arranged such that E0 < E1 � . . . � EN . Here
N specifies the maximum number of excited states of interest
(the complication of multiple quantum numbers and energy
degeneracy is discussed in Sec. IV).

To represent the unknown functions �n(r) with the vector
r as the input, a feedforward NN is used, which has D nodes
in the first layer and (N + 1) nodes in the final layer as the
output for �0, �1, . . . , �N (see Fig. 1). The deep NN is made
of a number of layers so that it can model the complicity of
�n(r), which is needed for modeling the wave functions of
the exited states; the deep NN contains a network-parameter
set �; different values of the set � give rise to different
outputting �n, hence we write the output �n(r; �). The set
� needs to be adjusted during the numerical procedure to
arrive at appropriate values for a specific physical problem;
once this is done, an approximation for the eigenproblem is
then numerically found.

How do we numerically obtain the set �? Instead of di-
rectly solving the differential equation (1), we minimize the
total cost function

J (�) =
N∑

n=0

En(�) + P(�) + R(�) (4)

with respect to � to obtain a solution to the problem. The first
term is the sum of all eigenvalues to be estimated, now written
in terms of integrals:

En(�) = 〈�n|Ĥ |�n〉
〈�n|�n〉 , (5)

where the standard bra-ket notation is used for integration over
r of the wave functions �n(r; �). The second term

P(�) = β

N∑
n=0

An(�) + γ

N∑
n=1

n−1∑
m=0

Bnm(�) (6)

contains all squared normalization conditions (An) that the
wave functions must follow and all squared orthogonal con-
ditions (Bnm) between the wave functions of eigenstates n and
m where n �= m. Expressions for An and Bnm are explicitly
laid out in Sec. II C. The third term in (4) represents the
penalty used for network parameter regularization (known as
the L2 regularization in machine learning) to be specified in
the next section. The penalty coefficients β and γ are selected
by trial and error, to achieve the desired tolerance level of

each condition. The basic assumption here is that if J (�) is
minimized all orthogonal conditions are then satisfied and J
settles for the sum of the lowest N + 1 eigenvalues. Com-
putationally, the minimization procedure is well prescribed
in machine learning; the back-propagation method [52], for
example, is used in this paper, following a set of subroutines
in TENSORFLOW [53].

In brief summary, using the above representation, we
turn the eigenproblem into a conventional machine-learning
problem where the eigenfunctions and eigenvalues are all ex-
pressed in terms of the network parameters. The minimization
of the cost function can then be handled by existing numerical
algorithms. The phrase “machine learning” normally refers to
a set of features to be learned by a designated NN. We stress
that no a priori knowledge of the eigenproblem is needed
here. What the machine is actually learning (supervised by
the above principles) is that the cost function is minimized
when the sampled points are in the variable space r. In fact,
this general numerical procedure is unsupervised—no solu-
tion features are given at the first place.

B. Network design

In this section, we define the function �n(r; �) based on a
feedforward deep NN sketched in Fig. 1. The main function is
to read the data of the spatial variable r through the input layer,
process the information in the hidden layers, and then generate
the wave function �n in the output layer. The arrows (“edges”)
represent function calls that calculate a value for the next node
based on the values on the previous nodes. The function call
contains its own network parameters, which are commonly
referred to as the weights and biases. By varying network
parameters the final output � is consequently affected by
these parameters. The deep NN is characterized by its depth L
(the number of hidden layers) and width Nh (the number of
nodes in each hidden layer).

To adhere to the common usage in machine learning [5],
the sigmoid function is used here as the activation function.
Assume for now that the previous layer of nodes has the values
z1, z2, z3, . . . (or the r vector if the previous layer is the input
layer). The value of node j in the next layer, z′

j , is evaluated
by a sigmoid function:

z′
j =

[
1 + exp

(∑
i

w jizi + b j

)]−1

, (7)

where the matrix element w ji and vector element b j are the
network parameters. The total number of these for a hidden
layer is D × Nh + Nh on the first hidden layer and N2

h + Nh

thereafter. In the sketch presented in Fig. 1, a total of (D +
1)Nh + (N2

h + Nh)(L − 1) parameters are needed when the
final hidden layer is reached.

The final dashed edges are weighted mixing functions that
take the output from the final hidden nodes, assumed to have
values z1, z2, z3, . . . , zNh :

�n =
Nh∑
j=1

an j

[
exp

(
−

D∑
i=1

v2
jix

2
i

)]
z j . (8)

032405-4

NEURAL-NETWORK-BASED MULTISTATE SOLVER FOR A … PHYSICAL REVIEW A 103, 032405 (2021)

The network parameters are the mixing coefficients an j [with
a total of (N + 1) × Nh elements] and weights v ji [with a
total of Nh × D elements]. The exact form of the weights in
the square brackets is designed to handle wave functions that
decay in far variable regions, assumed here to be Gaussian.
The function form in the square bracket can be modified for
adoption to a specific potential function V (r). Our simple
functional form is different from the much more complicated
radial-basis functions used in [37].

In brief summary, the wave functions are represented by
building up multilayers of sigmoid functions. At the final
stage, weights are added to ensure that the wave functions
decay in a bounded potential problem. In total, the parameter
set � includes the matrix [w ji] and vector [b j] at different
hidden layers, and the matrices [v ji] and [an j] leading to the
output layer.

The large number of network parameters may overwhelm
a typical machine-learning session. To prevent overfitting, the
L2 regularization method [5,54] is used by adding to the cost
function J in (4) a penalty term:

R(�) = �

2

∑
j

∑
i

w2
ji. (9)

All computations conducted in this paper are produced by
letting � = 0.001, for moderate control of the approximate
magnitudes of w ji. No dropouts [55] are used.

C. Orthonormal conditions

Having built the trial wave functions by an NN, we are now
ready to express other terms required in the cost function,
(4). Any wave function, as the solution to the Schrödinger
equation, can have an overall, undetermined coefficient which
is fixed by the normalization function. This is reflected in the
linear mixing of the hidden layer output to the wave functions
in (8), with an overall undetermined coefficient for each n. To
remedy this uncertainty, we let

An =
(

Nh∑
j=1

a2
n j − 1

)2

, (10)

and place An in the penalty function (6) to enforce a unique
solution for the nth wave function. The enforcement does
not directly yield the conventional integrated normalization
condition, which is not needed in the actual computation.
For example, the wave functions are directly renormalized
through the denominator of (5) to ensure the correct evaluation
of all En.

The orthogonality between the wave functions of the nth
and mth states is dealt with by defining

Bnm = 〈�n|�m〉2, (n > m). (11)

The expectation is that once the penalty function, (6), is mini-
mized to yield zero, the orthogonality conditions are satisfied
by having all Bnm → 0, numerically. Note that the computa-
tion of Bnm does not require the normalization of the wave
functions, �n and �m.

The above formalism, Eqs. (4)–(11), is now written in
machine-learning languages which can be used as the basic
templet for coding. The Laplacian derivative in Ĥ |�n〉, in

particular, can be taken analytically on the r dependence with
the implementation of TENSORFLOW functional calls [53]. The
evaluation of J is done by sampling through the r space,
with selected points that enable the calculation of the integrals
needed in (5) and (11). The back propagation technique, cou-
pled with the deepest descent minimization scheme, can then
be used to drive the � set to the desired solution.

D. Importance MC sampling

Both (5) and (11) require the evaluation of integrals of the
type

〈�n|Ô|�m〉 =
∫

dx1dx2dx3..dxD�∗
n (r)Ô�m(r) (12)

in the variable space. The operator Ô can be Ĥ or can just be
an identity operator. One could divide the interested variable
space (evenly or preweighted), covering the main variation
of the integrant by KD sampling points. The number of grid
points in each coordinate component of r is K and is usually
large. Then, the computational time would scale as KD to
some power. At a low D, this is not a problem. At a high
D, however, the computational time explodes exponentially in
D, which forms a roadblock in treating high-D problems; this
undesirable behavior is known as the curse of dimensionality.
The computation on an “epoch,” a step taken to minimize J
with respect to all �, requires the calculation of these integrals
in D dimensions in order to produce the next improved � set.

The MC method overcomes this difficulty. We replace the
integration required in (12) by importance sampling, in ref-
erence to a weight function W (r). If we can design a weight
W (r) in the variable space where the wave functions are most
significant, then

〈�n|Ô|�m〉 = 1

S

S∑
l=1

�∗
n (rl)Ô�m(rl)/W (rl), (13)

where S is the total number of sampling points. The set {rl},
where l = 1, 2, . . . , S, is selected according the weight func-
tion W (r). From one epoch to another epoch, a different {rl}
set can be created according to the Metropolis rule to move
{rl} by a random increment following the distribution of the
weight function [56,57].

What W (r) should one use? The wave functions of the
bounded states themselves can be used for this purpose. Here
we propose to use

W (r) = 1

N

N∑
n=0

|�n(r)|2. (14)

The summation takes into account the peaks of the wave
functions in the excited states considered. Of course, this is
not the only choice of the MC weight W (r).

E. Summary: Self-consistent numerical procedure

This section contains various numerical recipes that are
summarized here. For a given V (r), the self-consistent numer-
ical procedure consists of the following steps.

(1) An initial, reasonable, and simple guess of W (r) is
made and S sampling data points are created in D-dimensional

032405-5

HONG LI, QILONG ZHAI, AND JEFF Z. Y. CHEN PHYSICAL REVIEW A 103, 032405 (2021)

space. These points could follow the distribution of W (r), or
could be, at this stage, randomly distributed in a reasonable
range. An initial guess of the � set is also made.

(2) The integrals in (5) and (11) are evaluated according
to the MC sum in (13). Hence the cost function in (4) is
evaluated, together with the gradient ∇�J . An improved �

set is obtained from

� − η∇�J → �. (15)

The parameter η is the so-called learning rate and is adjusted
according to the ADAM algorithm [58].

(3) Based on the improved � and through the deep NN,
an updated set of functions �n(r) is available. In terms of the
definition in (14), a new W (r) is also available.

(4) The sampled points {rl} are moved by adding to the
existing values small, random displacements, to form the set
{r′

l}. The Metropolis rule is used here, in reference to the
updated probability function W (r), to determine whether or
not the new set {r′

l} is accepted. The overall magnitude of
the displacement is adjusted in later epochs to yield a 50%
acceptance rate, approximately.

(5) We go back to step 2, now taking the updated � and
{rl} to calculate various quantities.

Steps 2–5 constitute a single learning epoch. The self-
consistent loop from 2 to 5 is considered convergent, if the
estimated error of eigenvalues is within a prescribed tolerance
level ε.

III. EXAMPLE 1: SIMPLE HARMONIC OSCILLATOR

A. Numerical results

We first examine the classical eigenproblem of a single par-
ticle in a one-dimensional simple-harmonic-oscillator (SHO)
potential, V (x) = (κ/2)x2, to illustrate the basic procedure.
For simplicity, we take the reduced units

h̄2/m = 1, (16)

and

κ = 1, (17)

as they can be rescaled and absorbed into redefinition of r and
En.

The network sketched in Fig. 1 is used in this paper, where
we adopt a three-layer deep NN,

L = 3, (18)

and solve the eigenproblem for various N up to N + 1 = 32,
in a study of scalability of the algorithm. Several selections of
the number of nodes per hidden layer, Nh, in the range

Nh = [36, 300] (19)

are used in order to assess the effects of network size on the
final results. All � parameters were randomly selected from a
normal distribution of mean zero and variance 0.1, initially.
The following results are produced by initially selecting a
learning rate:

η = 0.001. (20)

The penalty coefficients,

β = 1 and γ = 100, (21)

are used in (6).
To enable the MC sampling, an initial weight W = 1 for

the range of x = [−5,+5] was selected. A total of

S = 2 × 103 (22)

points were used between [−5, 5] for initialization. This num-
ber is kept unchanged throughout the entire calculation, as the
weight function evolves according to (14).

The overall performance of the solver can be monitored by
how the calculated En and penalty function P vary as the com-
putation progresses. As functions of epochs, they are shown in
Figs. 2(a) and 2(b). The example plotted is from a single run
to calculate N + 1 = 16 energy levels, where Nh = 50 hidden
nodes per layer are used in the network. Initially the numerical
procedure experiences an unstable period in searching for
the solution. This is reflected by the uncertainty in En and
high value of the penalty P, within the first 2 × 104 epochs.
After that, these computation trajectories show that the solver
begins to produce a reasonable estimate of the eigenvalues.
During the computation, the NN output layer yields N + 1
wave functions in no particular order. The convergence in
Fig. 2(a) gives rise to an energy sequence in a later stage,
although rare events of switching two adjacent energy lev-
els are also observed. As there is no prespecification of the
appearance order of these energy levels, the final converged
En (n = 0, 1, 2, . . . , N) in Fig. 2(a) are used to determine the
order of the wave functions shown in Fig. 2(c).

The self-consistent procedure prescribed above numeri-
cally produces the excited energy states and wave functions.
For comparison, the SHO eigenproblem has an analytic solu-
tion. In reduced units the eigenvalues are

ESHO
n = (n + 1/2), n = 0, 1, 2 . . . (23)

and eigenfunctions are the physicists’ Hermite functions
[59,60]:

�SHO
n (x) =

(
1

π

)1/4 1√
2nn!

Hn(x)e−x2/2, (24)

where

Hn(x) = (−1)nex2

(
d

dx

)n

e−x2
. (25)

The exact solution can be used to benchmark the performance
of our numerical solver, but were not used in machine learn-
ing. All plots in Figs. 2(a) and 2(c) agree with the known exact
solution, (23) and (24).

B. Error estimates and convergence criterion

The present example problem has an exact solution. In gen-
eral, however, there is no a priori knowledge of the solution,
hence a general criterion for convergence must be constructed
to facilitate the termination of the machine-learning calcula-
tion.

The eigenvalues En fluctuate epoch by epoch, even near the
final, converging period of the calculation, due to the nature
of MC sampling [see Fig. 2(a)]. The En variations are more

032405-6

NEURAL-NETWORK-BASED MULTISTATE SOLVER FOR A … PHYSICAL REVIEW A 103, 032405 (2021)

FIG. 2. NN solution for the example SHO problem, for excited states up to N = 15. The convergence of the eigenvalues En as functions of
epoch [defined in (5)] is demonstrated in (a). The declining of the penalty function in (6) is displayed in (b). The final wave functions, for all
�n(x) where n = 0, 1, 2, . . . , N , are displayed in (c), arranged according to the magnitude of En, from low to high. To produce these particular
trajectories of En and P, L = 3 hidden layers and Nh = 50 hidden nodes per layer are used.

drastic at the beginning and tend to smooth out at the later
stage. The main idea is to take two adjacent blocks of epochs
and examine the two mean values of En, each evaluated within
their own blocks. If the difference between the two is compa-
rable to the independent estimate of the numerical error, the
machine-learning procedure terminates.

Here, to estimate the MC error, we use the successive
m epochs as a statistical window. The variance of the nth
computed energy level is calculated from

σ 2
n = E2

n − E2
n. (26)

032405-7

HONG LI, QILONG ZHAI, AND JEFF Z. Y. CHEN PHYSICAL REVIEW A 103, 032405 (2021)

The overbars represent the average taken from all measure-
ments within the m epochs of the calculation. Note that each
epoch itself already contains S MC sampling events. Then,

En = 1

m

m∑
j=1

1

SAj

S∑
l=1

[�∗
n (rl)Ĥ�∗

n (rl)/W (rl)] j (27)

and

E2
n = 1

m

m∑
j=1

1

SA2
j

S∑
l=1

[�∗
n (rl)Ĥ�∗

n (rl)/W (rl)]
2
j . (28)

The subscript j = 1, 2, 3, . . . , m labels the m epochs taken
into consideration. The coefficient Aj is a normalization factor
evaluated at the jth epoch:

Aj = 1

S

S∑
l=1

[�∗
n (rl)�

∗
n (rl)/W (rl)] j . (29)

One can refer back to Sec. II D for the definition of the
weighted average. If all data points are statistically indepen-
dent, then the standard deviation, calculated by taking the m
epochs of S events, is

δn = σn/
√

mS. (30)

On average,

δ = 1

N + 1

N∑
n=0

δn = σ/
√

mS, (31)

where

σ = 1

N + 1

N∑
n=0

σn (32)

is the mean square-root variance, averaged over the N + 1
energy levels.

The termination of a machine-learning session is deter-
mined by whether or not the En trajectories in Fig. 2(a) are
flattened out. The mean-energy difference, δE , is taken from

δE =
[

1

N + 1

N∑
n=0

(En − E ′
n)2

]1/2

, (33)

where En and E ′
n are, respectively, calculated from two suc-

cessive blocks. The session is considered convergent if

δE � ε, (34)

where ε is a tolerance level. The selection of ε, however,
cannot be arbitrarily small. The statistical average in (27)
carries with it an uncertainty level, δn in (30). We adopted ε

such that

ε = αδ (35)

where α is a numerical coefficient, selected here to be α = 2.
Hence the machine-learning procedure terminates at

δE/σ � α/
√

mS. (36)

The results presented in this section are based on a statistic
window of

m = 1 × 103. (37)

FIG. 3. Typical trajectory of the calculated δE/σ [Eqs. (32) and
(33)] as a function of epoch, of a run that determines the lowest
N + 1 = 16 energy states of a SHO. δE/σ is used for identify-
ing convergence of the self-consistent numerical procedure (see
Sec. III B).

An example trajectory of the computed δE/σ is plotted in
Fig. 3.

How precise are the energy levels determined from
the machine-learning procedure? There are two main error
sources in the current NN approach. As in any procedures
based on MC sampling, the first originates from the stochastic
errors and it can be controlled by increasing the sample size,
S, as reflected in the estimate, (30). The second column in
Table II shows the standard deviation δn estimated this way,
calculated at the termination of the calculation, for energy
level n. The second has its roots in a typical trial-function
approach; as such the calculated eigenvalues are the upper
bounds of the actual values. The comparisons between En

and the benchmarking ESHO
n are given in the third column,

from which one always has En > ESHO
n . In principle, this can

TABLE II. The relative errors of the energy levels of the SHO
example, at the convergence determined by the criterion in (34). The
second column is δn/Ēn, calculated according to (5) and (30), nu-
merically. The third column is a comparison with the exact solution
in (23).

Level n δn/En En/ESHO
n − 1

n = 0 8.9 × 10−4 2.1 × 10−3

n = 1 6.4 × 10−4 3.0 × 10−3

n = 2 5.8 × 10−4 5.2 × 10−3

n = 3 5.3 × 10−4 6.3 × 10−3

n = 4 5.1 × 10−4 2.0 × 10−3

n = 5 4.9 × 10−4 7.8 × 10−3

n = 6 4.9 × 10−4 2.8 × 10−3

n = 7 4.9 × 10−4 3.9 × 10−3

n = 8 4.8 × 10−4 4.3 × 10−3

n = 9 4.6 × 10−4 3.6 × 10−3

n = 10 4.6 × 10−4 2.0 × 10−3

n = 11 4.4 × 10−4 3.3 × 10−3

n = 12 6.5 × 10−4 2.8 × 10−3

n = 13 7.5 × 10−4 2.5 × 10−3

n = 14 6.3 × 10−4 4.5 × 10−3

n = 15 5.5 × 10−4 5.5 × 10−3

Average 5.7 × 10−4 4.0 × 10−3

032405-8

NEURAL-NETWORK-BASED MULTISTATE SOLVER FOR A … PHYSICAL REVIEW A 103, 032405 (2021)

be controlled by the accuracy between the NN represented
wave functions and the presumably unknown, actual wave
functions. Beyond SHO potentials, how the complicity of a
Hamiltonian of a real system affects these two types of errors
remains to be further studied.

C. Network performance

The performance of the machine-learning solver used here
depends on a few factors. This includes the complexity of the
network (represented by the size of depth L and width of the
hidden layers Nh), the difficulty level of the wave functions
that the neural network attempts to model (represented by N ,
the number of excited states), the final precision required, and
the efficiency of an optimization method used in optimizing J .
Here we explore the dependence on the first two, by fixing the
precision requirement through (36) and ADAM optimization
method in (15).

The maximal number of epochs needed to minimize the
cost function, M, and the actual computational time, T , are
used as indicators. Taking into account the stochastic nature
of the problem, in randomly setting up the initial network pa-
rameters � and moving the sampling set {rl} according to the
Metropolis procedure, each data point presented in Figs. 4(a)
and 4(b) is obtained from 20 independent machine-learning
runs. By further fixing the hidden layer depth at L = 3, both
M and T are examined as functions of Nh and N .

Figure 4(a) demonstrates how M depends on N , for various
choices of Nh. At a given N , data indicate a lower M from a
larger Nh, which reflects the fact that fewer epochs are needed
to model the current problem, by a more complicated network.
It is worth noting that a small network (Nh = 36) already has
the ability to model a high excited state (N + 1 = 32), but
requires a longer learning process.

Though a smaller M is achieved by a more complicated
NN (larger Nh) to perform the same task for the same N , the
real computation time, T , in units of seconds, can be longer.
This is due to the actual time that the solver takes to evaluate J
and update the parameters through the deepest decent method.
Figure 4(b) demonstrates this dependence.

As Nh is adequately large, both data sets, M and T , display
a linear line on the log-log plot. Numerically the power laws,

M ∝ NμM and T ∝ NμT , (38)

are observed. The scaling exponents μM and μT are obtained
from the log-log plots by a linear fit and shown in Fig. 4(c)
for various Nh. As Nh � 1, these exponents approach the
asymptotic values, μM ≈ 0.7 and μT ≈ 1.5.

D. Monte Carlo weight convergence

An important component of the current algorithm design is
the implementation of the MC sampling described in Sec. II D.
It controls the range of the sampling points in the vari-
able space according to a self-consistently determined weight
function, related to the N + 1 wave functions of an N excited-
state problem.

From the SHO example, Figs. 5(a)–5(e) demonstrate the
convergence of the MC weights in typical runs, for N + 1 =
2, 4, 8, 16, and 32. Initially the set {x j} (j = 1, . . . , S) is ran-

FIG. 4. Efficiency of the machine-learning solver in solving SHO
excited states. The maximal number of epochs, M, and the real
computation time needed for convergence, T (in seconds), are shown
in (a) and (b), to calculate a problem with N excited states. Differ-
ent network sizes, through the variation of the number of hidden
nodes Nh, are examined. Each data point is an average of M and
T , produced from 20 independent machine-learning runs, in order to
produce the needed statistics. The errorbars are smaller than the size
of the plotted symbols. The asymptotic power laws are empirically
determined by fitting the data to (38). The numerical values, of thus
determined scaling exponents, are displayed in plot (c) as a function
of 1/Nh.

domly selected within the [−5, 5] range, following an initial
weight W = 1. The almost uniform distributions of the S
initial sampling points are demonstrated by the violin plot
at the beginning epoch in these plots. As the computation
proceeds, summarized in Sec. II E, the set evolves (shrinks
or spreads) beyond the original range and finally converges
to a stable range. The final range of {x j} (j = 1, . . . , S) is
not prespecified, as we purposely let it float according to the
probability distribution W (x). The self-consistent numerical
procedure enables the different converged weights for various

032405-9

HONG LI, QILONG ZHAI, AND JEFF Z. Y. CHEN PHYSICAL REVIEW A 103, 032405 (2021)

FIG. 5. (a)–(e) Violin plots of the evolution of the Monte Carlo
weights as machine learning proceeds for N + 1 = 2, 4, 8, 16, and
32, respectively. These weights are visualized by vertical bars at
various epochs, on which the thickness corresponds to weight mag-
nitudes. The Monte Carlo displacement magnitudes, �, are indicated
on the far right-hand side.

FIG. 6. Converged weights W (x) for N + 1 = 2, 4, 8, 16, and 32.

N , displayed in Fig. 6. The broader weight function for higher
N is due to the fact that the wave functions extend to a larger x
range, displayed in Fig. 2(c). The broadened W (x) ultimately
brings more stochastic fluctuations through (13), which yields
an error that can be controlled by increasing sampling size S
and sampling time m; the computational price is higher for
higher N , of course.

The selection of a new MC sampling set, {x′
j} (j =

1, . . . , S), is attempted by displacing the sampling points to
new positions at a random distance, from an old sampling set
{x j} (j = 1, . . . , S). The magnitude of the move, �, controls
the acceptability of the new set. This MC parameter is ini-
tially set at � = 1 and then self-adjusted in our algorithm, to
guarantee that the mean acceptance rate of the MC move is ap-
proximately 50%. The final convergent � values are indicated
in Figs. 5(a)–5(e) for different N , by the green ranges. Differ-
ent initial guesses, generated from a Gaussian distribution or
taken from an existing solution, have been attempted and have
no major effects on the final convergence.

The enabling factor of the MC procedure is the repre-
sentation of the wave functions by the NN in a continuum
space. Unlike a traditional solver where the wave functions are
described by the specified representative nodes (either in real
or in spectral-function space), the NN representation gives us
the opportunity to sample at any arbitrary points. This prop-
erty liberates us from the preselected and fixed representative
nodes, and allows us to move the sampling points freely in the
variable space, in reference to a continuum weight function.

IV. EXAMPLE 2: TWO-DIMENSIONAL HARMONIC
OSCILLATOR

A. Decoupled oscillators

We now examine the solution of the Schrödinger equation
for a two-dimensional harmonic oscillator, where the variable
space is r = (x1, x2). For a decoupled potential energy (in
reduced units)

V (r) = 1
2

(
x2

1 + x2
2

)
, (39)

the exact solution is known and contains energy degeneracy.
The eigenvalues, for example, are related to two quantum
numbers, n1 and n2, associated with x1 and x2 directions,
respectively.

032405-10

NEURAL-NETWORK-BASED MULTISTATE SOLVER FOR A … PHYSICAL REVIEW A 103, 032405 (2021)

TABLE III. Numerical solution from the deep NN of the en-
ergy eigenvalues (in reduced units), for two decoupled harmonic
oscillators (column 2), two coupled harmonic oscillators (column
4), and five coupled harmonic oscillators (column 6), described in
Secs. IV A, IV B, and V. The first column is the unilateral label
n, produced from numerically sorting the energy levels. The third,
fifth, and seventh columns contain identifications of these states in
reference to the exact solution of the oscillator problems, in terms
of two quantum numbers (n1, n2) for the two-dimensional problem,
and five quantum numbers (n1, n2, . . . , n5) for the five-dimensional
problem.

n Ēn (n1, n2) Ēn (n1, n2) Ēn (n1, n2, n3, n4, n5)

0 1.01 (0,0) 1.02 (0,0) 2.93 (0,0,0,0,0)
1 2.01 (0,1) 1.95 (1,0) 3.36 (1,0,0,0,0)
2 2.02 (1,0) 2.15 (0,1) 3.71 (0,1,0,0,0)
3 3.01 (0,2) 2.88 (2,0) 3.85 (2,0,0,0,0)
4 3.02 (1,1) 3.07 (1,1) 4.11 (0,0,1,0,0)
5 3.02 (2,0) 3.29 (0,2) 4.13 (1,1,0,0,0)
6 4.01 (0,3) 3.80 (3,0) 4.51 (0,2,0,0,0)
7 4.02 (1,2) 3.99 (2,1) 4.55 (1,0,1,0,0)
8 4.03 (2,1) 4.20 (1,2) 4.57 (0,0,0,1,0)
9 4.03 (3,0) 4.41 (0,3) 4.83 (0,0,0,0,1)
10 5.02 (0,4) 4.73 (4,0) 4.93 (0,1,1,0,0)
11 5.02 (1,3) 4.94 (3,1) 5.01 (1,0,0,1,0)
12 5.02 (2,2) 5.14 (2,2) 5.29 (1,0,0,0,1)
13 5.03 (3,1) 5.32 (1,3) 5.33 (0,0,2,0,0)
14 5.03 (4,0) 5.56 (0,4) 5.37 (0,1,0,1,0)
15 6.04 (5,0) 5.67 (5,0) 5.60 (0,1,0,0,1)

The self-consistent numerical procedure described in
Sec. II, on the other hand, uses a single, generalized quantum
number n for the output from the deep NN. Using the same
parameters specified in (18)–(22) and the same convergence
criterion in Sec. III B, we numerically solved this problem up
to N = 15 excited states, using Nh = 100. The NN solutions
for the eigenvalues are listed in the second column of Table III.
The assignment of n to these energy levels is done according
to numerical sorting Ē0 < Ē1 � Ē2 . . . � ĒN .

One can observe, from the numerical values, that the
energy levels of each group—n = 1, 2; n = 3, 4, 5; n =
6, 7, 8, 9; etc.—are energetically degenerate within the nu-
merical uncertainty. This is done without the knowledge of the
exact solution of two SHOs, separately in x1 and x2 directions:

ESHO(n1, n2) = (
1
2 + n1

) + (
1
2 + n2

)
. (40)

The third column lists the degenerate quantum states in
(n1, n2) from the exact solution, identified a posteriori, for
comparison.

As the requirement of wave-function orthogonality is em-
bedded in our algorithm design, the wave functions of each
group of these energetically degenerated states are made
mutually orthogonal. Figure 7 displays the wave functions
of the N + 1 = 16 states listed in the second column of
Table III. These three-dimensional plots, blindly obtained
without knowing the exact solution, agree with similar plots
based on the exact solutions.

FIG. 7. Three-dimensional plots of the wave functions �n(x, y),
obtained from the NN-based solver, of the N + 1 = 16 energy states.
The n labels are identified numerically, following the sequence of Ēn.

B. Coupled harmonic oscillators

It comes as no surprise that the algorithm works equally
well, in solving the eigenproblem of the coupled oscillators,
where

V (r) = 1
2

(
a11x2

1 + 2a12x1x2 + a22x2
2

)
. (41)

As an example, the arbitrarily selected coefficients used here
are a11 = 0.8851, a12 = −0.1382, and a22 = 1.1933. The
same parameter values of L, Nh, η, β, γ , S, m, and ε stated
in the last subsection, are used here.

The numerical results for Ēn are displayed in the fourth col-
umn of Table III. Because of the mismatch of the coefficients
of the diagonalized form [see below, (42)], the energy levels
are no longer degenerate. Their corresponding wave functions
�n(x1, x2) are plotted by two illustration methods in Fig. 8.
The three-dimensional plots can be compared with those in
Fig. 7. The footprint plots further illustrate the locations of
the eigenfunction peaks in the (x1, x2) plane.

The coupled oscillators, given by the potential function in
(41), can be decoupled, in terms of a diagonalized potential
form:

V (r) = 1
2

(
λ1q2

1 + λ2q2
2

)
. (42)

The coefficients λ1 = 0.835 and λ2 = 1.243 are the eigenval-
ues of the {ai j} matrix. We ensured that these eigenvalues are
positive when {ai j} are selected, to form a bound potential
problem. The two canonical variables are q1 = −0.9315x1 +
0.3637x2 and q2 = −0.3637x1 − 0.9315x2. Then, based on
the decoupled version, there exists an exact solution:

ESHO(n1, n2) = (
1
2 + n1

)
λ

1/2
1 + (

1
2 + n2

)
λ

1/2
2 , (43)

where the two quantum numbers n1 = 0, 1, 2 . . . and n2 =
0, 1, 2 The fifth column in Table III contains the identifi-

032405-11

HONG LI, QILONG ZHAI, AND JEFF Z. Y. CHEN PHYSICAL REVIEW A 103, 032405 (2021)

FIG. 8. Illustrations of the numerical solution of the eigenfunc-
tions for the coupled harmonic problem in Sec. IV B. The first 16
plots are three-dimensional plots of the function �n(x, y). The next
16 plots are footprint plots of the same functions, but now projected
onto the (x, y) plane, where the intensity of the color represents the
function values.

cation of these quantum states with the numerically produced
states in terms of n.

V. EXAMPLE 3: FIVE COUPLED HARMONIC
OSCILLATORS

Next, we examine the example of a D = 5 problem. The
potential energy is written as

V (x1, x2, x3, . . . , xD) = 1

2

D∑
i=1

(
λiq

2
i

)
. (44)

TABLE IV. Values of the coefficients used in Sec. V. See
Eqs. (44) and (45).

i λi bi1 bi2 bi3 bi4 bi5

1 0.1641 −0.2362 0.7505 −0.3577 0.4966 −0.0800
2 0.5744 −0.2231 0.2015 −0.0752 −0.3208 0.8950
3 1.3732 0.5401 0.6092 0.4518 −0.3530 −0.0911
4 2.5335 0.4098 −0.1384 0.3439 0.7197 0.4202
5 3.5373 −0.6593 0.0760 0.7375 0.0887 −0.0876

The variables x j (j = 1, 2, . . . , D) are expressed in terms of
qi by

qi =
D∑

j=1

bi jx j . (45)

For the particular example discussed here, the values of the
coefficients are listed in Table IV. Care has been taken to
ensure that the vector (bi1, bi2, . . . , bi5) is orthonormal to the
vector (b j1, b j2, . . . , b j5).

The NN-based solver treats r = (x1, x2, . . . , xD) as input,
for which the potential energy is in a coupled form. To pro-
duce the numerical results in this section, the same parameter
values for L, Nh, η, β, γ , S, m, and ε, stated in Sec. IV B, are
used. We let N = 15 to find the lowest 16 energy levels. The
numerically produced eigenvalues are displayed in column 6
of Table III, with a single n label, according to the ascending
order of the eigenvalues.

In comparison, the exact solution of the problem gives

ESHO(n1, n2, . . . , nD) =
D∑

i=1

(
1

2
+ ni

)
λ

1/2
i , (46)

where each of the five quantum numbers ni (i = 1, 2, . . . , 5)
takes the values 0, 1, 2, The last column of Table III lists
the quantum states according to this labeling system, after
matching the numerical solution with the exact results.

It is difficult to illustrate the wave functions in a high-D
space. We use the footprint approach in Fig. 9, where the
wave-function plot for a given n, �n(x1, x2, . . . , x5), consists
of a matrix of 5 × 5 subplots. The NN outputs of the final
results are sliced to display the wave functions. The subplot
at matrix “element” i j is a footprint plot for the two-variable
function �n(0, 0, . . . , xi, . . . , x j, . . . , 0, 0), where xi′ = x j′ =
0 when i′ �= i and j′ �= j are used. The exception is the
diagonal element, where i = j. The single-variable function
�n(0, 0, . . . , xi, 0, 0) is displayed by a line plot.

VI. EXAMPLE 4: GROUND STATES OF COUPLED
HARMONIC OSCILLATORS

In the last example, we explore the scalability of the NN-
based solver, for solving the ground-state problem of high-D
systems, for a variable r = [x1, x2, x3, . . . , xD] that contains
up to D = 128 components. Various sizes of the deep NN
are used by adjusting the number of hidden nodes Nh, in
order to explore the effects of the network size. The essential
numerical procedure remains the same as described in Sec. II

032405-12

NEURAL-NETWORK-BASED MULTISTATE SOLVER FOR A … PHYSICAL REVIEW A 103, 032405 (2021)

FIG. 9. Footprint plots of the wave functions obtained by the NN-based solver for the N + 1 = 16 quantum states of lowest-energy levels,
of the D = 5 example discussed in Sec. V. The plots (a)–(p) correspond to energy levels En, arranged from n = 0 to n = N + 1 = 16,
respectively. The values of En can be found in Table III. For a given n, each plot contains D × D subplots, forming a matrix of plots. The
off-diagonal subplots at matrix element i j are two-dimensional footprint plots of a wave function in which the variables xi and x j are used as
the plotting coordinates and all other variables are set to zero. The line plots at diagonal elements ii are simply the wave function displayed as
a function of xi when all other variables are set to zero.

032405-13

HONG LI, QILONG ZHAI, AND JEFF Z. Y. CHEN PHYSICAL REVIEW A 103, 032405 (2021)

FIG. 10. Log-log plots of (a) the mean maximum epochs (M)
and (b) the mean total computational time (T) that the NN-based
solver takes to converge, as a function of D, the dimensionality of
the variable r in the Schrödinger equation, for a coupled oscillator
problem. The solid blue lines represent the empirical power laws
in (47).

and all parameter values, L, η, β, γ , S, m, and ε, are the same
as those used in Sec. V.

The potential function has the same form as in (44) and
(45). When a run starts, the values of λi (i = 1, 2, . . . , D) are
randomly generated in the ranges [0.1, 1]; for each i, the co-
efficients {bi j} (j = 1, 2, . . . , D) are also randomly generated
with each element taking a value in the range [−1, 1]. Note
that for this subsection no orthonormal considerations were
made to form the bi j matrix, as the aim here is not to compare
with the exact solution.

The maximum epoch M and the computational time T that
the NN-based solver takes to converge are recorded. To collect
adequate statistics, for each given D and Nh, a total of 20
independent runs, started from fresh network parameters �

and an independent random set of λi and bi j , are conducted.
The data collected from the 20 runs, on M and T , are then
averaged and plotted as a single data point in Fig.10. The
standard deviations of the plotted points are also shown by
the errorbars.

Regardless of D, the same number of D-dimensional sam-
pling points, S = 2 × 103, are used. Described in Sec. II D, as
the solver proceeds, these points move in the D-dimensional
space, by taking a controlled MC displacement. The typical
storage size for all sampling points is a moderate D × S, and
is refreshed if a new MC attempt is successful.

The scalings of M and T on D, as displayed in Figs. 10(a)
and 10(b), typically follow power laws at large D:

M ∝ DνM and T ∝ DνT . (47)

It is noticeable that the data sets of M for various Nh col-
lapse into approximately the same trend at large D. Hence,
in terms of the maximum epoch that the solver takes to solve
a D-dimensional problem, the performance of the NN-based
solver is almost Nh insensitive, provided, of course, Nh is
adequately large. The empirical fit of the power laws gives

νM = 1.5 and νT = 1.8. (48)

Both are moderately small scaling exponents.

VII. SUMMARY

This paper proposes and explores a nontraditional numer-
ical scheme for solving a multivariable static Schrödinger
equation in a bound potential energy, from the ground state up
to a significantly large number of excited states. The algorithm
design exploits the basic properties of a deep neutral network,
which simultaneously yields an output for wave functions
to a prespecified level (Secs. II A and II B). The complexity
of a high-dimensional problem is dealt with by introducing
the importance-sampling Monte Carlo technique to efficiently
cover the variable space (Sec. II D).

With a given potential energy, the self-consistent learning
algorithm produces a numerical solution for the eigenener-
gies and wave functions, arranged sequentially according to
the magnitude of the eigenenergies, from the ground-state
energy to an excited-state energy. The mutual orthogonality
of all corresponding wave functions is enforced when the
self-consistent procedure converges, regardless of the possible
existence of energy degeneracy (Sec. II C).

A number of examples are used to showcase the properties
of the proposed scheme. A numerical study is carried out for
the analytically known simple harmonic oscillator problem in
Sec. III. The low N + 1 = 32 energy levels are numerically
reproduced, which allows for an in-depth analysis of error
estimates, algorithm performance in terms of computational
time versus network size, etc. Another numerical study then
follows in Sec. IV, for two decoupled and coupled oscillators
(which have analytically known solutions). The numerical
solver treats energetically degenerate states in the same way
as in a nondegenerate problem—numerically no two energies
are perfectly identical. Although a manual comparison with
the exact solution, including the information on energy degen-
eracies, can be made after the numerical solution is found, the
numerical solution itself is adequate to facilitate an analysis
of the quantum properties. Two high-dimensional example
problems are then explored in Secs. V and VI.

The basic ingredients in the current algorithm design are
NNs as the variational functions and an importance-sampling
Monte Carlo evaluator. The latter is a common theme used in
quantum Monte Carlo methods, where different approaches
have been taken to design the trial functions [40,41]. For
example, in a classical paper, Ceperley and Alder used the
squared ground-state wave function as the weight for Monte
Carlo sampling, where the wave function takes the Bijl-
Dingle-Jastrow form [45]; the ground state of an electron gas
was successfully calculated [61]. Reference [50] is a recent
realization of this method for estimating the excited states
of benzene, etc. In another example, exploiting the similar-

032405-14

NEURAL-NETWORK-BASED MULTISTATE SOLVER FOR A … PHYSICAL REVIEW A 103, 032405 (2021)

ity between the Schrödinger equation and a typical diffusion
equation, a diffusion Monte Carlo procedure has led to the
finding of the ground and excited states of malonaldehyde
[62].

The coupled harmonic potentials are used to demonstrate
and elaborate the basic concept of our multistate solver. What
we generally called a D-dimensional space could be actu-
ally broken down to the three-dimensional spaces required
by a multiple-particle problem. It paves the way to devel-
oping more sophisticated NN multistate solvers for realistic
quantum-chemistry systems, such as those recently examined
in [38,39] by specially designed NNs (which are for the
ground state only). A potential application is to solve for the

low-lying vibrational states of a well-studied, real molecule
for which some experimental data as well as QMC results (for
example, those in [62]) are available.

ACKNOWLEDGMENTS

H.L. and J.Z.Y.C. are grateful to Qian-Shi Wei and Marcel
Nooijen for discussion on other related topics at the beginning
stage of this project. We wish to acknowledge the financial
support from the National Natural Science Foundation of
China (Grants No. 11775161 and No. 21873009) as well as
the Natural Sciences and Engineering Council of Canada.

[1] G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduc-
tion to Statistical Learning (Springer, New York, 2013).

[2] C. E. Rasmussen, in Advanced Lectures on Machine Learning
(Springer, New York, 2004), pp. 63–71.

[3] C. M. Bishop, Pattern Recognition and Machine Learning
(Springer, New York, 2006).

[4] R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, Machine
Learning: An Artificial Intelligence Approach (Springer, New
York, 2013).

[5] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning
(MIT, Cambridge, MA, 2016).

[6] A. Meade and A. Fernandez, Math. Comput. Mod. 20, 19
(1994).

[7] I. E. Lagaris, A. Likas, and D. I. Fotiadis, IEEE Trans. Neural
Networks 9, 987 (1998).

[8] B. P. van Milligen, V. Tribaldos, and J. A. Jiménez, Phys. Rev.
Lett. 75, 3594 (1995).

[9] M. Quito, C. Monterola, and C. Saloma, Phys. Rev. Lett. 86,
4741 (2001).

[10] I. E. Lagaris, A. C. Likas, and D. G. Papageorgiou, IEEE Trans.
Neural Networks 11, 1041 (2000).

[11] L. P. Aarts and P. Van Der Veer, Neural Proc. Lett. 14, 261
(2001).

[12] A. Malek and R. S. Beidokhti, Appl. Math. Comput. 183, 260
(2006).

[13] R. S. Beidokhti and A. Malek, J. Franklin Inst. 346, 898 (2009).
[14] M. Kumar and N. Yadav, Comput. Math. Appl. 62, 3796 (2011).
[15] K. Rudd and S. Ferrari, Neurocomputing 155, 277 (2015).
[16] M. Raissi, P. Perdikaris, and G. E. Karniadakis, J. Comput.

Phys. 378, 686 (2019).
[17] M. Raissi, J. Mach. Learning Res. 19, 1 (2018).
[18] J. Han, A. Jentzen, and W. E, Proc. Natl. Acad. Sci. 115, 8505

(2018).
[19] W. E, J. Han, and A. Jentzen, Commun. Math. Stat. 5, 349

(2017).
[20] Q. Wei, Y. Jiang, and J. Z. Y. Chen, Phys. Rev. E 98, 053304

(2018).
[21] Y. Yang, M. Hou, J. Luo, and Z. Tian, J. Intelligent Fuzzy Syst.

38, 3445 (2020).
[22] M. Magill, A. M. Nagel, and H. W. de Haan, Phys. Rev.

Research 2, 033110 (2020).
[23] G. Torlai and R. G. Melko, Phys. Rev. B 94, 165134 (2016).

[24] C. Desgranges and J. Delhommelle, J. Chem. Phys. 149,
044118 (2018).

[25] D. Wu, L. Wang, and P. Zhang, Phys. Rev. Lett. 122, 080602
(2019).

[26] L. Huang and L. Wang, Phys. Rev. B 95, 035105 (2017).
[27] L. Huang, Y.-F. Yang, and L. Wang, Phys. Rev. E 95, 031301(R)

(2017).
[28] L. Wang, Phys. Rev. E 96, 051301(R) (2017).
[29] W. Yu, Y. Liu, Y. Chen, Y. Jiang, and J. Z. Y. Chen, J. Chem.

Phys. 151, 031101 (2019).
[30] S. Whitelam, D. Jacobson, and I. Tamblyn, J. Chem. Phys. 153,

044113 (2020).
[31] J. Li, H. Zhang, and J. Z. Y. Chen, Phys. Rev. Lett. 123, 108002

(2019).
[32] I. Lagaris, A. Likas, and D. Fotiadis, Comput. Phys. Commun.

104, 1 (1997).
[33] H. Nakanishi and M. Sugawara, Chem. Phys. Lett. 327, 429

(2000).
[34] M. Sugawara, Comput. Phys. Commun. 140, 366 (2001).
[35] Y. Shirvany, M. Hayati, and R. Moradian, Commun. Nonlinear

Sci. Numer. Simul. 13, 2132 (2008).
[36] K. Mills, M. Spanner, and I. Tamblyn, Phys. Rev. A 96, 042113

(2017).
[37] P. Teng, Phys. Rev. E 98, 033305 (2018).
[38] D. Pfau, J. S. Spenser, and A. G. D. G. Mathews, Phys. Rev.

Research 2, 033429 (2020).
[39] J. Hermann, Z. Schätzle, and F. Noé, Nat. Chem. 12, 891

(2020).
[40] J. B. Anderson, Quantum Monte Carlo: Origins, Development,

Applications (Oxford University, New York, 2007).
[41] F. Becca and S. Sprella, Quantum Monte Carlo Approaches

for Correlated Systems (Cambridge University, Cambridge,
England, 2017).

[42] K. Hornik, M. Stinchcombe, and H. White, Neural Networks 2,
359 (1989).

[43] G. Cybenko, Math. Control, Signals and Systems 2, 303 (1989).
[44] K. Hornik, Neural Networks 4, 251 (1991).
[45] D. Ceperley, Phys. Rev. B 18, 3126 (1978).
[46] Y. LeCun, Y. Bengio, and G. Hinton, Nature (London) 521, 436

(2015).
[47] M. Rupp, A. Tkatchenko, K. R. Muller, and O. A. von

Lilienfeld, Phys. Rev. Lett. 108, 058301 (2012).

032405-15

https://doi.org/10.1016/0895-7177(94)00160-X
https://doi.org/10.1109/72.712178
https://doi.org/10.1103/PhysRevLett.75.3594
https://doi.org/10.1103/PhysRevLett.86.4741
https://doi.org/10.1109/72.870037
https://doi.org/10.1023/A:1012784129883
https://doi.org/10.1016/j.amc.2006.05.068
https://doi.org/10.1016/j.jfranklin.2009.05.003
https://doi.org/10.1016/j.camwa.2011.09.028
https://doi.org/10.1016/j.neucom.2014.11.058
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1073/pnas.1718942115
https://doi.org/10.1007/s40304-017-0117-6
https://doi.org/10.1103/PhysRevE.98.053304
https://doi.org/10.3233/JIFS-190406
https://doi.org/10.1103/PhysRevResearch.2.033110
https://doi.org/10.1103/PhysRevB.94.165134
https://doi.org/10.1063/1.5037098
https://doi.org/10.1103/PhysRevLett.122.080602
https://doi.org/10.1103/PhysRevB.95.035105
https://doi.org/10.1103/PhysRevE.95.031301
https://doi.org/10.1103/PhysRevE.96.051301
https://doi.org/10.1063/1.5103210
https://doi.org/10.1063/5.0015301
https://doi.org/10.1103/PhysRevLett.123.108002
https://doi.org/10.1016/S0010-4655(97)00054-4
https://doi.org/10.1016/S0009-2614(00)00913-1
https://doi.org/10.1016/S0010-4655(01)00286-7
https://doi.org/10.1016/j.cnsns.2007.04.024
https://doi.org/10.1103/PhysRevA.96.042113
https://doi.org/10.1103/PhysRevE.98.033305
https://doi.org/10.1103/PhysRevResearch.2.033429
https://doi.org/10.1038/s41557-020-0544-y
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1007/BF02551274
https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/10.1103/PhysRevB.18.3126
https://doi.org/10.1038/nature14539
https://doi.org/10.1103/PhysRevLett.108.058301

HONG LI, QILONG ZHAI, AND JEFF Z. Y. CHEN PHYSICAL REVIEW A 103, 032405 (2021)

[48] R. Bellman, Dynamic Programming (Princeton University,
Princeton, NJ, 1957).

[49] G. Carleo and M. Troyer, Science 355, 602 (2017).
[50] S. Pathak, B. Busemeyer, J. N. B. Rodrigues, and L. K. Wagner,

J. Chem. Phys. 154, 034101 (2021).
[51] S. Manzhos, Machine Learning: Science and Technology 1,

013002 (2020).
[52] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Nature

(London) 323, 533 (1986).
[53] Please see https://www.tensorflow.com.
[54] S. Kakade, S. Shalev-Shwartz, and A. Tewari, J. Mach. Learn.

Res. 13, 1865 (2012).
[55] N. S. G. Hinton, A. K. I. Sutskever, and R. Salakhutdinov,

J. Mach. Learn. Res. 15, 1929 (2014).

[56] D. P. Landau and K. Binder, A Guide to Monte Carlo Simu-
lations in Statistical Physics, 4th ed. (Cambridge University,
Cambridge, England, 2014).

[57] L. Tierney, Ann. Stat. 22, 1701 (1994).
[58] D. Kingma and J. Ba, arXiv:1412.6980 (2014).
[59] N. M. Atakishiev and S. K. Suslov, Theor. Math. Phys. 85, 1055

(1990).
[60] D. J. Griffiths and D. F. Schroeter, Introduction to Quantum Me-

chanics, 3rd ed. (Cambridge University, Cambridge, England,
2018).

[61] D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566
(1980).

[62] Y. Wang, B. J. Braams, J. M. Bowman, S. Carter, and D. P. Tew,
J. Chem. Phys. 128, 224314 (2008).

032405-16

https://doi.org/10.1126/science.aag2302
https://doi.org/10.1063/5.0030949
https://doi.org/10.1088/2632-2153/ab7d30
https://doi.org/10.1038/323533a0
https://www.tensorflow.com
https://doi.org/10.1214/aos/1176325750
http://arxiv.org/abs/arXiv:1412.6980
https://doi.org/10.1007/BF01017247
https://doi.org/10.1103/PhysRevLett.45.566
https://doi.org/10.1063/1.2937732

