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Interferometric approach to open quantum systems and non-Markovian dynamics
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We combine the dynamics of open quantum systems with interferometry and interference, introducing the
concept of an open system interferometer. By considering a single photon in a Mach-Zehnder interferometer,
where the polarization (open system) and frequency (environment) of the photon interact, we theoretically
show that inside the interferometer, pathwise polarization dephasing dynamics is Markovian while the joint
dynamics displays non-Markovian features. Outside the interferometer and due to interference, the open system
displays rich dynamical features with distinct alternatives: only one path displays non-Markovian memory
effects, both paths individually display them, or no memory effects appear at all. The scheme allows one to
(1) probe the optical path difference inside the interferometer by studying pathwise non-Markovianity outside
the interferometer, and (2) introduce pathwise dissipative features for the open system dynamics even though
the system-environment interaction itself contains only dephasing. Due to the path dependencies, our results are
tightly connected to quantum erasure. In general, our results open up alternative ways to control open system
dynamics and for fundamental studies of quantum physics.
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I. INTRODUCTION

Interactions within a multipartite quantum system can de-
stroy the quantum properties of a given subsystem. This leads
to disturbance, or decoherence, in the system of interest,
i.e., an open quantum system [1]. The study of decoherence
and open quantum systems in general is important for both
practical and fundamental reasons, e.g., to produce feasible
quantum devices harnessing the fragile properties threat-
ened by the environment [2], or to better understand such
essentials as the quantum-to-classical transition [3–5] and
non-Markovian character of open system evolution [6–21].

Linear optical systems provide a commonly used practical
platform for this open system framework. Here, the system
of interest is often the polarization of the photon, while the
environment is the frequency degree of freedom. The system-
environment interaction is due to a birefringent medium and
the subsequent polarization-frequency coupling [16,22–30].
Recent achievements within this framework include, e.g.,
controlled Markovian to non-Markovian transition [16] and
arbitrary control of the dephasing dynamics [22]. Sometimes
the frequency noise can even turn out to be useful. For exam-
ple, it has been shown that noise-induced non-Markovianity
can be exploited in teleportation [24,25] and superdense cod-
ing [26].

Our current aim is to go beyond the conventional
open quantum system framework by combining the system-
environment interaction scheme with interferometric studies
of quantum optics, i.e., to introduce the concept of open
system interferometer. We are interested in how noise appear-

ing in different locations of the interferometer influences its
output. At the same time, we describe how the interferometric
setup influences the dynamics of an open quantum system and
the appearance of non-Markovian memory effects. These have
been under intensive scrutiny both theoretically and experi-
mentally in the last 10 years [6–11], though not extensively
considered in the interferometric framework.

In addition to the frequency of the photon, the paths of
the interferometer introduce another environmental degree
of freedom and allow one to apply noise in different lo-
cations of the interferometer—both inside and outside. By
considering a Mach-Zehnder interferometer, we see how prior
noise influences the interference at the output and the sub-
sequent open system dynamics. In general and as a result of
this “interferometric reservoir engineering,” we obtain non-
Markovian memory effects depending on in which location
of the interferometer the state tomography is performed and
where the “Heisenberg cut” [31] between the system and the
environment is drawn. The framework, due to interference,
also allows one to mimic dissipative features of open system
dynamics. While previous work has utilized wave plates [32],
we achieve dissipativelike dynamics less trivially since we
are dealing with pure dephasing that leaves the polarization
probabilities invariant. Moreover, our model can be seen as an
extension of optical collision models. Typically, the dynamics
between the collisions (described in the linear optical frame-
work by beam splitters) is unitary and discrete [33–35]. Here,
we account for nonunitary and continuous-time dynamics.

It is worth noting that earlier works have studied the
problematics of convex combinations of dynamical maps
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FIG. 1. A schematic picture of the open system (polarization)
and environment (frequency + path) studied in this paper. (a) The
relationship between the system S and environment E in the standard
linear optical approach, i.e., when only frequency is included in the
environment; (b) the path degree of freedom and its relationship with
polarization and frequency. I is the interaction.

(see, e.g., Refs. [21,36]) and how combining quantum
channels in different causal orders allows one to improve
information transmission for communication purposes (see,
e.g., Refs. [37,38]). However, our motivation and interest are
different. We are interested in the fundamental studies of open
quantum systems and non-Markovian features when combin-
ing dynamical maps coherently in an interferometric setup;
that is, when the channels are temporally aligned and the path
difference concerning free evolution is zero. This also allows
us to access the interferometric effects that are often ignored
in incoherent mixing [21,32].

We consider a polarization qubit of a single photon expe-
riencing frequency noise on the two paths inside and outside
a Mach-Zehnder interferometer. A schematic picture of this
model is presented in Fig. 1. In Fig. 1(a), we have the conven-
tional open system view, with unitary coupling between the
polarization and frequency causing dephasing. In Fig. 1(b),
the unitaries with possibly different interaction times and
refractive indices are applied on the different paths of the
interferometer. Throughout this paper, we use labels 0 and 1
for the paths inside the interferometer, and 0′ and 1′ for the
paths outside the interferometer.

Intuitively, same unitaries on paths 0(′ ) and 1(′ ) should
not alter the open system dynamics from the traditional
single-path case, nor should they affect interference since
interference is strongly related to the indistinguishability of
the paths. Thus, the two main questions of this paper are as
follows: How do different pathwise unitaries affect the total dy-
namics and interference? How does interference, in turn, affect
the following dynamics? We will address these questions from
the point of view of both the total open system state and the
conditional pathwise states, revealing the intriguing effects re-
lated to the quantum erasure and the which-path-information,
respectively. Next, we briefly recall the system-environment
interaction model.

II. SYSTEM-ENVIRONMENT INTERACTION
AND INFORMATION FLOW

Omitting the path qubit for now, the initial polarization-
frequency state is

|�〉 = CH |H〉
∫

dωg(ω)eiθH |ω〉 + CV |V 〉
∫

dωg(ω)eiθV |ω〉,
(1)

where CH (V ) and g(ω) are the probability amplitudes for
the photon to be in the polarization state |H (V )〉 and the
frequency state |ω〉, respectively, and eiθH (V ) is the complex
phase factor corresponding to horizontal (vertical) polar-
ization. Note that in general, θH (V ) = θH (V )(ω) �= constant,
indicating initial correlations between the polarization and
frequency [22,27,28]. Here, however, we restrict ourselves
to the constant initial phase factors and initial product state
between the system and environment.

Individually, the action of the dephasing channels
on the system is well known [7,11,16,22–24,26–30].
In the linear optical framework, we have � j (t ) =
� j (t )(�(0)) = trE [Uj (t )|�〉〈�|Uj (t )†], where Uj (t )|λ〉|ω〉 =
ein jλωTj (t )|λ〉|ω〉, λ labels the polarization components
{H,V }, while j is the channel label. In the time-evolution
operator Uj , we have Tj (t ) = ∫ t

0 χ j (s)ds with χ j (s) = 1,
when t ji � s � t j f , and χ j (s) = 0 otherwise. Thereby, the
polarization and frequency are coupled in a birefringent
medium described by the refractive indices njλ from time t ji

to t j f .
Employing a Gaussian frequency distribution [16]

|g(ω)|2 = 1√
2πσ 2

exp[ − 1
2 ( ω−μ

σ
)
2
], the evolving state of

the open system is

� j (t ) =
( |CH |2 CHC∗

V κ j (t )

C∗
HCV κ j (t )∗ |CV |2

)
, (2)

where the coherence terms undergo rotation and decay dic-
tated by the decoherence function

κ j (t ) = exp
{
i[θ + μ�njTj (t )] − 1

2 [σ�n jTj (t )]2
}
. (3)

Here, �n j = n jH − n jV is the birefringence of the medium,
and θ = θH − θV .

The flow of information between the system and
environment—and its connection to non-Markovian
dynamics—is commonly described by the trace distance
D(t ) between a pair of initially distinguishable states of the
system [14] and has been applied in several physical contexts
for this purpose in the past; see, e.g., Refs. [18,39–44]. The
sign of d

dt D(t ) tells the direction of the information flow. A
positive sign indicates non-Markovian memory effects and
information backflow into the open system. For dephasing
and choosing the initial state pair to be |±〉 = 1√

2
(|H〉 ± |V 〉),

i.e., having the maximum initial coherences, the trace distance
has a simple expression, Dj (t ) = |κ j (t )| [16]. Hence, in our
case, information backflow manifests itself by increasing
coherences.

It should be stressed that there are many more indica-
tors of non-Markovianity [1,6–11,45–50]. Most notably, the
monotonicity of the trace distance coincides with completely
positive (CP) divisibility in single-qubit dephasing, as we will
show later. Some recently proposed definitions of quantum
Markovianity are related to stochastic quantum processes that
include intermediate control operations and measurements
[46–50]. Despite our system of interest not falling into this
category, CP-divisibility coincides with the stricter, opera-
tional divisibility on average [21,46], and so does the trace
distance, in our case.
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III. THE INTERFEROMETRIC SETUP

A balanced convex combination of two of the channels can
be constructed, e.g., by a Mach-Zehnder-type interferometer,
inside of which the channels �0(t ) and �1(t ) operate on their
own paths. Including the path of the photon—initially in the
state |0̃〉, not to be confused with the path states |0〉 and |0′〉—
in the environment, the overall polarization-frequency-path
state inside the interferometer is

|MZ (t )〉 := [U0(t ) ⊗ |0〉〈0| + U1(t ) ⊗ |1〉〈1|](1 ⊗ H )|�〉|0̃〉
= 1√

2
[U0(t )|�〉|0〉 + U1(t )|�〉|1〉], (4)

where, to see how the system-environment interaction af-
fects interference, we have assumed that there is no phase
difference between the paths, and H is the Hadamard gate de-
scribing a nonpolarizing 50/50 beam splitter. From Eq. (4), it
is clear that obtaining the which-path-information, i.e., apply-
ing 1 ⊗ | j〉〈 j| and normalizing the state, results in Markovian
dephasing dynamics of the system when Gaussian frequency
distribution is used. However, as long as the path is not mea-
sured, we can go beyond Markovian dynamics. The state of
the system in the latter case is given by

�(t ) = �0(t )(�(0)) + �1(t )(�(0))

2
. (5)

Now the question becomes what kind of open system
dynamics we have after the interferometer, both on the in-
dividual paths separately and combining them. This time,
for simplicity, we have the same unitary coupling U ′(t ) :=
U0′ (t ) = U1′ (t ) acting after both exit ports. The total state
exiting the interferometer is

|MZ ′(t )〉 : = [U ′(t ) ⊗ 1](1 ⊗ H )|MZ (t )〉
= 1

2 {U ′(t )[U0(t ) + U1(t )]|�〉|0′〉
+U ′(t )[U0(t ) − U1(t )]|�〉|1′〉}. (6)

The open system state �′(t ) is then given by Eq. (5), with the
transformation

n jλTj (t ) 	→ n jλTj (t ) + n′
λT ′(t ) (7)

applied to it. However, if we now measure the photon’s path
and obtain the result j′, the state of the system becomes

� j′ (t )= 1

4Pj′

[
2�′(t )+(−1) j′

( |CH |2κH CHC∗
V (t )

C∗
HCV (t )∗ |CV |2κV

)]
,

(8)

where

κλ = 2exp
[− 1

2σ 2(n0λt0 − n1λt1)2
]

cos[μ(n0λt0 − n1λt1)]

(9)

and

(t ) = exp
(
i{θ + μ[n0Ht0 − n1V t1 + �n′T ′(t )]}

− 1
2σ 2[n0Ht0 − n1V t1 + �n′T ′(t )]2

)
+ exp

(
i{θ + μ[n1Ht1 − n0V t0 + �n′T ′(t )]}

− 1
2σ 2[n1Ht1 − n0V t0 + �n′T ′(t )]2

)
(10)

FIG. 2. A setup realizing the open system dynamics described by
� j (t ji ) 	→ � j (t j f ) and � j′ (t j′i ) 	→ � j′ (t j′ f ). The interaction times are
controlled by varying the thicknesses of the corresponding quartz
plates. To obtain the pathwise dynamics, we perform state tomog-
raphy on the desired path. Total dynamics is the sum of these
transformations weighted by the path probabilities.

originate from the cross terms U0(t )|�〉〈�|U1(t )† and
U1(t )|�〉〈�|U0(t )†, while

Pj′ = 2 + (−1) j′ |CH |2κH + (−1) j′ |CV |2κV

4
(11)

is the probability for the photon to be detected on path j′
outside the interferometer. Note that both the polarization
probabilities in the pathwise states [Eq. (8)] and the path
probabilities Pj′ [Eq. (11)] contain rapidly oscillating terms
with the frequency μ, since they both contain κλ [Eq. (9)].
An experimental setup which can be used to realize both
the pathwise and joint open system dynamics is presented in
Fig. 2.

IV. DYNAMICAL CHARACTERISTICS OF THE
OPEN SYSTEM INTERFEROMETER

Here, we study the distinguishability of states in more
detail. As mentioned earlier, trace distance coincides with CP-
divisibility as an indicator of non-Markovian memory effects
in the case of a single-qubit dephasing channel whenever a
completely positive and trace-preserving (CPTP) map exists.
This is trivially the case on paths 0 and 1 and when averaged
over paths either before or after the second beam splitter,
BS′. However, the existence of a CPTP map is a more subtle
issue with the conditional state � j′ (t ) on path j′ described
by Eq. (8). Interpreting � j′ (0) as the initial state instead of
�(0)—and thus interpreting the preceding interaction times
t0 and t1 as fixed parameters related to state preparation—
yields a CPTP map for some parameter choices, but not for
all due to the contractivity requirement of the trace distance,
D(t ) � D(0). On the other hand, the �(0)-dependent normal-
ization constant Pj′ prevents one from having a CPTP map
with the initial state �(0). Still, we argue that the trace dis-
tance is a valid indicator of non-Markovianity even on paths
0′ and 1′ individually: consider a non-normalized version of
Eq. (8). This is a completely positive and trace-nonincreasing
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(CPTNI) quantum operation E j′ (t ) [51] having the Kraus rep-
resentation E j′ (t )(�(0)) = ∑1

i=0 Ki, j′ (t )�(0)Ki, j′ (t )† with the
Kraus operators√√

h j′v j′ ± | f j′ (t )|
2
√

h j′v j′

(
±√

h j′
f j′ (t )

| f j′ (t )| 0

0
√

v j′

)
, (12)

where h j′ = [2 + (−1) j′κH ]/4, v j′ = [2 + (−1) j′κV ]/4,
f j′ (t ) = [κ0(t ) + κ1(t ) + (−1) j′(t )]/4, and∑1

i=0 Ki, j′ (t )†Ki, j′ (t ) � 1.
∑1

i=0 Ki, j′ (t )†Ki, j′ (t ) = 1 holds
for hj′ = v j′ = 1, making E j′ (t ) a valid CPTP map.

Quantum dynamics is often considered Markovian if it can
be split according to �(t2) = V (t2, t1)�(t1), where t2 � t1 �
0 and both �(t ) and the intermediate propagator V (t2, t1) are
CPTP [1]. Let us instead consider the criterion’s generalized
version, where the operators are CPTNI. In our case, the
pathwise propagator Vj′ (t2, t1) can be defined via its (two)
Kraus operators,√√√√1 ± | f j′ (t2 )|

| f j′ (t1 )|
2

(
± f j′ (t2 )

f j′ (t1 )
| f j′ (t1 )|
| f j′ (t2 )| 0

0 1

)
. (13)

Vj′ (t2, t1) is not only CPTNI, but CPTP if and only if
| f j′ (t2)| � | f j′ (t1)|, which is equivalent to d

dt | f j′ (t )| � 0.
Therefore, the trace distance coincides with CP-divisibility
and is also a valid indicator of non-Markovianity (in the gener-
alized CPTNI sense) on paths 0′ and 1′. The trace-decreasing
part of the dynamics occurs strictly at BS′ and hence needs
not be considered in Vj′ (t2, t1). In fact, Vj′ (t2, t1) is also the
propagator in the traditional CPTP case, as it is independent of
the parameters h j′ and v j′ . It should be stressed that in general,
there is no clear definition of quantum Markovianity regarding
non-CP or non-TP maps.

We consider the case where the polarization-specific re-
fractive indices are the same but the interaction times inside
the interferometer may differ. Interaction times on the paths
outside the interferometer are equal. In terms of notation, t is
the laboratory time, t0 = t0 f − t0i (t1 = t1 f − t1i) is the dura-
tion of the interaction on path 0 (1), and we use t0i = t1i = 0.
The difference in the interaction times inside the interfer-
ometer is denoted with �t = t0 − t1. For timescales, we use
τ = σ t and, in a similar manner, have τ0 = σ t0, τ1 = σ t1, and
�τ = σ�t .

We first consider the case where the interaction time dif-
ference, |�τ | = 10, is so large that the subsequent optical
path differences produced inside the interferometer prevent
interference at BS′. We have plotted the trace distances cap-
turing the non-Markovian features of the dephasing dynamics
in Fig. 3, with the initial state pair being |±〉. Taking both
paths into consideration (i.e., implementing “quantum era-
sure”) yields D(τ ), whereas performing state tomography
only on path j (′ ) yields Dj (′ ) (τ ). Figure 3(a) shows that inside
the interferometer before BS′, the joint open system undergoes
non-Markovian dephasing, while the pathwise states behave
in a Markovian fashion. As soon as the interaction on path 0
is switched off at τ = 50—while interaction still continues on
path 1—the joint open system dynamics displays oscillatory
behavior of trace distance, indicating non-Markovian behav-
ior. Outside the interferometer [see Fig. 3(b)], the open system

FIG. 3. Trace distances of the initial state pair |±〉 (a) inside and
(b) outside the interferometer as functions of the scaled laboratory
time τ when |�τ | = 10. Dashed light-blue line: path 0; dashed and
thick dark-red line: path 1; dashed dark-blue line: path 0′; dashed
and thick light-red line: path 1′; solid green line: combined paths
dynamics. We have fixed nH = 1.553, nV = 1.544, μ/σ = 400,
τ0 = 50, and τ1 = 60. For the dynamics outside the interferometer in
(b), the interaction times on both output paths start simultaneously at
τ = 60 and then run freely.

displays opposite features. Here, the joint dynamics is Marko-
vian while the pathwise evolution shows non-Markovianity
and backflow of information. Initially on each output path,
there are H and V components originating from both paths
inside the interferometer. In the subsequent interaction outside
the interferometer and on each path, the optical path differ-
ences between the H component from one earlier path and the
V component from the other earlier path become temporarily
equal, allowing recoherence and memory effects to arise. The
maximum trace distance reached is equal to 0.5 since the other
two remaining components have distinct path differences at all
times.

It is also interesting to note that (t ), which gives the
pathwise dynamics outside the interferometer, contains infor-
mation about the system’s entire history—see Eqs. (8) and
(10). This observation leads to the following result. When
there is no interference at BS′, we can estimate that

|t0 − t1| ≈ |�n|tmax

max{nH , nV } , (14)

where tmax is the instant of total interaction time where |(t )|
reaches its (observable) maximum. Therefore, by studying
non-Markovianity outside the interferometer, we can quan-
titatively estimate what the interaction time difference was
inside the interferometer—even though the path probabilities
P0′ and P1′ no longer carry significant information about this.
If interaction times are equal along the two paths and instead
indices of refraction are not equal, we can estimate their
difference in the same way. Similar calculations also hold for
estimating |CH |, |CV |, and their relative phase θ . Note that
with certain parameters, the pathwise coherences outside the
interferometer start from very close to zero. In these scenarios,
analyzing non-Markovianity is not just an alternative way, but
the only way, to make these estimations.

Let us now turn to the question of how the increasing
amount of interference at BS′ of the interferometer influences
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FIG. 4. Trace distance dynamics outside the interferometer for
different values of |�τ |. (a) |�τ | = 2.5, (b) |�τ | = 1.5, (c) |�τ | =
0.5, and (d) |�τ | = 0. Other parameters, notation, and units are the
same as in Fig. 3(b), except (a) τ0 = 57.5, (b) τ0 = 58.5, (c) τ0 =
59.5, and (d) τ0 = 60.

the subsequent open system dynamics in the joint and path-
wise states. The results are shown in Fig. 4 where, from
Figs. 4(a) to 4(d), we have |�τ | = 2.5 to |�τ | = 0, respec-
tively. Comparing Fig. 3(b) having no interference (|�τ | =
10) and Fig. 4(a) (|�τ | = 2.5), we see that the recoherence
peak and the interval of non-Markovianity shift to smaller
times τ and that the behavior of the pathwise state dynamics
begins to deviate from themselves even though both still dis-
play memory effects. Increasing the amount of interference
further and having |�τ | = 1.5 in Fig. 4(b) shows that the
dynamics on path 0′ displays information backflow, while
on path 1′, the joint dynamics behave in a Markovian man-
ner. Note also that in the pathwise states, the probabilities
〈H |�0′ |H〉 and 〈H |�1′ |H〉 have changed compared to their ini-
tial value of 0.5. This means that the interferometric setup also
allows one to introduce dissipative-type effects for the open
system dynamics due to interference, even though the system-
environment interaction consists of only dephasing. This is
seen in a more significant way in Fig. 4(c) with |�τ | = 0.5.
Here we have, e.g., on path 0′, 〈H |�0′ |H〉 ≈ 0.183 and, at the
same time, all three different dynamics behave in a Markovian
way, though distinctively. Finally, Fig. 4(d) (|�τ | = 0) repre-
sents the other extreme compared to Fig. 3(b). Here, despite
having noise inside the interferometer, the two previous paths
are fully indistinguishable and, due to full interference, the

photon always ends up at path 0′ and no memory effects are
on display.

V. CONCLUSIONS

We have gone beyond the traditional viewpoint of open
quantum system dynamics by introducing and studying an
open system interferometer. By considering a single photon
in a Mach-Zehnder interferometer and accounting for the
polarization-frequency interaction at different stages of the
interferometer, we have shown how, inside the interferom-
eter, the pathwise dephasing dynamics of the open system
(polarization) displays Markovian dynamics, while the joint
dynamics including both of the paths displays non-Markovian
memory effects—a direct result of quantum erasure, i.e., ig-
noring the path. More importantly and interestingly, at the
output of the interferometer, we observe a subtle and rich
interplay between the interference and memory effects. De-
pending on the system-environment interaction times inside
the interferometer, the open system dynamics in the output
can display non-Markovianity and information backflow on
one path only, both paths individually, or with no memory
effects at all. At this point, quantum erasure concerns not only
which-path-information but also memory effects, given that
the unitaries are equal. It is also important to note that the
scheme can be used to estimate the optical path difference in-
side the interferometer by looking at non-Markovianity at the
output—while the path probabilities no longer carry this in-
formation. Moreover, despite having the system-environment
interaction producing dephasing, we have shown how to in-
troduce dissipative elements to the open system dynamics due
to the interference effects.

Note that earlier research has focused, e.g., on how open
systems lose their quantum properties due to decoherence
[1] or how the state of an open system changes when us-
ing a convex combination of dynamical maps [21,36]. Our
approach contains a fundamentally different element in this
context. Coherent mixing within an interferometric setup
allows one to display the effects that the interference has
on the evolution of the open systems. This leads to rich
open system dynamics in terms of non-Markovian mem-
ory effects and opens new aspects considering the origin
of dephasing and dissipation—even when using one of the
most basic interferometric setups and a single-photon system
only. In the future, it will be interesting to include many-
body aspects into this framework combined with multiport
interferometers.

Our results, therefore, provide an alternative method for
the control and engineering of open system dynamics. This
includes non-Markovian memory effects, where their source
originates from first superposing two paths having different
earlier dynamics and then continuing with the system-
environment interaction. In general, we hope that our results
stimulate further work for understanding rich dynamical fea-
tures of open quantum systems, how to engineer them, and
how to explore fundamental aspects of quantum mechanics by
combining the concepts of open quantum systems—beyond
their traditional use—with other physical frameworks. For
example, here we only introduced the idea of collision models
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mixing discrete-time and continuous-time dynamics. It would
be very interesting to see what kind of open system dynamics
longer chains of beam splitters with continuous-time dynam-
ics in-between produce.
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