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Enhancement of quantum correlations and a geometric phase for a driven bipartite quantum system
in a structured environment
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We study the role of driving in an initial maximally entangled state evolving under the presence of a
structured environment in a weak and strong regime. We focus on the enhancement and degradation of maximal
concurrence when the system is driven on and out of resonance for a general evolution, as well as the effect of
adding a transverse coupling among the particles of the model. We further investigate the role of driving in the
acquisition of a geometric phase for the maximally entangled state. As the model studied herein can be used to
model experimental situations such as hybrid quantum classical systems feasible with current technologies, this
knowledge can aid the search for physical setups that best retain quantum properties under dissipative dynamics.
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I. INTRODUCTION

Two-qubit states are the simplest quantum-mechanical sys-
tems displaying entanglement. For a bipartite system, it is
important to know whether the system is entangled, separable,
classically correlated, or quantum correlated. As a valuable
resource in quantum information processing, entanglement
attracts much attention from researchers either in theory or in
experiment and much progress concerning this issue has been
achieved [1]. However, the presence of an environment can
destroy all traces of quantumness of the system. All real world
quantum systems interact with their surrounding environment
to a greater or lesser extent. As the quantum system is in
interaction with an environment, a degradation of pure states
into mixtures takes place. No matter how weak the coupling
that prevents the system from being isolated, the evolution of
an open quantum system is eventually plagued by nonunitary
features like decoherence and dissipation. Nowadays, deco-
herence stands as a serious obstacle in quantum information
processing. Likewise, very interesting effects occur regarding
their entangling properties when two qubits and external envi-
ronments are considered. For example, two qubits interacting
with two different baths exhibit sudden death of entangle-
ment [2], being more pronounced at finite temperature [3]
and in the presence of external driving [4]. This means a
major obstacle in building a quantum computer since it can be
more difficult to maintain quantum correlations when qubits
interact with different reservoirs and are locally driving by
single-qubit quantum gates. If qubit-qubit interactions are also
considered, another interesting feature of entanglement called
“steady-state generation of entanglement” takes place [5]. The
nonintuitive character of entanglement derives from the fact
that it affects a bipartite system although it is subject only
to local interactions. Entanglement, however, is a character-
istic of the whole system, and has a dynamics that cannot

be understood by just adding the sum of the local effects.
The qubit-qubit coupling is established either directly, through
mutual inductances and capacitances, or as a second-order
effect, due to the interaction through a common environment.

The possibility of exploiting the environment as a resource
for control has opened a new door in the manipulation of
open quantum systems. The generation and stabilization of
entanglement is one of the main challenges for quantum
information applications. The dynamical behavior of corre-
lations in the bipartite system depends on the noise produced
by the environment. Many different approaches have studied
the entanglement properties of bipartite systems in different
frameworks. In [6], authors have studied quantum correlations
in a two-qubit system coupled to either a common bath or two
different baths, focusing on environmental memory effects
induced on the bipartite system. In [7], the use of the quantum
Zeno effect has been proposed to protect the degradation of
the entanglement for two atoms in a lossy resonator. In [5], the
interplay of driving and decoherence in a bipartite system un-
der the secular approximation for a dephasing model has been
studied. In [8], authors numerically studied the generation of
a driven-dissipative steady entanglement state for solid-state
qubits driven by periodic fields, in a dephasing model. Fur-
thermore, in [9] authors focused on driving the open quantum
system from an initial separable state to an entangled target
state by exploiting the environment as a resource for control.
All of these approaches had to resort to simplified analytical
approaches or environmental models so as to derive master
equations and obtain the dynamical behavior of the bipartite
system under particular situations.

An effective method that avoids approximations was devel-
oped by Tanimura [10], who established a set of hierarchical
equations that includes all orders of system-bath interac-
tions. System-bath correlations are fully accounted for during
the time evolution, as compared to the traditional master
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equation treatments where correlations are truncated at second
order. The information concerning the system-bath coherence
is stored in the hierarchical elements, which allows us to
simulate the quantum entangled dynamics between the system
and the environment beyond any analytical approximation. In
[11], authors used the hierarchy equation model to study two
noninteracting qubits embedded in a bosonic environment.
Therein, they showed the discrepancy between the results
obtained in a resonant case with those derived by using the
rotating-wave approximation for good and bad cavities. In
this paper, we extend this model to a driven bipartite system,
say two qubits interacting with a common bath and among
them (if desired), driven at and off resonance. The importance
of the driven two-state model is especially pronounced in
quantum computation and quantum technologies, where one
or more driven qubits constitute the basic building block of
quantum logic gates [1]. Different implementations of qubits
for quantum logic gates are subjected to different types of
environmental noise, i.e., to different environmental spectra.
The dynamics will depend on three ingredients: driving, cou-
pling, and dissipation. It is then worth asking if the driving
might play any role in the preservation of quantum corre-
lations and under what initial conditions. Herein, we shall
consider a structured environment and have no limitations
on the coupling. We can model weak or strong couplings
since we are using a numerical method that contemplates
the full dynamics of the system, including both dissipation
and Lamb shift, which are fully contained in the numerical
model. The reason for choosing this model is twofold. On
the one side, it is a numerical model that allows us to study
the complete environmental induced dynamics of the bipartite
system, stressing under what conditions external driving can
enhance (or not) quantum correlations of the system for an
initial maximally entangled state (MES). The model accounts
for external driving on the particles, dipolar interaction with
the environment, and transverse coupling among the particles.
On the other side, it is the natural sequel to previous studies
of the geometric phase (GP) acquired by a driven two-level
system [12] and undriven bipartite system in a spin boson
model [13,14]. This paper constitutes a study of quantum
correlations and its preservation for a driven bipartite system
in a structured environment, and the further consequences
on the geometric phase. We focus on the preservation of
quantum correlations under a nonunitary evolution of initial
MESs since they are said to posses a robustness condition.
This paper is organized as follows: in Sec. II, we present
the model consisting of a bipartite two-level system described
by a time-periodic Hamiltonian interacting with a structured
environment, allowing mutual interaction among the particles
if necessary. In Sec. III we numerically solve the dynamics
of the system for a weak and strong evolution through the
hierarchy method beyond the rotating-wave approximation
for a different class “X” of the bipartite state. In the case
of one excitation present in the system, we focus the paper
on what types of conditions (say the initial state, resonance
condition, and external driving) prolong or degrade the quan-
tum entanglement compared to the undriven situation. When
considering two excitations present in the system we study the
geometric phase acquired by the bipartite system and compare
the results obtained to the previous one for the undriven case

in a dephasing model. Finally, in Sec. IV we summarize the
results and present conclusions.

II. THE MODEL

We consider two qubits independently coupled to a struc-
tured environment. The total Hamiltonian which describes this
model reads (we set h̄ = 1 from here on)

Ĥ = ĤS (t ) + ĤI + ĤE ,

with

ĤS = ω̄1(t )σ 1
+σ 1

− ⊗ 12 + ω̄2(t )11 ⊗ σ 2
+σ 2

−

+ J

2
(σ 1

+ ⊗ σ 2
− + σ 1

− ⊗ σ 2
+), (1)

ĤI = (
σ 1

x ⊗ 12 + 11 ⊗ σ 2
x

)∑
k

(gkbk + g∗
kb†

k ), (2)

ĤE =
∑

k

ω̄kb†
kbk, (3)

where σ
j

± = σ
j

x ± iσ j
y [with σ

j
α (α = x, y, z) the Pauli matrices

for each particle’s subspace, i.e., j = 1, 2] and bk and b†
k are

the annihilation and creation operators corresponding to the
kth mode of the bath. In the ĤS we are considering a parameter
J to include (or not) a transverse coupling among qubits (that
can be associated to the mutual capacitance when dealing
with coupled flux qubits [8,15]). The environmental coupling
constant is gk , and ω̄1(t ) and ω̄2(t ) are the time-dependent
frequencies. We shall assume they have the following form:

ω̄1(t ) = �̄1 + �̄1 cos(ω̄D1t + ϕ1),

ω̄2(t ) = �̄2 + �̄2 cos(ω̄D2t + ϕ2) (4)

where an arbitrary driving field is applied over each atom
1 or 2, with driving frequency ω̄i

D (allowing time-dependent
energy difference between states |0〉 and |1〉 of each two-level
particle). The exact dynamics of the system in the interaction
picture has been derived as in [10,11]. If the qubits and the
bath are initially in a separable state, i.e., ρ(0) = ρs(0) ⊗k

|0k〉, the formal solution is

ρ̃S (t ) = T exp

{
−

∫ t

0
dt2

∫ t2

0
dt1Ṽ (t2)

×[CR(t2 − t1)Ṽ (t1)× + iCI (t2 − t1)Ṽ (t1)◦]

}
ρs(0),

(5)

where T implies the chronological time-ordering operator and
we have introduced the following notation: A×B = [A, B] =
AB − BA and A◦B = {A, B} = AB + BA. In our particular
case, the interaction potential is a dipolar one defined by
V = (σ 1

x ⊗ 12 + 11 ⊗ σ 2
x ) as can be seen in the definition

of the Hamiltonian Eq. (2). The coefficients CR(t2 − t1) and
CI (t2 − t1) in Eq. (5) are the real and imaginary parts of the
bath time-correlation function, defined as

C(t2 − t1) ≡ 〈B(t2)B(t1)〉 = Tr[B(t2)B(t1)ρB]

=
∫ ∞

0
dωJ (ω)e−iω(t2−t1 ) (6)
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and

B(t ) =
∑

k

[gkbk exp(−iωkt ) + g∗
kb†

k exp(iωkt )].

The difficulty in solving the time-ordered integral in Eq. (5)
has been overcome by the hierarchy method derived in
[10,16]. The key condition in deriving the hierarchy equations
is that the correlation function can be decomposed into a
sum of exponential functions of time. At finite temperatures,
the system-bath coupling can be described by the Drude
spectrum. However, if we consider qubit devices, they are
generally prepared in nearly zero temperatures. In such cases
of cavity-qubit systems, the coupling spectrum is usually a
Lorentz type defined as J (ω) as has been explained in [11]:

J (ω) = γ̄0

2π

λ2

(ω − �̄0)2 + λ2
. (7)

In the above equation, �̄0 is considered as the average value
among the frequencies of the system at t = 0, γ̄0 represents
the coupling strength between the system and the bath, and
λ characterizes the broadening of the spectral peak, which
is connected to the bath correlation time tc = λ−1. The re-
laxation timescale is determined by tr = γ̄ −1

0 . Then, if we
consider the bath in a vacuum state at zero temperature, the
correlation function can be expressed as

C(t2 − t1) = λγ̄0

2
exp[−(λ + i�̄0)|t2 − t1|], (8)

which is the exponential form required for the hierarchy
method. Therefore, we can study the full spectrum of behavior
by solving the hierarchy method, which can be expressed as

d

dτ
ρ	n(τ ) = −(iHs[τ ]× + 	n · 	ν)ρ	n(τ ) − i

2∑
k=1

V ×ρ	n+	ek (τ )

− i
γ0

2

2∑
k=1

nk[V × + (−1)kV ◦]ρ	n−	ek (τ ), (9)

where we have defined dimensionless parameter variables τ =
λt and x = x̄/λ (where x is any parameter with units of en-
ergy in the model described). The subscript 	n = (n1, n2) with
integer numbers n1(2) � 0, and ρS (t ) ≡ ρ(0,0)(t ). We want to
emphasize that the “physical” solution is encoded in ρ(0,0)(t )
and all other ρ	n(τ ) with 	n 
= (0, 0) are auxiliary operators, just
defined in order to solve the system. The vectors 	e1 = (1, 0),
	e2 = (0, 1), and 	ν = (ν1, ν2) = (1 − i�0, 1 + i�0). This set
of linear differential equations can be solved by the use
of a Runge-Kutta routine. It is important to mention that
for numerical computations, the hierarchy equations must be
truncated for large 	n. The hierarchy terminator equation is
similar to that of Eq. (9) for the term 	N , and the correspond-
ing term related to ρ 	N+	ek

is dropped [10]. In all simulations
presented in this paper, we have set the order of trunca-
tion at 	N = (20, 20), as we have checked the convergence
of positive reduced matrix ρ(τ ). This method can describe
the dynamics of a system with a nonperturbative and non-
Markovian system-bath interaction at finite temperature, even
under strong time-dependent perturbations. This formalism is
valuable because it can be used to study not only strong-bath

coupling, but also quantum coherence or quantum entangle-
ment. The information concerning the system-bath coherence
is stored in the hierarchical elements, which allows us to
simulate the quantum entangled dynamics between the system
and the environment. In the particular case of this paper, we
shall focus on the entangled dynamics of a driven bipartite
system and its environment.

III. ENVIRONMENTALLY INDUCED DYNAMICS ON
MAXIMALLY ENTANGLED BIPARTITE STATES

For the particular purpose of this paper, we shall consider
entangled two-qubit states within the class of X states, de-
fined in the computational standard basis B = {|1 >≡ |11 >

, |2 >≡ |10 >, |3 >≡ |01 >, |4 >≡ |00 >}[6]:

ρX =

⎛
⎜⎝

ρ11 0 0 ρ14

0 ρ22 ρ23 0
0 ρ∗

23 ρ33 0
ρ∗

14 0 0 ρ44

⎞
⎟⎠. (10)

This type of matrices is commonly used in a variety of phys-
ical situations. For several physical dynamics this structure is
further maintained in time. These X states contain the Werner-
like states defined as

ρr (0) = 1 − r

4
1 + r|φ̃〉〈φ̃〉 (11)

where r ∈ (0, 1] determines the mixing of the state and 1 is
the unit matrix in the Hilbert space 4 × 4. The state |φ̃〉 may
be any of the following states:

|�±〉 =
√

1 − p|01〉 ± √
p|10〉, (12)

|�±〉 =
√

1 − p|00〉 ± √
p|11〉 (13)

where p determines the degree of entanglement, |0〉 and |1〉
being eigenstates of the Pauli operator σz. It is easy to note that
when p = 1/2, the above states are the Bell states. For r = 0
the Werner-like states become totally mixed states, while for
r = 1 they reduce to the Bell states in Eqs. (12) and (13).
There are two subclasses, namely, states that are diagonal on
a subspace of single excitations and states that are diagonal
in the subspace of zero and two excitations. In the following,
we shall consider an initial bipartite state of each of the two
subclasses and study the concurrence as it evolves in time and
driving is included in the system. It is important to recall that
we shall work with dimensionless frequencies and temporal
parameter τ , say �i = �̄i/λ, �i = �̄i/λ, ωi

D = ω̄i
D/λ. We

shall assume a bath correlation time τc = 1.

A. Initial maximally entangled states |�±〉
In this subsection, we shall focus on the main features of

the driven noninteracting qubits when embedded in a common
structured environment. We shall consider only one excitation
is present in the system and the environment is initially in
vacuum. This means that at t = 0, the cavity is initially in a
vacuum state |0k〉. We consider the initial state as

|�+〉 = (
√

1 − p|01〉 + √
p|10〉) ⊗k |0k〉, (14)

which means by defining the initial density matrix in Eq. (11)
with r = 1 and |φ̃〉 = |�+〉. The reduced density matrix takes
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FIG. 1. We show the degradation of purity of the bipartite system
as time evolves (measured in dimensionless natural cycles N = τ/τs)
for different couplings to the environment. Solid lines represent
the same value for the system parameters (�1 = 10, �2 = 15) but
different strength couplings R. For these values we have τs ∼ τc. The
dashed line is a representative value for τs < τc (�1 = 10, �2 = 20),
with a strong environment R = 1. Finally, the dot-dashed line is a
representative situation for τs > τc, for a near-resonance situation
with R = 1: �1 = 10, �2 = 11. As it can be seen, a stronger cou-
pling to the environment leads to a bigger loss of purity (R = 5). As
τs represents proper times, it indicates different timescales in the di-
verse situations (N = 15 for the dashed line represents a shorter time
than for the others). All parameters are dimensionless (�i/λ, �i/λ),
τc = 1, R = γ0/λ, J = 0. No driving is considered.

the form

ρ(t ) =

⎛
⎜⎝

0 0 0 0
0 ρ22(t ) ρ23(t ) 0
0 ρ∗

23(t ) ρ33(t ) 0
0 0 0 1 − ρ22(t ) − ρ33(t )

⎞
⎟⎠. (15)

We can start by studying the loss of purity as time evolves
in the case of an initial MES, say p = 1/2. The dynamics of
the system is determined by the coupling between the system
and the environment. Commonly found in the literature is the
definition of bad and good cavities determined by the value
of the factor R = γ̄0/λ. This means that for a weak coupling,
we have γ̄0 < λ, leading to R < 1, commonly known as the
bad cavity limit. Otherwise, for a stronger coupling, R > 1
yields a good cavity limit. We shall use this convention to
characterize the strength of the coupling. These qualitatively
different behaviors are shown with solid lines in Fig. 1.

Therein, we can see that by changing the value of the
coupling constant γ̄0, we can simulate different cavity behav-
iors (leaving λ fixed). For strong coupling we can see the
evolution is accompanied by the typical fast oscillations of
non-Markovian evolutions (solid lines for R = 1 and 5). In
Fig. 1, we have also included weak coupling (R = 0.01 and
0.1) for the same dynamical timescale ωs = ω2 − ω1 and τs =
2π/ωs. Further, we have added two other representative situa-
tions for a strong coupling R = 1. The dot-dashed line is for a
quasiresonant case, meaning both particles have very similar

frequencies. This yields τs > τc. In contrast, the dashed line is
for two considerably different atom frequencies with τs < τc.
As N indicates the number of natural cycles elapsed, then it is
instructive to recall that it represents longer times for longer
τs. We can note that the loss of purity is done in a few natural
cycles in the near-resonance case, for a strong environment
R = 1 (even faster than for the case R = 5 and τs ∼ τc). This
means that, depending on the system’s timescale, the tran-
sition between atomic states has already been achieved for
N = 15, leading to an increment in the population of the |00〉
state [ρ00(t ) = 1 − ρ22(t ) − ρ33(t ), see Eq. (15)], and there-
fore of purity (see the Appendix). Likewise, for a shorter τs,
it seems that a stationary state has not already been achieved.
The advantage of this numerical method is that by choosing
the right set of parameters, we can simulate a different type of
environment and obtain the corresponding dynamics beyond
the rotating-wave approximation.

In the following, we shall focus on how external driving
can affect (or enhance) the entanglement dynamics under a
strong regime R = 1. We shall consider the qubits to have
similar (but not equal) frequencies yielding τs ∼ τc. In par-
ticular, we shall investigate to what extent external driving
acting solely on the bipartite system can preserve quantum
correlations in a strong regime where memory effects of
the environment take place. The dynamics of the bipartite
two-level driven system comprises three different dynamical
effects, each occurring on a different timescale. Dissipation
and decoherence occur on the relaxation timescale τr and
non-Markovian memory effects occur for times shorter than
or similar to the reservoir correlation timescale τc [12] (in
addition to the system’s timescale τs).

Quantum decoherence implies a rapid reduction of the off-
diagonal terms of the bipartite reduced density matrix. The
quantity for measuring the entanglement between the different
parts of the composite system is the concurrence [2,6]. The
concurrence for the evolution of this state can be computed
as C(ρ̃r ) = max(0,

√
λ1 − √

λ2 − √
λ3 − √

λ4), where λ1, λ2,
λ3, and λ4 are the eigenvalues of ρ̃r = ρr (σ 1

y ⊗ σ 2
y )ρ∗

r (σ 1
y ⊗

σ 2
y ). We start by adding driving to only one of the particles,

assuming similar frequencies �i and different detuning ones
�i. In Fig. 2, we show the behavior of the concurrence as
time evolves for different driving situations. In the top panel of
Fig. 2 we add driving to one of the particles, say particle num-
ber 1. Then, ω1(t ) = �1 + �1 cos(ω1

Dt + ϕ1), and we leave
the other particle undriven: ω2 = �2. We can see the behavior
is qualitatively different as the driving frequency varies. The
blue solid line is for ω1

D = 0, which means no driving at all,
and can be used as a reference for the undriven case. The light
blue dashed line is for ω1

D = 0.1 and the purple dot-dashed
line is for ω1

D = 1. The magenta dashed line represents ω1
D =

2 and the gray dotted line ω1
D = 4 (all frequencies have been

adimensionalized by ωD = ω̄D/λ). We can even note that for
ω1

D = 2 and 4 there is entanglement sudden death occurring
at different times, while for ω1

D = 1, concurrence is enhanced
when compared to the static situation.

We can also study the behavior of concurrence as the driven
particle is number 2 with ω2 = �2 + �2 cos(ω2

Dt + ϕ2) and
number 1 is static (middle panel). The blue solid line is for
ω2

D = 0 and the light blue solid line is for ω2
D = 0.1. We can

see that concurrence has bigger values at longer times when
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FIG. 2. We show how the external driving on each particle affects
the concurrence of the bipartite initial system as time evolves (mea-
sured in dimensionless natural cycles N). At the top panel, we add
driving frequency to the one of the particles composing the bipartite
system (ω1

D = 0.1, 1, 2, and 4). In the middle panel we add driving
to the other ω2

D = 0.1, 1, 2, and 4. Finally, in the bottom panel,
we add driving to both particles (ω1

D = 3 and ω2
D = 1.7, ω1

D = 2
and ω2

D = 3, and ω1
D = 3 and ω2

D = 2). Parameters: R = 1, τc = 1,
�1 = 15, �2 = 10, �1 = 4, �2 = 7, ϕ1 = π , τs = 1.04, J = 0.

driven at a small driving frequency (even compared to the
specular situation in the top panel). The purple dashed line
represents ω2

D = 1, the magenta dot-dashed line represents
ω2

D = 2, and the gray dotted line represents ω2
D = 4. It is in-

teresting to note the qualitatively different behaviors obtained
for similar values in both different panels. Finally, we can
add driving to both particles at the same time. The behavior
of the concurrence is shown in the bottom panel for some
set of values of ω1

D and ω2
D. As can be seen, it is not that

easy to predict the behavior of the concurrence when both
particles are driven. However, we can note that for some set of
values, concurrence is enhanced and quantum correlations are
evidently preserved over longer times compared to the static
case. This result agrees with that found for a single driven
atom in [12]. In order to show the full picture, we include
all sets of values for ω1

D and ω2
D in Fig. 3(a). Therein, we

show how driving on both particles affects the evolution of
the initial maximum concurrence for a strong-coupling regime
(R = 1). On the top left corner, we show the concurrence
for the bipartite system having elapsed one natural cycle, say
N = 1. As the interaction with the environment is switched
on at t = 0, concurrence suffers an abrupt decrease but starts
oscillating thereafter. However, the later evolution strongly
depends on the external driving, because we can see that we
can find areas with greater or lesser degree of entanglement
(compared to the static situation) at N = 3. There are areas
where entanglement has increased compared to the similar
static situation where driving is not considered (in the bottom
left corner). This fact is accented for later times as can be
observed for N = 5. Black areas show that entanglement has
been abruptly destroyed in agreement with Fig. 2, bottom
panel. Concurrence for N = 7 is shown in the right bottom
picture. Therein, we can see that concurrence is generally
destroyed for this timescale in the strong-coupling regime for
this initial bipartite state.

We can try to understand the results by assuming they
depend on the form of the external driving we are introducing
as it molds the response of the bipartite system against the
environment. By looking at the figure, it seems that higher
frequencies imply a constant flux of driving which in turn can
be associated with a stronger concurrence for the initial MES
state. In contrast, if the driving has a spaced effect in time, its
competition against the memory effects of the bath is weak
and it may result in a lesser degree of entanglement as time
evolves. It is important to recall that in Fig. 3(a), �1 < �2 and
this fact can lead to biased conclusions. Hence, in order to see
to what extent our results depend on the value of the detuning
frequency, we shall next consider the evolution in time of an
initial maximally entangled state |�+〉, under similar detuning
frequencies leading to a quasiresonant condition. Then, we
shall drive the system with �1 ∼ �2, leaving fixed τs ∼ τc

for a proper comparison. In Fig. 3(b) we can observe the cor-
responding panels for the time evolution of the concurrence
(N = 1, 3, 5, and 7). In this case, patterns seem to be symmet-
ric and quantum correlations seem to prevail for longer times.
In N = 5 there are less regions of null concurrence than in the
corresponding previous case. In this case, when frequencies
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FIG. 3. (a) We show how the external driving on each particle affects the concurrence of the maximally entangled initial state of the bipartite
system for different times (measured in dimensionless natural cycles N) for different detuning frequencies and strong coupling. Parameters
used: R = 1, τc = 1, τs = 1.04, �1 = 15, �2 = 10, �1 = 4, �2 = 7, ϕ1 = π , and J = 0. (b) Concurrence of the bipartite initial system
for different times (N) for similar detuning frequencies under strong coupling. Dimensionless parameters used: R = 1, τc = 1, τS = 1.03,
�1 = 15 = �2, �1 = 3, �2 = 3.1, ϕ1 = π , and J = 0.

are similar, beats take place and their periods are longer, which
seems to enhance quantum correlations. For N = 7 we can
find clean areas where quantum correlations are still alive and
of greater strength when compared to the corresponding panel
of Fig. 3(a).

So far, we have seen that having a highly detuned scenario
does not necessarily enhance quantum correlations [Fig. 3(a)].
We can see that they disappear soon enough, in some areas
even earlier than for the undriven case (left corner of the
plots). We believe the non-Markovian environment rules the
evolution of the system in this particular case. However, when
the system has similar detuning frequencies �i [Fig. 3(b)],
the dynamics is considerably different, exhibiting regions
where quantum correlations are preserved longer compared to
the static case. We can interpret this result by considering the
unitary phase factor e−i

∫ τs
0 (ω2(t ′ )−ω1(t ′ ))dt ′

in the case �1 ∼ �2.
In such a situation, the phase factor can be approximated by
(�2 − �1)τs + �/ωD sin(ωR

Dτs). We must note that we have
further considered τs ∼ 1. This means that driving is the result
of some other periodic function of period TR = 2π/ωR

D. This
would be equivalent to having a particle of renormalized fre-
quency �2 − �1 to which driving is added. We can interpret
the results obtained for this situation by comparing to those
obtained for a driven two-level particle in the presence of
a structured environment. In [24], authors have studied to
what extent the effect of adding driving on the system can
increase the non-Markovianity (NM) with respect to the un-
driven case. They have shown that driving cannot increase
the degree of NM for strong couplings. Further, authors have
shown that there is a large area where NM is suppressed in
intermediate couplings (γ̄0 ∼ λ, herein R = 1) for ωD/� � 1.
It has later been shown that this suppression of NM can
have further detectable effects as for example in the geomet-
ric phase acquired by a two-level system evolving coupled
to a strong environment. It has been evidenced that, when

γ̄0 ∼ λ, a two-level driven evolution with ωD/� ∼ 1 verifies
the suppression of revivals and ensures a smooth evolution,
allowing an acquisition of a geometric phase more similar to
the unitary one [12]. Therefore, we believe that this reported
suppression of NM can be responsible for a preservation of
quantum correlations as can be seen in the upper corner of
Fig. 3(b) where ωD/� � 1.

A very interesting result reported in [7,11] is the steady-
state entanglement. It is easy to prove that |�−〉 is an
eigenstate of HS and HI for the particular situation that ω1 =
ω2 and J = 0. In Fig. 4 we show the evolution of concurrence
for different initial maximally entangled states, |�±〉, in and
out of resonance (�1 = �2 and �1 
= �2 correspondingly,
�i = 0). The black dotted line corresponds to the resonant
case of |�−〉, while the magenta dashed line is the off-
resonant case, for τs ∼ τc. The dark gray solid line represents
the off-resonant case for |�+〉, while the blue dot-dashed
line is the resonant case of the same initial MES [17]. As
it can be noted in the figure, concurrence is enhanced for
the initial |�−〉 state (with respect to |�+〉) given the same
parameters of the system and when driving is not considered
at all. Therefore, in the following, we shall explore the effect
on quantum correlations of adding driving to the initial MES
given by |�−〉 under a strong coupling.

In Fig. 5 we show the concurrence for different times
elapsed when the maximally entangled state evolves under
a structured environment in a strong regime and �1 < �2.
We show different time pictures so as to compare with the
concurrence’s time evolution of the initial |�+〉 state. On
the left top row we include N = 1 on the left and N = 3
on the right, while in the bottom right we present N = 5
on the left and N = 7 on the right. Similarly, in Fig. 5(b)
we include the concurrence for different times elapsed when
the maximally entangled state evolves under a structured
environment in a strong regime when the system is driven
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FIG. 4. Concurrence as time evolves (measured in dimensionless
N) for initial different maximally entangled states |�+〉 and |�−〉,
in resonance (�1 = �2 = 10) and out of resonance (�2 = 15 and
�1 = 10). The gray dotted line represents the resonant case of |�−〉,
while the magenta dashed line is the off-resonance case of the same
MES. The dot-dashed blue line is the resonant case of |�+〉, while the
dark solid line corresponds to the off-resonant situation of that MES.
There is no driving considered. Parameters: R = 1, τc = 1, J = 0.

with similar detuning frequencies, assuming τs ∼ τc. On
the left top row we include N = 1 on the left and N = 3 on
the right, while in the bottom right we present N = 5 on the
left and N = 7 on the right for the correct comparison among
the different initial conditions.

When comparing results obtained in Figs. 3 and 5, we
can note that similar detuning frequencies exhibit stronger
quantum correlation at longer times. Among both cases, we
can observe that when the initial MES is |�−〉 [Fig. 5(b)],
quantum correlations seem to prevail for more sets of pa-
rameters than when the initial MES is |�+〉 [Fig. 3(b)]. In
the particular case of |�−〉, for the same timescale, quantum
correlations seem to be stronger for some particular values
verifying ωD/� � 1. As in the above figures, the detuning
frequencies have been kept fixed, we shall further explore
other different driving situations for the initial state |�−〉,
allowing for the existence of interaction among the particles
through the parameter J as well. In Fig. 6, we show a dot-
ted black line for the resonant undriven case �1 = �2 as a
reference. The blue solid case is for a driven situation of a
higher frequency ω1

D = 7 = ω2
D than the dot-dashed purple

line (ω1
D = 3 = ω2

D), and both lines are for �1 = 1, ϕ1 = π ,
and �2 = 1.1. We can see that these lines correspond to a
near-resonance condition since frequencies are very similar. In
this particular case, it is important to note that concurrence has
a small decrease in comparison to the static case. The green
dot-dashed line corresponds to a smaller difference among
frequencies, a nearer-resonance situation. The orange dashed
line represents other values of detuning frequencies and driv-
ing: �1 = 2, �2 = 5, ϕ1 = 0, and ω1,2

D = 3 (still small but
bigger difference than the other cases). These values can be
well compared to the situation when �1 and �2 are big-
ger, leading to a greater difference ω2(t ) − ω1(t). The dashed

magenta line is for �1 = 5, ϕ1 = π , �2 = 5.1, and ω1,2
D = 8.

The gray solid line is for �1 < �2, as the driving situations
shown in Fig. 5(a). These representative values show that a
small difference among frequencies ω2(t ) − ω1(t ) (hence, a
quasiresonant situation) helps better preserve quantum cor-
relations. Figure 6 adds information to that shown in Fig. 5,
because it exhibits the behavior of different sets of detuning
frequencies �i. Finally, in that figure, we have also added a
line where we included a transverse interaction among the
particles with a brown dotted line J = 1 (all other parameters
have the same values as the blue line). By including this
transverse coupling, we further show that our results are in
agreement with other previous studies, where authors have
shown that transverse coupling is less harmful than longi-
tudinal coupling. All in all, we can state that enhancement
of concurrence occurs near resonant condition for the |�−〉
state. Furthermore, we can mention that if we include in
the system’s Hamiltonian transverse coupling, concurrence
seems to be robust (brown dotted line). This result agrees
with that achieved by authors in [8] where they studied the
manipulation of quantum entanglement in coupled flux qubits
for transverse and longitudinal coupling in the context of
closed systems. In [18] authors found that transverse coupling
was less harmful than longitudinal noise for low and high
frequency of external noise in agreement with the observation
of the Berry phase in an experimental setup [19].

In Fig. 7 we show the concurrence for a representative
situation of an initial state |�−〉, where we show how it
varies for different time sequences and different values of ωD

and the transverse coupling J . We can see that, even though
initially there are greater areas where concurrence is null, as
long as time evolves those regions become smaller. Quantum
correlations seem to survive for big values of the transverse
coupling among the particles of the bipartite system. There
is an interesting pattern around J ∼ ωD due to our choice of
model parameters. In Fig. 7, we have set ω1

D = ω2
D = ωD. We

can note that, in the case of equal frequencies ω1 = ω2 = ω,
Hs|�−〉 = −J+ω√

2
|�−〉. As in that figure we have considered

�1 = �2 and �1 � �2, it is easy to see that if J ∼ ωD, we can
assume the system is near another resonance. In order to ex-
emplify this statement we have included in Fig. 8 the behavior
for the concurrence as function of J and ω1

D, but setting ω2
D =

1 for N = 2. Likewise, we can see that concurrence has bigger
values for larger values of J for an equal time comparison.

In this section, we have shown that adding driving frequen-
cies to two particles embedded in a structured environment
can sometimes preserve quantum correlations. By comparing
both initial bipartite states |�+〉 and |�−〉, we have seen that
in both cases quantum correlations are better preserved for
similar detuning frequencies rather than in a highly biased
detuned scenario. In the case of an initial MES |�−〉 state,
due to the particular characteristics mentioned above, we have
further seen that quantum correlations are better preserved
when the initial state is driven to a quasiresonant case. In
addition, we have also shown that concurrence becomes less
robust as we get away from the resonance condition. In those
cases, the relation between �/ωD becomes important if the
detuning frequencies are similar. Further, having an extra
source of entanglement such as the transverse coupling con-
sidered herein seems to enhance quantum correlations for this
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FIG. 5. (a) We show how the external driving on each particle affects the concurrence of the initial MES |�−〉 of the bipartite system for
different times (dimensionless N) and nonsimilar detuning frequencies under a strong coupling. Parameters used: R = 1, τc = 1, τs = 1.04,
�1 = 15, �2 = 10, �1 = 4, �2 = 7, ϕ1 = π and J = 0. (b) Concurrence of the driven bipartite system, by setting the initial MES |�−〉,
for different times N and similar detuning frequencies under strong coupling. Dimensionless parameters used: R = 1, τc = 1, τs = 1.03,
�1 = 15 = �2, �1 = 3, �2 = 3.1, ϕ1 = π , and J = 0.

particular state. All in all, the quasiresonant case with initial
bipartite state |�−〉 seems a particular scenario where driving
can help to preserve quantum correlations.

FIG. 6. Concurrence as time evolves (measured in dimensionless
N cycles) for an initially MES |�−〉 for different values of �1, �2,
ω1

D, and ω2
D. The top dotted black line represents the undriven case

with �1 = �2 = 15. The dot-dashed green line on top represents a
quasiresonant case since �1 = 15 = �2, �1 = 0.5, �2 = 0.5, and
ϕ1 = π , very similar frequencies. The top blue solid line corresponds
to �1 = 1, �2 = 1.1, ϕ1 = π , and ω1,2

D = 7, while the purple dot-
dashed line differs in the driving frequency ω1,2

D = 3. The dashed
orange line is for �1 = 2, �2 = 5, ϕ1 = 0, and ω1,2

D = 3. The ma-
genta dot-dashed line represents the evolution of �1 = 5, �2 = 5.1,
ϕ1 = π , and ω1,2

D = 8. The gray solid line is for �1 = 4, �2 = 7,
ϕ1 = π , ω1,2

D = 5. The brown dotted line has similar values as the
blue solid line but for J = 1. Parameters of the environment: R = 1,
τc = 1.

B. Initial maximally entangled states |�±〉
Let us now consider the case of two excitations initially

present in the system. In this case, we can consider the initial
state limited to the subspace spanned by {|00〉, |11〉}, repre-
sented by |�±〉 of Eq. (13) [20]. As we have seen in the
above section, there are some situations in which quantum
correlations can be preserved. If this also happens for initial
states |�±〉, we can search for further consequences as for
example the acquisition of a geometric phase. The advantage
of studying the dynamics of this maximally entangled state
under the action of a strong environment is that it can be
compared to some known results obtained for a purely de-
phasing model, say an interaction potential defined as Vz =
σ 1

z ⊗ 12 + 11 ⊗ σ 2
z [instead of the dipolar potential defined

in Eq. (2)]. We can start by studying the loss of purity as
time evolves and compare among models. In Fig. 9 we show
some representative values for both interaction models: solid
lines correspond to a dipolar coupling defined in Eq. (2) while
dashed lines are for a purely dephasing model with Vz. We can
see that for all couplings considered, say R = 0.1 and 1, solid
lines decrease a greater quantity than the nonsolid ones (for a
dephasing model) when the parameters are similar. In the case
of a strong coupling, we have also included the comparison
among models when we consider the bipartite system to be
driven, say ω1,2

D 
= 0. The magenta dashed line is the driven
evolution for a dephasing model while the gray solid line is
the equivalent under the dipolar coupling. The black solid line
represents the static situation for the dipolar coupling while
the blue dashed is the undriven evolution for the dephasing
model. We can further notice that the effect of the driving
is merely a shift in time in the case of the dephasing model.
However, in the case of the potential considered in this paper,
driving leads to a more interesting dynamics as has been
already shown in the preceding section. In particular, purity is
enhanced by the inclusion of a transverse coupling (red dotted
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FIG. 7. Concurrence as time evolves (measured in dimensionless
natural cycles N) for an initially MES |�−〉 driven to a quasiresonant
case, for different values of ωD and J (by setting ω1

D = ω2
D). Top

panel: N = 2. Middle panel: N = 5. Bottom panel: N = 8. Parame-
ters used: R = 1, τc = 1, �1 = 15 = �2, �1 = 1, �2 = 1.1, ϕ1 = π .

lines in Fig. 9) among the particles (in addition to driving)
in the dipolar coupling. In the following, we shall further
focus on another interesting feature of the bipartite system.
It is well known that a MES state acquires a geometric phase
of value π (or zero) and zero for a separable state [21]. For
this reason, the term “topological phase” is generally used for
the specific case of geometric phases acquired by maximally
entangled states. The understanding of GPs for entangled
states is particular relevant due to potential applications in
holonomic quantum computation with spin systems, which
provide a plausible design of a solid-state quantum computer.

FIG. 8. Concurrence as time evolves (measured in dimensionless
natural cycles N) for an initially MES |�−〉 driven to a quasiresonant
case, for different values of ω1

D and J (by setting ω2
D = 1) and N = 2.

Parameters used: R = 1, τc = 1, �1 = 15 = �2, �1 = 1, �2 = 1.1,
ϕ1 = π .

The effect of the environment on a bipartite two-level system
coupled to an external environment (bosonic or spin bath) was
reported in [13,22]. In particular, the GP correction for certain
maximally entangled states was shown to be null. That is, the

FIG. 9. Degradation of purity as time evolves (measured in di-
mensionless N) for different coupling strengths in both comparative
models: solid lines represent the potential proportional to σx while
nonsolid lines labeled with Vz correspond to a purely dephasing
model for weak R = 0.1 and strong coupling R = 1. For strong
coupling R = 1, we have further compared the loss of purity for a
static ω1,2

D = 0 (black and blue lines) and nonstatic situation ω1,2
D 
= 0

(gray line, �1 = 0.3, �2 = 0.3, ϕ1 = π , ω1,2
D = 7; pink line, �1 =

0.4, �2 = 0.6, ϕ1 = π , ω1,2
D = 3) when comparing both interaction

models. We have further added J = 1 to the driven representative
values for the Vx model in the dotted red line and J = 10 for the
green dotted line on top. The orange solid and yellow dashed lines
on top are curves for the undriven situation with R = 0.1 for both
models. Parameters R = 1, τc = 1, �1 = �2 = 10.
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phase is built as for unitary evolutions, as a stepwise behavior
in steps of π . The study for a dephasing model was extended
to two-qudit in [14]. In this framework, we shall inquire into
the role of driving in preserving the geometric phase (or not)
for the model presented in this paper and compare to the
results of a dephasing model presented in [13].

A proper generalization of the geometric phase for unitary
evolution to a nonunitary evolution is crucial for practical
implementations of geometric quantum computation. In [23],
a quantum kinematic approach was proposed and the GP for
a mixed state under nonunitary evolution has been defined as

� = arg

{∑
k

√
εk (0)εk (τs)〈�k (0)|�k (τs)〉e− ∫ τs

0 dt〈�k | ∂
∂t |�k〉

}
,

(16)

where εk (t ) are the eigenvalues and |�k〉 are the eigenstates
of the reduced density matrix ρr (obtained after tracing over
the reservoir degrees of freedom). In the last definition, τs

denotes a time after the total system completes a cyclic evolu-
tion when it is isolated from the environment [20]. We can
compute the GP acquired by the bipartite system since we
have numerically solved the dynamics of the bipartite system.
When the system is open, the geometric phase that would have
been obtained if the system had been closed, �u, is modified.
This means, in a general case, the phase is �g = �u + δ�,
where δ� is the correction to the unitary phase, induced by
the presence of the environment.

In Fig. 10 we show the geometric phase acquired by the
bipartite state (initially MES) while evolving under different
environment parameters. The black asterisk-dashed line is the
topological phase acquired by the MES state for a purely
dephasing model [Hs, HI ] = 0, while considering different
environments or even driving: it is always π . All other lines
are for the geometric phase of the MES state for the dipolar
interaction potential V proportional to σx defined in Eq. (2).
Both solid lines represent the geometric phase obtained in the
static case, say ω1,2

D = 0 for R = 1 and 0.1. Dotted lines with
circles and squares represent the driven situations for R = 1
and J = 1. In a unitary evolution, this geometric phase has
a topological nature, and it has been proven to be robust in
open quantum evolution under dephasing models [13,14]. In
this latter case, the geometric phase acquired by the bipartite
system is π when the initial state is maximally entangled.
However, when the interaction Hamiltonian is dipolar, the
model is no longer a dephasing one and the geometric phase
loses this topological nature. Hence, it becomes sensitive to
external noise. Another important feature we can note is the
fact that the GP for the undriven case under a strong evolution
is approximately π/2 and then it evolves acquiring a geo-
metric phase proportional to that value in each cycle (solid
lines). In [22] some of us have computed the geometric phase
acquired by a two-level system under the presence of a com-
posite environment, formed by an external bath and another
two-level particle. It has been reported that when the initial
entanglement among the two spin-1/2 particles was maximal
then the geometric phase acquired by one spin-1/2 particle
was π/2, differently to the geometric phase acquired by the
bipartite system evolving under the presence of the external

FIG. 10. Geometric phase acquired by the bipartite state (initially
MES) while evolving in time (measured in dimensionless N) under
different environment parameters. The black asterisk-dotted line is
the topological phase acquired by the MES state for a purely dephas-
ing model, while considering different environments’ strengths or
even driving: it is always π . The gray dashed line with crosses is for
a driven representative situation in the dephasing model ω1

D = 2 and
ω2

D = 3 when there is interaction among particles J = 1. All other
lines are for the geometric phase of the MES state for the interaction
dipolar potential V (proportional to σx). Solid lines (purple line R =
0.1 and pink line R = 1) represent no-driving situations while dotted
lines represent different driving parameters for a strong-coupling
regime: the blue line with squares represents ω1,2

D = 7 while the light
blue line with circles is for ω1,2

D = 7 and J = 1. Parameters used:
τc = 1, �1 = 10 = �2, �1 = 0.3, �2 = 0.3, ϕ1 = π .

bath (dephasing model). The effect of a dipolar coupling on
the geometric phase can be compared to the one induced by
a composite environment [22]. Further, we can note that the
geometric phase acquired for a driven bipartite system is less
corrected than for the equivalent undriven situation (δ�|ωD <

δ�|ωD=0): the driving done in a strong regime R = 1 (dotted
lines with squares) renders similar values of the geometric
phase acquired in an evolution under a weaker environment
R = 0.1 (undriven evolution, purple solid line). This result
agrees with a previous one, where it has been reported that
some values of driving “preserve” the geometric phase [12].
Finally, we can also analyze the role of the transverse coupling
in the geometric phase acquired. In the case of the dephasing
model, we can see that adding a transverse coupling destroys
the robust condition for long time evolution (gray dashed line
with crosses in Fig. 10). Initially, we obtain a similar value to
the topological one φg(N = 1) = π , but at later times the loss
of information towards the environment corrects significantly
the topological value obtained when isolated. However, for
a dipolar environmental coupling (dotted line with dots), we
can note that its effect is different, as it leads to a smaller cor-
rection to �u even when compared to a nondriven evolution
under a weaker-coupling regime R = 0.1.

In Fig. 11 we can see the geometric phase acquired for
the MES under a dipolar coupling for a driven evolution and
different values of the dimensionless parameter J . Therein,
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FIG. 11. Top: Geometric phase acquired by the bipartite state
(MES) while evolving in time (measured in dimensionless N) under
different environment parameters. The black dotted line is for the
topological phase acquired by the bipartite. The purple solid line
represents the phase acquired under a dipolar evolution with J = 0.
The dot-dashed lines with crosses and asterisks are the correspond-
ing phases acquired when J = 0.2. Finally, we include the phase
acquired with J = 10 for the corresponding evolution in the dashed
lines with circles and squares. Blue lines represent equal � values,
while orange lines are for opposite � values as explained in the bot-
tom panel. The dark gray solid line corresponds to J = 50. Bottom:
Concurrence evolving in time for the driven evolutions for different
values of J: dot-dashed lines correspond to J = 0.1, dashed lines
correspond to J = 1, and dotted lines correspond to J = 10. The blue
and orange lines are for different representative driven situations:
orange lines for �1 = 3, �2 = 3, ϕ1 = π , ω1

D = 2, and ω2
D = 3 and

blue lines for �2 = 3 = �1, ϕ1 = 0, ω1
D = 2, and ω2

D = 3. The pur-
ple line is for J = 0 for the undriven dipolar coupling. Parameters:
τs = 1, �1 = 10 = �2.

we can see a representative undriven situation in a purple
solid line for J = 0. As it can be seen, when compared to the
robust topological GP (black dotted line), the strong effect of
the environment during the evolution is evident (recall that
in the case of the dotted black line δ� = 0, since �g = �u;

the greater the deviation from this line, the bigger δ� for
each evolution). As we increase the value of the transverse
coupling we can notice that the correction to the unitary
geometric phase decreases even though the system evolves
under a strong coupling. All dashed lines represent driven
situations for different values of J . The two different colors
are included to identify different detuning situations: orange
for �1 = −�2 and �1 = �2, such that ωD/� ∼ O(1). This
driving has been shown to suppress non-Markovianity effects
[12,24]. The contribution of the transverse coupling towards
a preservation of the GP is considerable. This situation can
be explained by the fact that this parameter contributes to
preserving the quantum correlations as can be seen in the
bottom panel of Fig. 11. As the purity of the system remains
approximately constant, the geometric phase acquired in each
cycle is approximately constant as well. We can further notice
a gray solid line that represents J � 1. In that case, purity
is closer to 1 along the evolution. Initially (N = 1), the ge-
ometric phase is �g = π/2 as reported in [22] and remains
constant (almost a straight line like the dotted one but with a
different rate) during the evolution even though the bipartite
system is in a non-Markovian environment in a strong regime.

IV. CONCLUSIONS

In this paper we have studied the quantum correlations
of a driven bipartite state embedded in a common structured
environment for different regimes. We have focused the anal-
ysis on maximally entangled states of the X -class bipartite
state. We have implemented a hierarchy equations numerical
method since it can describe the dynamics of the bipartite sys-
tem with a nonperturbative and non-Markovian system-bath
interaction at finite temperature, even under strong time-
dependent perturbations. This formalism is valuable because
it can be used to study not only strong-bath coupling, but
also quantum coherence or quantum entanglement. The in-
formation concerning the system-bath coherence is stored in
the hierarchical elements, which allows us to simulate the
quantum entangled dynamics between the system and the
environment.

In the case of only one excitation present in the system
and in the environment, we have studied the degradation of
purity of the bipartite system for different coupling regimes.
We considered two different particles (but similar frequencies)
and studied the quantum correlations (measured by the con-
currence) if the particles were driven out and on resonance, so
as to establish in which case quantum correlations were longer
preserved. We showed that an initial MES of the form |�−〉
driven to a quasiresonant situation preserves longer quantum
correlations and that this effect could be enhanced by the
presence of a transverse coupling among the particles of the
bipartite system.

As for the case of zero and two excitations in the system
and environment, we further dug into the effect of driving and
transverse coupling on the geometric phase acquired during
the evolution. We have compared the results obtained in the
model with those reported in the literature for a simpler model
of dephasing. We have shown that the robustness condition of
the geometric phase is lost when the interaction potential is
dipolar. In the case of the dephasing model, we can see that
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adding a transverse coupling destroys the robust condition for
long time evolutions. However, for a dipolar coupling with
the environment, we have noted that its effect is different.
The dipolar coupling does not preserve the robustness of the
geometric phase even though the initial state is a maximally
entangled one. The transverse coupling among the particles
composing the bipartite system was shown to help extend
quantum correlations in time leading to a smaller correction
of the unitary geometric phase (even when compared to a
nondriven evolution under a weaker coupling). A combination
of driving and transverse coupling among the particles can
help suppress the non-Markovian effects. The dipolar cou-
pling does not preserve the robustness of the geometric phase
even though the initial state is a maximally entangled one.
Instead, the environmental induced dynamics modifies coher-
ences and populations of the reduced density matrix leading to
a great variation of the GP. However, if we introduce a driving
into the bipartite system and a transverse coupling among
the two-level particles, we can obtain a constant geometric
phase, which is not the topological geometric phase. It rather
corresponds to the geometric phase acquired by one particle
initially composing a maximal entangled state coupled to a
spin boson (dephasing model) when the degrees of freedom
of the environment and those of the particles are traced out.

The possibility of exploiting the environment as a resource
for control has opened a new door in the manipulation of
open quantum systems. The generation and stabilization of
entanglement is one of the main challenges for quantum in-
formation applications. The model presented in this paper can
be used to simulate experimental situations such as hybrid
quantum classical systems feasible with current technologies.
It is important to note that if the noise effects induced in the
system are of considerable magnitude, the coherence terms
of the quantum system are rapidly destroyed and the GP
literally disappears. It has been argued that the observation
of GPs should be done for times long enough to obey the
adiabatic approximation but short enough to prevent decoher-
ence from deleting all phase information. As the geometric
phase accumulates over time, its correction becomes relevant
on a relatively short timescale, while the system still preserves
purity. All the above considerations lead to a scenario where
the geometric phase can still be found and it can help us infer
features of the quantum system that otherwise might be hidden
to us.
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APPENDIX: DYNAMICAL EVOLUTION FOR AN INITIAL
BIPARTITE STATE |�+〉

The dynamics of the bipartite state will depend on three
ingredients: driving, coupling, and dissipation. In the follow-
ing, we shall define all timescales involved in the evolution

FIG. 12. Loss of purity in time (measured in dimensionless N)
for three different bipartite systems for τs < τc, τs ∼ τc, and τs > τc.
The magenta line is for �2 = 16, �1 = 10. The blue line is for �2 =
20, �1 = 10 and the gray one is for �2 = 11, �1 = 10. In all cases
the environment exhibits a strong coupling R = 1, τc = 1, �1 = 0,
�2 = 0.

of the bipartite state. The bath correlation time is defined as
tc = λ−1. As Eq. (9) deals with rescaled quantities, τc = 1
for this paper. The relaxation timescale is then determined
by τr = γ −1

0 . As for the bipartite system itself, in the case of
one excitation present in the system, there is a characteristic
timescale defined as τs = 2π/(ω2 − ω1), that is the time at
which the closed bipartite system will get back to its initial
state. For zero or two excitations present in the system, the
characteristic time is set as τs = 2π/(ω1 + ω2). Finally, if it
were a dephasing model, we could define the characteristic
decoherence timescale τD, as the estimated time at which the
coherences are dynamically suppressed by the presence of the
environment. As the model defined herein is not a dephasing
one, we can get an insight into the purity of the bipartite
state so as to have an estimation of the degradation of purity
suffered by the interaction with an environment.

Herein, we shall consider a structured environment and
have no limitations on the coupling. The factor R is defined
as the rate between the coupling strength between the sys-
tem and the bath γ̄0 and λ, defined as the broadening of the
spectral peak of the environment. Particularly, we are inter-
ested in a strong coupling R = 1. By assuming R = 1, we are
implying γ̄0 ∼ λ, which means that τr ∼ τc. In such a case,
non-Markovian dynamics induced by the reservoir memory
(describing the feedback of information and/or energy from
the reservoir into the system) becomes important.

In this section, we shall go over some issues about the
dynamical evolution of the bipartite system in one-excitation
subspace for an initial bipartite state |�+〉, having defined a
strong coupling with the environment. In Fig. 12 we show
three different situations: τs < τc, τs ∼ τc, and τs > τc (τc =
1). Therein, we can note that if we want to study the effect
of driving during the dynamical evolution, it is important to
choose the model’s parameters that allow such investigation.
In the case of τs > τc, the system is near resonance since
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FIG. 13. Dynamical evolution for some of the elements of the
reduced density matrix defined in Eq. (15) for τs ∼ τc: the dot-dashed
purple line represents ρ22(t ), the red dashed line represents ρ11(t ),
while the blue solid line represents ρ00(t ) = 1 − ρ11(t ) − ρ22(t ). The
orange dotted line represents Re[ρ21(t )]. We can see that for these
parameter values the system reaches its asymptotic values for ap-
proximate N = 100. Parameters: R = 1, τc = 1, �1 = 10, �2 = 16.
No driving is considered. N is dimensionless.

frequencies are extremely similar. In contrast, for τs < τc

frequencies are very different. The qualitatively different be-
haviors at long times must be understood by recalling the fact
that N = τ/τs [τ the dimensionless time defined in Eq. (9)].
As τs varies, time elapsed τ for N cycles is different for the
different set of parameters. This means that, for example at
N = 15, the bipartite evolution can be found at dissimilar
stages of the dynamical evolution for the different repre-
sentative lines. In order to explain the qualitatively different
behaviors for τs ∼ τc and τs > τc, we have further included
Figs. 13 and 14.

In Fig. 13 we show the dynamical evolution of the repre-
sentative matrix elements Eq. (15) for τs ∼ τc. The dot-dashed
purple line represents ρ22(t ), the red dashed line repre-
sents ρ11(t ), and the blue solid line represents ρ00(t ) = 1 −
ρ11(t ) − ρ22(t ). The orange dotted line represents the real
part of the coherences ρ21(t ). We can see therein that the
asymptotic state is achieved for approximately N = 100 and
the coherences oscillate for several values of N . For the
temporal timescales studied in Sec. II A, we can note the
typical oscillations of the non-Markovian evolution ruled by a
strong interaction. Oppositely, in Fig. 14 we show the dynam-
ical evolution of the representative matrix elements Eq. (15)
for a quasiresonant condition, τs > τc. We can note that the

FIG. 14. Dynamical evolution as a function of dimensionless N
for some of the elements of the reduced density matrix defined in
Eq. (15) for τs > τc: the dot-dashed purple line represents ρ22(t ),
the red dashed line represents ρ11(t ), while the blue solid line repre-
sents ρ00(t ) = 1 − ρ11(t ) − ρ22(t ). The orange dotted line represents
Re[ρ21(t )]. We can see that for these parameter values the system
reaches its asymptotic values for approximate N = 10. Parameters:
R = 1, τc = 1, �1 = 10, �2 = 11. No driving is considered. Inset:
Dynamical evolution for some of the elements of the reduced density
matrix for more similar frequencies �1 = 10, �2 = 10.5. The decay
of the coherences is faster.

asymptotic state is reached at a smaller number of N ∼ 10
and coherences oscillate for only a few cycles. In the inset,
we can see another set of parameters, where frequencies are
even closer and τs � τc. Therein, we can see the asymptotic
state is reached for N � 2 and coherences decay rapidly. In
time units, we can see that the decoherence process is accel-
erated near the resonance condition. These numerical results
can be understood by the help of some analytical estima-
tions obtained under the rotating-wave approximation when
considering the resonance case, say ω1 = ω2. In that case,
authors showed that coherences decay with a rate set by the
environmental spectral broad λ [7].

In our paper, we particularly consider the situation where
particles have similar (but not equal) frequencies. There-
fore, the model allows one to drive the particles in and
out of resonance and see if there is a particular situation
where quantum correlations are enhanced. In order to com-
pare equal-timescale evolutions, we ask for τs ∼ τc. Adding
driving will necessarily add another timescale to the already
complex evolution. Dynamical evolution is different for an
initial bipartite state |�−〉 near resonance since |�−〉 is an
eigenstate of both Hs and HI when ω1 = ω2 [11].
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