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Femtosecond synchronization of clocks
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The precise-timing community is currently working on the task of synchronizing moving clocks in the field
to an accuracy of femtoseconds. We argue that its recent claims of partial success must be examined in the
context of relativity, and show that one must establish the context very carefully when claiming any sort of
synchronization at this level. In particular, irrespective of the sense of the synchronization, we show that realistic
movements of the clocks will destroy the synchronization moments after it is established.
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I. INTRODUCTION

The ideas and practice of promulgating high-precision time
across a network are evolving as demands on that precision in-
crease. To be of use, a network’s clocks must be synchronized,
and modern requirements pursue ever higher accuracies. Syn-
chronization has two core components: a theoretical one that
asks what synchronization means, and a practical one that at-
tempts to overcome environmental noise in having two clocks
communicate to establish the synchronization.

Recent papers have discussed this practical component, via
experiments in synchronizing stationary clocks to femtosec-
ond accuracy in the presence of simulated motion [1–3]. In
these field experiments, it was impractical to give the clocks
any real relative motion. Instead, that motion was typically
simulated by mounting a retro-reflector on a quadcopter, and
using that to create a changing optical-path length for signals
exchanged by the ground-fixed clocks, as shown in Fig. 1.
The synchronization procedure interpreted this changing path
length as relative opening or closing speeds of the clocks of
tens of meters per second. A careful procedure employing
optical frequency combs resulted in a synchronization at the
level of 1 fs.

Overcoming experimental difficulties in the field is one
side of the coin, but this level of reported synchro-
nization must still be examined in a theoretical context;
specifically, to ascertain how compatible it might be with
relativity. The motion simulation employed above does not
incorporate the relativistic concept that true relative motion
will affect the clocks’ tick rates in a nontrivial way; for ex-
ample, in the simplest of cases, each clock will say that the
other ticks slowly. Hence a true synchronization can never
be performed, even in principle. In practice, one clock might
be given preeminence over the others, which are “geared” to
keep time with that master clock. But even in this case, if
their relative speeds are liable to change unpredictably, the
clocks can never be synchronized better than to some practical
level. We will show that for real relative speeds of tens of
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meters per second, these different tick rates will destroy the
femtosecond synchronization almost immediately after that
synchronization has been achieved.

To be specific, we pose three questions about three iden-
tical clocks that are in relative motion. Clock 1 is fixed to
the ground on Earth’s equator. Clock 2 is nearby at the same
altitude but is moving over the ground: clock 1 says that
clock 2 is moving east at V = 10 m/s relative to clock 1. This
is a very slow speed for an airborne clock, but it is a conserva-
tive example, since higher speeds will only increase the time
disparities. This scenario is being monitored by a third clock
at spatial infinity, the “primary clock.” Including such a clock
might seem strange, but it is precisely this clock that defines
a sort of universal time that turns out to be proportional to the
UTC time that is central to modern global precision timing.

Clock 1 ticks out a time interval of �τ1 = 5 s. We ask the
following:

(1) How much time �t does the clock at spatial infinity say
has passed?

(2) How much time �τ2 does the clock at spatial infinity
say has passed on clock 2?

(3) How much time �τ ′
2 does clock 1 say has passed on

clock 2?

II. THE NECESSARY RELATIVITY

To relate the displays on the two Earth clocks to the dis-
play on the primary clock at spatial infinity, it is sufficient
to model the flow of time at a point near Earth’s surface by
the weak-field metric of general relativity [4], using nominally
spherical-polar coordinates:

dτ 2 = (1 + 2�/c2) dt2

− (1 − 2�/c2)
1

c2
[dr2+r2dθ2+r2 sin2 θ dφ2]. (1)

Here τ is proper time: the time that elapses on a clock mov-
ing from point (r, θ, φ) to (r + dr, θ + dθ, φ + dφ) during
a lapse dt of time recorded by the primary clock at spatial
infinity. �(r, θ, φ) is Earth’s gravitational potential, which is
sufficient to be set equal to −GM/r (i.e., a spherical Earth),
since any refinements on that potential only produce small
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FIG. 1. The synchronization setup of [1–3]. The clocks, fixed
to the ground, have minimal separation, and communicate via the
schematic black box. This box bounces optical signals from a retrore-
flector on a quadcopter about 2 km away, which moves to simulate a
changing distance between the clocks.

changes to the numbers that follow. The radial coordinate r
originates at Earth’s center; θ is colatitude, and φ is longitude.

The weak-field metric (1) is a standard of timing literature.
For example, it (and refinements on it) forms the basis of how
UTC time is defined [5], and it can be employed very straight-
forwardly to generate the well-known 39 μs/day slower tick
required in the manufacture of a GPS satellite’s clock. In this
paper, we apply (1) to the related task of answering the three
questions above. I am not aware of anything like those three
questions appearing in timing literature (at least as a set, but
perhaps not individually either), since that literature tends not
to dwell on questions of simultaneity such as we study here.

Picture a clock fixed to the ground at (r, θ, φ). The primary
clock at spatial infinity records Earth rotating at angular rate
ω. In the primary’s time interval dt , the Earth-fixed clock
moves in the “Earth-centered inertial frame” by amounts

dr = 0, dθ = 0, dφ = ω dt . (2)

The time that the Earth-fixed clock ticks is its proper time dτ

in (1). Dividing that equation by dt2 gives

dτ 2

dt2
= 1 + 2�/c2 − (1 − 2�/c2)

r2ω2

c2
sin2 θ. (3)

In the primary clock’s frame, Earth’s spin imparts a velocity
v = v(r, θ ) to the clock fixed to Earth’s surface:

v2 = r2ω2 sin2 θ. (4)

(This equation is in fact slightly inaccurate since r is not
precisely a radial distance; but this approximation is adequate
for what follows.) Equation (3) is then

dτ 2

dt2
= 1 + 2�/c2 − (1 − 2�/c2) v2/c2. (5)

To gain an impression of the relative sizes of the terms in
(5), note that for a representative point on the equator of a
spherical Earth of radius R = 6370 km and spinning at ω =
2π/(24 h) (a solar day length is sufficient here), the following

two dimensionless quantities are

2�/c2 ≈ −2GM

Rc2
� −1.4 ×10−9,

v2/c2 = R2ω2/c2 � 2.4 ×10−12. (6)

These both have magnitudes much less than one. Thus, to first
order, the square root of (5) is

dτ/dt � 1 + (� − v2/2)/c2. (7)

For the parameters in (6), Eq. (7) becomes

dτ/dt � 1 − 0.7 ×10−9 − 1.2 ×10−12

� 1 − 0.7 ×10−9. (8)

(To the level of accuracy used here, the constant 0.7 ×10−9

is called LG in the literature [5].) The gravity potential con-
tributes about 99.8% of this departure from unity, with the
clock’s motion (from Earth’s rotation) contributing only 0.2%.

Clock 1 is fixed to the geoid, and so the answer to ques-
tion 1 in Sec. I follows quickly from (8). The time �t elapsed
on the primary clock is, from (8),

�t = �τ1 × dt/dτ1 � 5 s × (1 + 0.7 ×10−9)

= 5 s + 3.5 ns. (9)

The primary clock says that an extra 3.5 ns passed while
clock 1 ticked 5 s.

To answer question 2, we apply (7) to each of the clocks
1 and 2, remembering that t is the time on the primary clock;
τ1, τ2 are the times on clocks 1 and 2; and v1, v2 are their
velocities in the frame of the primary clock. It is useful to
answer the question in a slightly more general sense, where
clocks 1 and 2 might be at different potentials �1,�2. When
the primary clock has ticked a time dt , it says that the times
elapsed on clocks 1 and 2 are dτ1, dτ2. Equation (7) then says
that the ratio of those clocks’ tick rates is

dτ2

dτ1
= dτ2/dt

dτ1/dt
� 1 + (

�2 − v2
2/2

)
/c2

1 + (
�1 − v2

1/2
)
/c2

�
(

1 + �2 − v2
2/2

c2

)(
1 − �1 − v2

1/2

c2

)

� 1 + 1

c2

[
�2 − �1 + v2

1 − v2
2

2

]
. (10)

This is the general expression. In question 2, �1 = �2. The
time �τ2 that the primary clock says has passed on clock 2 is
then

�τ2 = �τ1 × dτ2/dτ1 � �τ1

(
1 + v2

1 − v2
2

2c2

)
. (11)

Clock 1 is fixed to Earth’s equator, and so has a velocity of
v1 = 465 m/s east in the primary clock’s frame (the approx-
imately inertial frame in which Earth spins). The speeds are
low enough here that we can say v2 = v1 + V = 475 m/s.
Equation (11) requires

v2
1 − v2

2 � v2
1 − (v1 + V )2 � −2v1V for V � v1, (12)
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and hence yields

�τ2 � �τ1

(
1 − v1V

c2

)
� 5 s ×

(
1 − 465 × 10

9 ×1016

)

� 5 s − 260 fs. (13)

In summary, the primary clock says that after 5 s + 3.5 ns,
clock 1 has ticked 5 s, and clock 2 has ticked 5 s − 260 fs.

These first two questions in Sec. I that we have just an-
swered were posed by the primary clock. In fact, while they
were addressed in standard general-relativistic fashion, they
are not as straightforward as might first appear. In question 1,
the primary clock is essentially saying “I maintain that si-
multaneously with the moment that my clock displays time t ,
clock 1 displays some time τ1. Later, I maintain that simulta-
neously with the moment that clock 1 displays τ1 + 5 seconds,
my clock displays t + �t . What is �t?”. This question de-
mands a knowledge of what simultaneity means. The primary
clock is infinitely far from the gravity field and thus is inertial.
Although the entire space-time is not flat, it is static, and this
allows the primary clock to define simultaneity via a light-ray
argument similar to that found in introductory textbooks on
special relativity, even though the speed of light rays in the
primary clock’s frame is generally not c.

In contrast, question 3 requires a notion of simultaneity for
clock 1 instead of the primary clock. Clock 1 is not quite
inertial: it is immersed in Earth’s gravity, and shares Earth’s
rotation. How do we address this question? The subject of
rotating observers in relativity is an old one, with arguments
over the last century that are still not settled [6]. I have argued
in previous work [7,8] that for scenarios not encompassing a
large part of Earth’s surface, we can ignore Earth’s rotation
even at the femtosecond level.

But what about gravity? A theory has yet to be found of
how to construct a robust notion of simultaneity in curved
space-time. Nevertheless, Earth’s gravity is very weak. A rule-
of-thumb space-time curvature near Earth’s surface is c2/g �
1 light-year, where g is gravity’s strength near Earth’s surface
[9]; for example, a thrown rock and a fired bullet both follow
trajectories in a three-axis plot of time/height/horizontal dis-
tance that have curvatures of c2/g. So, a plot of time versus
one dimension of space can be envisaged as a small piece
of the surface of a sphere of radius one light-year: clearly,
if such a piece were tens of kilometers on a side (modeling
a real-world scenario), it would feel extremely flat—probably
flatter than the flattest surface ever made by engineers. If g
were constant everywhere within a light-year of Earth, we
could conclude that over distances much less than a light-year,
and time intervals much less than a year, we can use a special-
relativistic argument to discuss the simultaneity standard of
clock 1.

Of course, g is not constant in this way. But the general
idea is taken over by introductory textbooks of special relativ-
ity: these treat such scenarios as occurring in inertial frames.
Then, in a kind of pseudoinertial frame of clock 1, clock 2 is
moving at speed V , and so clock 2 ticks slower than clock 1
by the usual special-relativistic gamma factor of

γ (V ) = 1√
1 − V 2/c2

� 1 + V 2

2c2
. (14)

We then have

�τ ′
2 = �τ1

γ (V )
� �τ1

(
1 − V 2

2c2

)

= 5 s ×
(

1 − 102

2 × 9 ×1016

)
� 5 s − 2.8 fs. (15)

Clock 1 says that clock 2 has lost 2.8 fs. Clearly, any femtosec-
ond synchronization is destroyed after just a few seconds. Of
course, if clock 2 maintains a fixed speed V relative to clock 1,
then clock 2 can be “geared” up by a factor of γ (V ) to run at
the same rate as clock 1, and the synchronization will then be
preserved from the viewpoint of clock 1 only. It will not be
preserved from the viewpoint of clock 2, which will say that
clock 1 is ticking slowly. This well-known mismatch in how
the clocks view the world is due to their different standards of
simultaneity.

III. CONCLUDING COMMENTS

The three questions posed in Sec. I lead to time intervals
that differ from 5 s by 3.5 ns, −260 fs, and −2.8 fs respec-
tively: a variety of time differences whose meanings must be
understood in each context.

Why involve the primary clock in questions 1 and 2? That
clock, when “geared” to tick at a slightly different rate, is
realized by our world’s UTC time that runs precise timing
scenarios such as location by GPS. UTC is a coordinate time
for our Earth, in the sense that it has been imposed on all
observers, moving or not, by a primary clock, and ignores
questions of simultaneity for different observers. Two clocks
showing the same UTC do not generally agree on simultaneity
to a very fine level. Consider observers Alice and Bob at dif-
ferent locations on Earth’s surface. Suppose that when Alice’s
UTC clock displays 12:00, she is able to say “According to my
definition of ‘now,’ Bob’s UTC is also 12:00.” Then in general,
when Bob’s clock displays 12:00, he will say “According to
my definition of ‘now,’ Alice’s UTC is not quite 12:00.”

Whether this UTC time is needed by real airborne vehicles
depends on the scenario; it might be that a “local time in the
field” is sufficient for the task. But as mentioned two para-
graphs up, this local time must still be that of one of the clocks
that has been given the special status of a primary clock, and
again we will have simultaneity mismatches. And even then,
as discussed in question 3 above, speed changes of one of
the airborne vehicles will quickly destroy their femtosecond
synchronization. Latitude changes will act similarly, since two
clocks with the same ground speed but separated in latitude
over our rotating Earth will have different speeds in the inertial
frame in which Earth spins: a degree of latitude separation
equates to such a speed difference of typically several meters
per second. Of course, the synchronization might be reestab-
lished periodically, but if the time between resynchronizations
becomes very short, the very idea of synchronization loses its
meaning, because the secondary clocks are then effectively
never running independently of the primary.

UTC time is an example of a common time coordinate that
can be displayed by the three clocks above. That is, clock 1
can be geared by a factor of �t/�τ1, so that it matches
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the primary clock’s display t according to the simultaneity
standard of the primary clock; and similarly for clock 2. But
this time coordinate does not embody the simultaneity stan-
dards of clocks 1 and 2. Put another way, the relative clock
rate in question 3 above was not �τ1/�τ2 (which would be
trivially related to the answers to questions 1 and 2); instead,
it was �τ1/�τ ′

2. The clock rates are fundamentally dependent
on who is doing the measuring. Hence, the clocks cannot be
geared in a way that will allow each of them to say “Right now,
every clock’s display matches mine.” Expressed differently,
even in special relativity, the rates of clocks do not follow a
transitive law. Given three clocks A, B,C, if A says “B runs
at 1

2 of my rate,” and B says “C runs at 1
3 of my rate,” then A

cannot say “C runs at 1
6 of my rate.” Hence, no gearing exists

that will make the three clocks agree that they all display the
same time simultaneously.

UTC time is not actually displayed at any given moment
by any one clock, but instead results from postprocessing
data from many clocks around the world, and hence is not
completely known at any moment “now.” Might the same
idea be applied to a set of clocks in the field, to analyze
the data they collect after the fact, by correcting their time
stamps using “location and speed stamps” that they logged
with each of those time stamps? This could be done if one of
the clocks were designated as a primary. (In the case of UTC,
this primary is effectively the clock at spatial infinity.) But the
last paragraph’s closing comment about the impossibility of
gearing applies here. The primary clock’s time becomes a time
coordinate for the secondary clocks. The time stamps of those

secondaries will be (postprocessing) altered to agree with the
primary clock, but the secondaries will not regard their time
stamps as a true time, equal values of which denote simultane-
ity for each secondary. Events with identical postprocessed
time stamps were only simultaneous for the primary. That
might well be sufficient for the purposes of the network, but
it might not; it depends on the purpose of the network. For
everyday transactions that use UTC, femtosecond precision
is not needed, and so the fact that UTC only really denotes
simultaneity for the primary clock causes no problems. But
if we are to synchronize clocks to the level of femtoseconds,
the game changes completely, and we must be fully aware of
the purpose of the time used in the network. Will we need
to care if the individual clocks disagree about simultaneity,
or not?

The examples above show that relativistic ideas of si-
multaneity are central to any practical application of timing
at the femtosecond level. I think that many analyses of
precise timing would benefit from an application of the nu-
ances of time that have been described in this paper. When
we deal at the level of femtoseconds and beyond, a proper
understanding and application of relativistic ideas is essential.
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