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We define a property called nondegeneracy for Bell inequalities, which describes the situation that in a Bell
setting, if a Bell inequality and involved local measurements are fixed, any quantum state with a given dimension
and its orthogonal quantum state cannot violate remarkably the inequality simultaneously. By choosing a proper
nondegenerate Bell inequality, we prove that for an unknown bipartite quantum state of given dimension, based
on the measurement statistics only, we can provide an analytic lower bound for the entanglement of formation
or even the distillable entanglement, making the whole process semi device independent. We characterize
the mathematical structure of nondegeneracy, and prove that quite a lot of well-known Bell inequalities are
nondegenerate. We demonstrate our approach by quantifying entanglement for qutrit-qutrit states based on their
violations of the Collins-Gisin-Linden-Masser-Popescu inequality.
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I. INTRODUCTION

It has been well known that entanglement is a major com-
putational resource for quantum information processing tasks,
thus certifying entanglement for unknown quantum states re-
liably in quantum laboratories is a fundamental and important
problem. For small quantum systems tomography is a pos-
sible solution [1,2], but as the problem size grows, the cost
of tomography goes up exponentially, making this approach
infeasible. In this situation, one can instead use the idea of
an entanglement witness to detect entanglement [3], but one
drawback of this approach is that the knowledge on quantum
dimension and accurate measurement implementations must
be given, which are often unpractical, otherwise the results
may not be reliable [4].

To overcome this problem, it turns out that the approach of
device independence, a method that was first introduced in the
area of quantum key distribution [5–7] and self-testing [8,9],
is very helpful. In this approach, all involved quantum devices
are regarded as black boxes and quantum tasks like entangle-
ment certification are usually accomplished by checking the
existence of a Bell nonlocality, i.e., a violation of some Bell
inequality that is satisfied by all separable states [10]. Partic-
ularly, this approach has been utilized extensively to certify
the existence of genuine multipartite entanglement [11–18].
Since nontrivial and reliable conclusions can be drawn from
limited measurement data only, device independence is highly
valuable experimentally. Moreover, for the situations that par-
tial reliable information on the target quantum systems is
known, measurement-device-independent [19,20] and semi-
device-independent scenarios [21,22] were also proposed.

A further step from entanglement certification is the quan-
tification of entanglement in quantum laboratories [23–25].
In order to provide reliable results, device-independent

*weizhaohui@gmail.com

schemes for quantifying entanglement have also been pro-
posed. For example, inspired by the Navascués-Pironio-Acín
(NPA) method [26], a device-independent method to lower
bound the negativity was provided in Ref. [14]. Using
the concept of semiquantum nonlocal games introduced in
Ref. [27], a measurement-device-independent approach to
quantify negative-partial-transposition entanglement has been
reported [28], and very recently, similar approaches that are
able to quantify any convex entanglement measures have also
been developed [29,30]. Usually, this kind of work faces two
inevitable difficulties. First, nonlocality and entanglement are
known as two different resources for quantum information
processing [31], which profoundly makes quantifying entan-
glement in a device-independent way challenging, as what we
need to do here is characterize unknown entanglement based
on quantum nonlocality we observe. Second, the mathemat-
ical structures of quantum correlations are very complicated
[32–35], for example, accurate Tsirelson bounds are often
notoriously hard to find out, which makes it quite hard to study
most device-independent quantum tasks in an analytical way.
As a consequence, in most cases of device-independent entan-
glement quantifications one has to perform costly numerical
calculations [26], or can only give weak results based on self-
tests [36,37]. Therefore, despite these encouraging progresses,
in order to gain deeper understanding of the fundamental
relations between nonlocality and entanglement measures,
especially those standard entanglement measures with clear
operational meanings, direct analytical approaches for gen-
eral cases of Bell experiments are highly demanded.

In this paper, for a general unknown bipartite quantum
state, we provide an analytic method to quantify the entan-
glement of formation or the distillable entanglement, two
of the most well-known entanglement measures, in a semi-
device-independent manner, where besides the measurement
statistics data, the only assumption we make is quantum
dimension. The main idea behind our approach is a new
property called nondegeneracy we define for Bell inequalities.
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Basically, in a Bell setting, we say the involved Bell in-
equality is nondegenerate if any quantum state |ψ〉 of given
dimension generates a violation of the inequality larger than
a, then any quantum state orthogonal to |ψ〉 cannot achieve
a violation larger than b by using the same local measure-
ments, where a > b are two parameters. By looking into
the mathematical structure of nondegenerate Bell inequali-
ties, we prove that a lot of well-known Bell inequalities are
nondegenerate, including the Clauser-Horne-Shimony-Holt
(CHSH) inequality [38], the I3322 inequality [39–41], and the
Collins-Gisin-Linden-Masser-Popescu (CGLMP) inequalities
[42]. By choosing nondegenerate Bell inequalities, we prove
that a fundamental relation between Bell inequality violations
and the entanglement measures can be built, eventually giving
the desired analytic result. Since our approach is based on the
observed quantum nonlocality, the number of measurements
needed is usually very modest. We demonstrate the applica-
tions of our approach by applying the CGLMP inequalities on
qutrit-qutrit quantum states, and specific examples show that
a nontrivial lower bound for the entanglement measures can
be obtained when the violation is sufficient.

II. RESULTS

A. Nondegenerate Bell inequalities

In a two-party Bell experiment, Alice and Bob, located at
different places, share a physical system and perform local
measurements on their own subsystems without communi-
cations. Specifically, Alice (Bob) has a set of measurement
apparatus labeled by a finite set X (Y ), and the set of possible
measurement outcomes are labeled by a finite set A (B). When
the experiment begins, they choose random apparatuses to
measure the system and repeat the whole process many times.
By recording the frequency of outcomes, they calculate the
joint probability distribution p(ab|xy), indicating the proba-
bility of obtaining outcomes a ∈ A and b ∈ B when choosing
measurement apparatuses x ∈ X and y ∈ Y . The collection
of all |A × B × X × Y | joint probability distributions can be
written as a vector p := {p(ab|xy)}, called a correlation.

The set of correlations depends heavily on the physical
laws that the system that Alice and Bob share obeys. If the
experiment is purely classical, all the correlations they are able
to produce are local correlations, which can be replicated by a
local hidden variable (LHV) model, where public randomness
is shared before the experiment begins and the distributions
of outputs at each party are generated depending only on
the public randomness and the input received. On the other
hand, if what they share beforehand is a quantum state ρ of
dimension d × d , then the correlation can be written as

p(ab|xy) = Tr
[
ρ
(
Ma

x ⊗ Mb
y

)]
, (1)

where Ma
x and Mb

y are the measurement operators of the appa-
ratuses x and y.

A major discovery in quantum mechanics is that there exist
quantum correlations that cannot be produced with LHV mod-
els, which can be explained by the concept of Bell inequalities
[10]. A typical Bell inequality can be expressed as

I :=
∑
abxy

sabxy p(ab|xy) � Cl , (2)

where sabxy are normally real coefficients, and Cl is the max-
imal value of the Bell expression I that local correlations
achieve. It turns out that in some cases the maximal value
of I that quantum correlations achieve, called the Tsirelson
bound and denoted by Cq, can be strictly larger than Cl ,
revealing the profound discovery we just mentioned. From
now on, when considering correlations produced by quantum
states of dimension d × d , we denote the Bell expression by
I (ρ, Ma

x , Mb
y ), and its maximal value by Cd

q .
In this paper, we define and focus on a special case of Bell

inequalities called nondegenerate. We will show that for an
unknown bipartite quantum state ρ, this property makes it
possible to obtain analytic estimations for the entanglement
of formation, denoted E f (ρ), by utilizing the measurement
statistics data only, assuming the quantum dimension is
known.

Definition 1. A Bell inequality I � Cl is nondegenerate if
there exists two real numbers 0 � ε1 < ε2 � Cd

q , such that for
any pure state |ψ〉 acting on Hd ⊗ Hd and any measurements
{Ma

x } and {Mb
y },

I
(|ψ〉〈ψ |, Ma

x , Mb
y

)
� Cd

q − ε1

always implies that

I
(|ψ⊥〉〈ψ⊥|, Ma

x , Mb
y

)
� Cd

q − ε2,

where |ψ⊥〉 is any pure state orthogonal to |ψ〉.
Intuitively, the nondegeneracy means that if a quantum

state makes a large violation of the Bell inequality, any orthog-
onal quantum state cannot with the measurements unchanged.

A few remarks are in order. First, nondegeneracy is
meaningful only when the dimension is given, as any Bell
inequality cannot satisfy the definition if extra subsystems
can be introduced freely. Second, in some device-independent
quantum tasks like self-testing [8,9,43,44], a crucial issue is
whether the maximal violation is achieved by multiple pure
quantum states, where the involved measurements can be dif-
ferent. For convenience in this case we say the Bell inequality
enjoys the uniqueness property. We stress that the nonde-
generacy property is different from the uniqueness property.
After all, it is possible that two close but essentially different
quantum pure states achieve the maximal violation simulta-
neously, but they are using different measurements, and still
satisfy the definition of nondegeneracy. Usually it is notori-
ously hard to determine whether or not a given Bell inequality
has the uniqueness property. However, we will show that the
nondegeneracy property has a rich mathematical structure,
which allows us to certify the existence of this property rel-
atively easier, potentially resulting in wide applications of
this new definition. Actually, later we will see that quite a
lot of well-known Bell inequalities are nondegenerate. Third,
nondegeneracy can also be defined on Bell inequalities of
nonlinear forms.

B. Principal component analysis

Before proving that nondegenerate Bell inequalities exist,
let us see that nondegeneracy can provide useful information
on the purity of underlying quantum states.
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Suppose a quantum correlation p(ab|xy) is produced by
measuring a bipartite quantum state ρ of dimension d × d
with measurements {Ma

x } and {Mb
y }. And suppose there exists

a nondegenerate Bell inequality I � Cl with parameters ε1 and
ε2 such that the Bell expression given by p(ab|xy) is larger
than Cd

q − ε1, that is,

I
(
ρ, Ma

x , Mb
y

)
� Cd

q − ε1. (3)

Let an orthogonal decomposition of ρ be ρ =∑d2

i=1 ai|ψi〉〈ψi|. Since the Bell expression is linear in
the shared quantum state, there must be a |ψi〉 such that
I (|ψi〉〈ψi|, Ma

x , Mb
y ) � Cd

q − ε1. Without loss of generality,
we suppose i = 1. Then it holds that

I
(
ρ, Ma

x , Mb
y

) =
d2∑

i=1

aiI
(|ψi〉〈ψi|, Ma

x , Mb
y

)
� a1I

(|ψ1〉〈ψ1|, Ma
x , Mb

y

)
+(

1 − a1)
(
Cd

q − ε2
)

� a1C
d
q + (

1 − a1)
(
Cd

q − ε2
)
,

where we have used the definition of nondegeneracy and the
fact that I (|ψ1〉〈ψ1|, Ma

x , Mb
y ) � Cd

q .
Combining the above inequality with Eq. (3), we immedi-

ately have that a1 � 1 − ε1/ε2. Therefore, if ε1/ε2 � 1, the
nondegeneracy guarantees that violating the Bell inequality
almost maximally means that the involved quantum state ρ

must be close to pure. And the purity of ρ can be lower
bounded by

Tr(ρ2) =
d2∑

i=1

a2
i � a2

1 + 1

d2 − 1

(
d2∑

i=2

ai

)2

= a2
1 + 1

d2 − 1
(1 − a1)2,

where we have utilized the Cauchy-Schwarz inequality and
the fact that

∑d2

i=1 ai = 1. Then note that when a1 � 1 −
ε1/ε2 � 1/d2 (it is satisfied in our later applications), a2

1 +
1

d2−1 (1 − a1)2 is an increasing function of a1, implying that

Tr(ρ2) �
(

1 − ε1

ε2

)2
+ (ε1/ε2)2

d2 − 1
.

C. The certification of nondegeneracy

We now show that the concept of nondegeneracy is well
defined, and a lot of well-known Bell inequalities are nonde-
generate.

Consider a Bell scenario over finite setting sets X , Y and
finite outcome sets A, B. The corresponding Bell expression is
I (ρAB, Ma

x , Mb
y ) = ∑

abxy sabxy p(ab|xy), where sabxy ∈ R, a ∈
A, b ∈ B, x ∈ X , y ∈ Y , and {Ma

x } and {Mb
y } are positive

operator-valued measures (POVMs) on d-dimensional quan-
tum subsystems A and B, respectively. In particular, for a pure
state |ψ〉AB, if we let H (Ma

x , Mb
y ) = ∑

abxy sabxyMa
x ⊗ Mb

y , then
we have

I
(|ψ〉AB〈ψ |AB, Ma

x , Mb
y

) = 〈ψ |ABH
(
Ma

x , Mb
y

)|ψ〉AB.

Since H (Ma
x , Mb

y ) is Hermitian, it has d2 real eigenval-
ues, and we now denote them by λ1(H (Ma

x , Mb
y )) � · · · �

λd2 (H (Ma
x , Mb

y )). Furthermore, we define

C(I, d, t ) = max
{Ma

x ,Mb
y }

t∑
i=1

λi
(
H

(
Ma

x , Mb
y

))
.

Then it is not hard to see that Cd
q = C(I, d, 1).

We now show that there is a simple relation between
C(I, d, k) and nondegeneracy of I , as shown in the following
lemma.

Lemma 1. For any bipartite quantum system of dimension
d × d , a Bell expression I is nondegenerate if and only if
C(I, d, 2) < 2C(I, d, 1).

Proof. Suppose I is nondegenerate with 0 � ε1 < ε2. Sup-
pose POVMs {Ma

x } and {Mb
y } maximize C(I, d, 2). And let

|ψ1〉, |ψ2〉 be the eigenstates corresponding to λ1(H (Ma
x , Mb

y ))
and λ2(H (Ma

x , Mb
y )), respectively. If C(I, d, 2) = 2C(I, d, 1),

then, by

C(I, d, 2) = λ1
(
H

(
Ma

x , Mb
y

)) + λ2
(
H

(
Ma

x , Mb
y

))
= I

(|ψ1〉〈ψ1|, Ma
x , Mb

y

) + I
(|ψ2〉〈ψ2|, Ma

x , Mb
y

)
,

we have

I
(|ψ1〉〈ψ1|, Ma

x , Mb
y

) = I
(|ψ2〉〈ψ2|, Ma

x , Mb
y

) = Cd
q ,

which contradicts the definition of nondegeneracy.
Conversely, suppose C(I, d, 2) < 2C(I, d, 1). For any pair

of orthogonal pure states |ψ〉, |φ〉 and any POVMs {Ma
x } and

{Mb
y }, we have

I
(|ψ〉〈ψ |, Ma

x , Mb
y

) + I
(|φ〉〈φ|, Ma

x , Mb
y

)
� C(I, d, 2).

Choose a proper ε1 such that 0 � ε1 < Cd
q − 1

2C(I, d, 2).
Then, if I (|ψ〉〈ψ |, Ma

x , Mb
y ) � Cd

q − ε1, it can be verified that

I
(|φ〉〈φ|, Ma

x , Mb
y

)
�C(I, d, 2) − I

(|ψ〉〈ψ |, Ma
x , Mb

y

)
�C(I, d, 2) − Cd

q + ε1

=Cd
q − [

2Cd
q − C(I, d, 2) − ε1

]
.

Therefore, if we let ε2 = 2Cd
q − C(I, d, 2) − ε1, then we have

that ε1 < ε2 and I (|φ〉〈φ|, Ma
x , Mb

y ) � Cd
q − ε2, which implies

that I is nondegenerate with parameters ε1 and ε2. �
We now introduce an approach to determine whether the

above condition is satisfied or not by looking at C(I, d − 1, 1).
For this, we need the following fact.

Lemma 2. Let |ψ〉, |φ〉 be two bipartite states in a d × d
dimensional system. If both of |ψ〉 and |φ〉 have Schmidt
number d , then there is α, β ∈ C with αβ �= 0 such that
α|ψ〉 + β|φ〉 have Schmidt number at most d − 1.

Proof. For any state |ϕ〉 = ∑
i j ai j |i〉 ⊗ | j〉, we transform it

into a d × d matrix with (i, j)th entry equal to ai j . We trans-
form |ψ〉 and |φ〉 into A and B in this fashion, respectively.
Then both A and B have full rank, that is, rank d .

The linear combination of A and B reads αA + βB =
A(αI + βA−1B). Let C = A−1B; then C has full rank as well.
By assuming that β �= 0, we can write αA + βB = βA(γ I +
C), where α/β = γ ∈ C is arbitrary. Since C is a complex
matrix, it has a nonzero eigenvalue λ; that is, C − λI is of
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rank at most d − 1. By picking γ = −λ, the resulting linear
combination αA + βB has rank at most d − 1, so the Schmidt
number of α|ψ〉 + β|φ〉 is at most d − 1 as well. �

Then we have the following characterization of nondegen-
eracy for Bell inequalities.

Theorem 1. Let I be a Bell expression and d > 1. If
C(I, d, 1) > C(I, d − 1, 1), then I is nondegenerate.

Proof. We now prove that if C(I, d, 1) > C(I, d − 1, 1),
then C(I, d, 2) � C(I, d, 1) + C(I, d − 1, 1). According to
Lemma 1, this implies that I is nondegenerate. Suppose
C(I, d, 2) > C(I, d, 1) + C(I, d − 1, 1). Let {Ma

x } and {Mb
y }

be the POVMs that achieve C(I, d, 2). Then there exist two
corresponding eigenstates |ψ〉, |φ〉 that satisfy

I
(|ψ〉〈ψ |, Ma

x , Mb
y

) + I
(|φ〉〈φ|, Ma

x , Mb
y

)
= C(I, d, 2) > C(I, d, 1) + C(I, d − 1, 1).

By the definition of C(I, d, 1), this means that

I
(|ψ〉〈ψ |, Ma

x , Mb
y

)
>C(I, d − 1, 1),

I
(|φ〉〈φ|, Ma

x , Mb
y

)
>C(I, d − 1, 1),

and thus both |ψ〉 and |φ〉 have Schmidt number at least d . For
α, β ∈ C with |α|2 + |β|2 = 1, we have

I
(
(α|ψ〉 + β|φ〉)(ᾱ〈ψ | + β̄〈φ|), Ma

x , Mb
y

)
= |α|2I

(|ψ〉〈ψ |, Ma
x , Mb

y

) + |β|2I
(|φ〉〈φ|, Ma

x , Mb
y

)
> C(I, d − 1, 1).

However, by Lemma 2, there is α, β ∈ C with αβ �= 0 such
that |ϕ〉 = α|ψ〉 + β|φ〉 has Schmidt number at most d − 1.
By normalizing the linear combination, we can fit |ϕ〉 into a
(d − 1) × (d − 1) dimensional system. Let M ′a

x , M ′b
y be the

compression of Ma
x and Mb

y into the reduced system. Then

we have I (|ϕ〉〈ϕ|, M ′a
x, M ′b

y ) > C(I, d − 1, 1), which contra-
dicts the definition of C(I, d − 1, 1). Therefore, C(I, d, 2) �
C(I, d, 1) + C(I, d − 1, 1). �

This theorem implies the following two interesting conse-
quences. First, any Bell inequality that can be violated by a
pair of qubits is nondegenerate. Indeed, when d = 1, the sys-
tem is entirely classical, and there will be no violation, hence
C(I, 1, 1) < C(I, 2, 1). In particular, the CHSH inequality is
nondegenerate, as it is well known that it can be violated by a
pair of qubits [38]. Actually, quite a lot of device-independent
characterization of qubit-qubit states based on the CHSH in-
equalities have been reported [45–47].

Second, any Bell expression with the maximal quantum
violation Cd

q strictly monotonic with respect to d is nonde-
generate. Two well-known Bell inequalities with this property
are the I3322 inequality and the CGLMP inequality [48,49].

D. A demonstration: Quantifying qutrit-qutrit entanglement
with the CGLMP inequality

We now show that after the involved Bell inequality is
certified to be nondegenerate, we can quantify analytically
the entanglement of an unknown bipartite quantum state in
a semi-device-independent manner. For simplicity, we will
focus on the CGLMP inequality for a qutrit-qutrit quantum
state ρ. We stress that our approach can be applied generally

on quantum states of any given dimension, and beforehand
assumption on quantum dimension is possible in quantum
experiments (see Ref. [50] for an example).

The form of the CGLMP inequality we choose is from
Ref. [48], which is

P(A2 � B2)+P(B2 � A1) + P(A1 � B1) + P(B1 > A2) � 3.

In Ref. [48], it was found that when d = 3, C3
q = C(I, 3, 1) =

3.3050. Through numerical simulations, we find that for
qutrit-qutrit quantum states, C(I, 3, 2) = 6.2071 (see Ap-
pendix A). Note that C(I, 3, 2) < 2C(I, 3, 1), then Lemma 1
indicates that the CGLMP inequality is nondegenerate for d =
3. Furthermore, the proof of Lemma 1 provides a systematic
way to choose the parameters ε1 and ε2. Therefore, if a target
quantum state ρ satisfies that I (ρ, Ma

x , Mb
y ) � C3

q − ε1, we
can use the principal component analysis introduced before
to obtain a lower bound for the purity of ρ, that is,

Tr(ρ2) �
(

1 − ε1

ε2

)2
+ (ε1/ε2)2

8
≡ γρ.

Then according to Ref. [51], the von Neumann entropy of ρ,
denoted by S(ρ), can be upper bounded as

S(ρ) � −ci

9∑
i=1

log(ci ),

where c1 = 1
9 + 2

3

√
2(γρ − 1

9 ), and c2 = · · · = c9 = (1 −
c1)/8.

On the other hand, according to Refs. [52,53], the purity
of ρA = TrB(ρ) [or ρB = TrA(ρ)] can also be upper bounded.
Indeed, if we define

f1(p) = min
y1,y2

∑
b1,b2

min
x

(∑
a

√
p(ab1|xy1)p(ab2|xy2)

)2

(4)

and

f2(p) = min
x1,x2

∑
a1,a2

min
y

(∑
b

√
p(a1b|x1y)p(a2b|x2y)

)2

, (5)

then it holds that [52,53]

Tr
(
ρ2

A

)
� min{ f1(p), f2(p)} ≡ γA. (6)

Again, when γA < 1/2, according to Ref. [51] the von Neu-
mann entropy of ρA can be lower bounded as

S(ρA) � − fi

3∑
i=1

log( fi ),

where f1 = f2 = 1−α
2 , f3 = α, and α = 1

3 −
√

2
3 (γA − 1

3 ).
We next consider the coherent information of ρ defined as

[54,55]

IC (ρ) = S(ρA) − S(ρ).

Clearly, our discussions above provide an analytical lower
bound for IC (ρ).

Importantly, it turns out that, for any bipartite quantum
state ρ, we have that [56]

E f (ρ) � ED(ρ) � IC (ρ), (7)
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where ED(ρ) is the distillable entanglement of ρ. Therefore,
our approach actually lower bounds the entanglement of for-
mation or even the distillable entanglement for ρ. Note that
in addition to the measurement statistics p(ab|xy), we do not
need any assumption on the internal working of the quantum
system or the precision of quantum operations except the
dimension d , which means that our quantification for E f (ρ)
or ED(ρ) is of a semi-device-independent nature.

We test our approach on numerically generated qutrit-qutrit
correlations, and the results are illustrated in the figure below
(see Appendix A for more details). It can be seen that when
the gap between the violation and C3

q is smaller than 0.065,
our method gives a positive lower bound for the distillable
entanglement.

Lastly, we would like to point out that E f (ρ) can also be
lower bounded in the following alternative way. According to
Ref. [53], E f (|ψ1〉〈ψ1|) can be lower bounded as the purity of
TrB(|ψ1〉〈ψ1|) can be upper bounded, where |ψ1〉 is the prin-
cipal component of ρ we have discussed above. Then by the
continuous property of the entanglement of formation proved
by Refs. [57,58], we can bound the gap between E f (ρ) and
E f (|ψ1〉〈ψ1|). Combining these two results together, we can
obtain a lower bound for E f (ρ). However, specific examples
of quantum correlations show that our first approach is much
better than the second one (see Appendix B).

E. Multipartite case

In principle the approach above can be generalized to the
multipartite case [59], as the concept of nondegeneracy can
also be defined naturally on multipartite Bell inequalities. But
a major issue raised in the multipartite case is that the structure
of multipartite entanglement is much more complicated. For
example, in the multipartite case we cannot quantify entangle-
ment based on Schmidt decompositions as in Ref. [53]; thus
this part has to be redeveloped carefully. Similarly, bounding
coherent information will be also much more challenging in
the multipartite case.

III. DISCUSSION

We define a property called nondegeneracy for Bell in-
equalities, and based on this concept, we propose an approach
to quantify the entanglement of formation or the distillable
entanglement for the shared quantum state underlying a Bell
experiment in a semi-device-independent manner, which is
analytic and does not rely on complicated numerical optimiza-
tions, unlike most results on device-independent quantum
tasks. We also provide a mathematical characterization for
nondegenerate Bell inequalities, and prove that quite a lot
of well-known Bell inequalities are nondegenerate. We apply
our approach on qutrit-qutrit quantum states by choosing the
CGLMP inequality, and demonstrate that a positive lower
bound for the two entanglement measures can be obtained
if the violation is sufficient. Recently, by a different ap-
proach, the property of nondegeneracy has also been applied
on multipartite quantum systems to characterize unknown en-
tanglement [60]. Therefore, we believe that this concept is of
independent interest, and provides insight for studying Bell
inequalities.

FIG. 1. Our lower bounds for the coherent information (or the
distillable entanglement) based on the violations of the CGLMP
inequality, where quantum correlations are generated by measuring
qutrit-qutrit states. Note that the gap between the classical bound and
the Tsirelson bound is 0.3050 [48].
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APPENDIX A: SPECIFICATIONS OF NUMERICAL
SIMULATIONS USED

1. The estimation of C(I, 3, 2) for the CGLMP expression

The computation for C(I, 3, 2) is a maximization prob-
lem over the measurements. Note that each party has two
measurement settings, and each setting is composed by three
measurement operators, so all the measurements can be
parametrized by 2 × 2 × 2 × 3 × 3 × 3 = 216 real parame-
ters (they are not independent). We used the Nelder-Mead
method [61] and the L-BFGS-B method [62,63] implemented
by SCIPY [64] to solve the optimization problem. Two methods
consistently yield the result C(I, 3, 2) = 6.2071 over many
rounds.

2. Sample generation

Denote the state achieving the maximal violation (as in
Ref. [48]) as |ψ〉. Every sample point in Fig. 1 is generated
in the following way:

(i) We perturb the amplitudes of the state |ψ〉; the resulting
state is a pure state |ψ ′〉 close to |ψ〉.

(ii) Then, we measure |ψ ′〉 with the optimal measurement
given by Ref. [48] to generate a physical correlation.

(iii) Finally, the Bell value and the coherent information
bound are computed from the physical correlation, giving a
sample point in Fig. 1.

By varying the strengths of perturbations, we can roughly
control the Bell values of the resulting correlations, thereby
allowing us to illustrate the performance of our approach.
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APPENDIX B: THE CONTINUITY-BASED APPROACH

In Ref. [58], Winter proved the continuity of the entangle-
ment of formation, E f , in the following form:

E f (σAB) − E f (ρAB) � δ log2 d + (1 + δ)H

(
δ

1 + δ

)
,

where δ = √
D(ρAB, σAB)(2 − D(ρAB, σAB)), D(ρAB, σAB) is

the trace distance, and H (x) = −x log2 x − (1 − x) log2(1 −
x) is the Shannon entropy.

According to Ref. [53], it holds that

E f (|ψ1〉〈ψ1|) � − log2(min{ f1(p), f2(p)}) + 2 log2 a1,

where f1(p) and f2(p) are given as Eq. (4) and Eq. (5), respec-
tively.

In addition, the definition of a1 and |ψ1〉 gives
D(ρ, |ψ1〉〈ψ1|) = 1 − a1; hence we have

E f (ρ) � − log2(min{ f1(p), f2(p)}) + 2 log2 a1

− δ log2 d − (1 + δ)H

(
δ

1 + δ

)
, (B1)

where δ =
√

1 − a2
1.

All sample correlations in Fig. 1 can also be utilized by
Eq. (B1); thus we can readily compare the performances of
these two approaches: while the two approaches give the same
estimate for E f as the Bell value approaches the maximal vio-
lation, Eq. (B1) gives a nontrivial estimate only when the gap
between the violation and C3

q is smaller than 2 × 10−3, which
is a far more stringent condition compared to the 6.5 × 10−2

gap of the approach in the main text.
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