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The dynamics of a quantum system following a sudden, highly nonadiabatic change of its control parameter
(quantum quench) is studied with quasiclassical techniques. Recent works have shown, using exact quantum
mechanical approach, that equilibration after quantum quench exhibits specific features in the presence of
excited-state quantum phase transitions. In this paper, we demonstrate that these features can be understood
from the classical evolution of the Wigner function in phase space.

DOI: 10.1103/PhysRevA.103.032213

I. INTRODUCTION

Nonequilibrium quantum many-body systems represent a
very active field of research in relation to topics such as
quantum computation, quantum chaos or emergence of ther-
malization among others. An experimentally feasible way
how to bring a system out of equilibrium is a quantum
quench [1-4]. This protocol is implemented as an abrupt
change of a control parameter A of the respective quan-
tum Hamiltonian H(A) = Hy + AV where H, is the free part
whereas V (where [Hp, V] # 0) represents an interaction
whose strength is controlled. Such a protocol can be rou-
tinely engineered these days, for instance, using cold atoms
in optical traps [S—11]. In recent years, the progress on the
experimental side has been accompanied by a number of
theoretical studies [12-30], addressing the above-mentioned
topics.

The practical realization of the protocol is the following.
First, we prepare the system H(X;) = H; in its eigenstate
|;) for an initial value of the parameter A;. Then a rapid
change of the control parameter to the new value A; is per-
formed; hence, the initial state further evolves with a new
final Hamiltonian H(X¢) = H;. After some transition period
the system approaches equilibrated regime characterized by
time-independent mean values of the observables [21,23,31].

It is known that the equilibration process can be influ-
enced by excited-state quantum phase transitions (ESQPTs)
[13,15,16,19,23,32]. These are generalizations of ground-
state quantum phase transitions (QPTs) [33,34] and primarily
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manifest as singularities in the level density of the ex-
cited states. They appear mostly in models describing some
collective features of interacting many-body systems. In
such cases, the infinite-size limit (thermodynamic limit) cor-
responds with the classical one # — 0 and ESQPTs are
associated with the presence of stationary points in the classi-
cal version of the Hamiltonian H — H [35-41].

In Ref. [23] a detailed analysis of the ESQPT-induced
effects on quench dynamics was performed within the class
of such models derived from the Dicke model [42-44]. It was
shown that the role of ESQPTSs becomes significantly impor-
tant if the dynamics is regular or weakly chaotic. In these
cases the signatures of ESQPTs are clearly captured in the
time evolution of survival probability of the initial state |y;)
as well as in the time evolution of the observables. These sig-
natures, however, depend on the details of the quench protocol
as well.

Linking the specific features in the evolution of the
survival probability of |[i;) with the critical properties
of the spectrum of H; was one of the main results in
Ref. [23]. In this paper, we show that these features can
be understood from the quasiclassical perspective using the
classical time evolution of the Wigner function associated
with the initial state |y;) (so-called truncated Wigner ap-
proximation), see, e.g., Refs. [45-51]. The view through
classical trajectories evolving in the phase space discloses
the role of ESQPTs in the quench dynamics in a very in-
tuitive way. Moreover, we show that the quantum survival
probability during the equilibration as well as a typical power-
law decay can be faithfully reproduced with quasiclassical
techniques.

The paper is structured as follows. In Sec. II we introduce
the model. The quasiclassical method and the quench proto-
cols employed to probe the ESQPTs are discussed in Sec. III.

©2021 American Physical Society
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In Sec. IV we present the numerical results. The summary
can be found in Sec. V. Throughout this paper we use the
convention z = 1. All plotted quantities are dimensionless.

II. TAVIS-CUMMINGS MODEL

A. Hamiltonian and Hilbert space structure

We consider the Tavis-Cummings Hamiltonian [43]
A
V2j
which is obtained from the Dicke model [42] by applying the
rotating wave approximation. This model can be intuitively
understood as a simplified description of interaction between
quantized monochromatic light with energy @ and an ensem-
ble of N two-level atoms with transition frequency wy. The
bosonic operators b, b’ annihilate and create photons. The
response of the atoms to the radiation field is considered as
collective, i.e., the individual atoms interact with the pho-
tons with the same phase factor. This assumption is valid
if the spatial size of the atomic ensemble is much smaller
than the wavelength of the photons. Therefore, the system
of atoms can be represented by collective quasispin operators
J, = Zszl ol’j /2 with the symbol p standing for (x, y, z) and
a/j representing the respective Pauli matrix acting on a kth
atom. The ladder operators are then constructed in a common
way Ji = J, & iJ,. We assume full collectivity of the atomic
ensemble, so the length of the quasispin j is linked with the
total number of atoms simply as N = 2 [52].

The Hamiltonian (1) is integrable. It means that apart from
energy, there exists an additional conserved quantity which
effectively reduces the number of degrees of freedom by one.
This quantity can be written as

M=bb+J+j. 2

It is easy to show that [H (1), M] = O for any A. It means that
the Hamiltonian (1) conserves the total number of photons
(term b'b) and atomic excitations (terms J, + j). This sym-
metry forbids any interaction between the states from different
M-conserving subspaces. Therefore, the dynamics of the sys-
tem can be studied separately in any of these subspaces. We
can also express the M operator in the basis |n)|m) = |n, m) €
Hp ® H, where n numbers the Fock basis in the Hilbert space
‘H;, of photons and m is the eigenvalue of the J, operator which
determines the basis in the Hilbert space H, of the atoms.
Then we simply obtain M = n + m + j. Note that we do not
distinguish explicitly between M as an operator and a number
as it should be always clear from the context. Considering the
rangesofn =0,1,2...andm=—j,—j+1...7—1,j, we
can number the individual subspaces by M =0, 1,2.... The
dimension of these subspaces is d =min(M + 1,25+ 1)
[53].

H = wb'b+ wyJ, + (b'J_ +0bly), )

B. Excited-state quantum phase transitions

We refer to the M-subspace with M = N = 2j as the criti-
cal one. The reason is that only with this specific setting of the
parameter M both QPT and ESQPTs appear in the spectrum
[53]. Let us define a dimensionless scaled energy ¢ = E /wy .
In Fig. 1(a) we show examples of energy spectra for two
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FIG. 1. Comparison of the critical subspace M = 2j (upper row)
and a noncritical one M = 3j/2 (lower row). Parameters used are
Jj =20, w =2w,. (a) Energy spectra ¢ = E/w,j as functions of
the control parameter A. (b) Scaled mean value of the quasispin z
projection J, as a function of energy for fixed A/A. = 5 as computed
from the respective spectrum in panel (a). The red dashed line in the
upper panel represents the the critical energy e..

subspaces, the critical one (upper panel) and a non-critical one
with M = 3N/4 = 3j/2 (lower panel) for a moderate value of
the spin length j = 20. The precursor of a QPT in the criti-
cal subspace is nevertheless already visible. The dependence
of the ground state energy on the control parameter &g (1)
rapidly changes at the critical coupling [53]

Aw
==
where Aw = w — wy (we consider w > wy, there is a trivial
mapping between the system with this and the reversed de-
tuning hierarchy). On the other hand, the evolution of &g (1)
is perfectly smooth in the noncritical M = 3 /2 subspace.

For A > X, there is an ESQPT at energy ¢. =1 in the
critical subspace [52], which can be also anticipated directly
from Fig. 1(a). Indeed, as noted earlier, ESQPTs manifest as
singularities in the level density and in our case this corre-
sponds to the sequence of avoided crossings in the vicinity
of the critical point A, along the energy ¢ = ¢, for A > A..
However, clear evidence is provided by Fig. 1(b) where the
mean value of J; in individual eigenstates is plotted against the
respective eigenenergies while parameter A/A. = 5 is fixed.
In the case of the critical subspace (upper panel), we see a
sharp spike at energy e, marking the presence of an ESQPT.
Note that similar figures like in Fig. 1(b) with a nonanalytic
spike at &, can be obtained for any A > A, in the critical
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FIG. 2. Comparison of the critical subspace M = 2j (upper row)
and a noncritical one M = 3j/2 (lower row). Parameters used are
J =20, w = 2wy. Classical Hamiltonian /., = H/woj in the phase
space for fixed A = 5A. is shown together with the cut v = h(x, p =
0).

subspace. Here we chose A/A. = 5 because in the respective
spectrum no apparent avoided crossings are visible for this
coupling (which is due to the moderate value of j). However,
the energy dependence of (J;) demonstrates the presence of
the singularity anyway.

In order to reveal the structure of the ESQPTs, let us
introduce the classical version of the Hamiltonian (1)

Ao 5 o ;
Hg(x,p) = T(x +p) + oM — j)

Ax .2_<M_._x2+p2>2 4
+ 7V’ J 3 G
where x and p form a conjugate pair of classical position
and momentum and Aw = w — wy. The classical limit is dis-
cussed in more detail in Appendix A. An example of the
(scaled) energy profile h,; = H./woj from Eq. (4) is plotted
in Fig. 2 for the critical (upper row) and noncritical (lower
row) values of M. Note that the phase space is finite. This is
due to the fact that Eq. (2) limits the expression x> + p? <
2M. The respective one-dimensional cut at zero momentum
v(x) = hy(x, p = 0), defining a quasipotential, is also shown.
The stationary point at the corresponding energy &, is directly
visible in the critical subspace.

Let us comment on the phase space structure of the M
subspaces with M > 2j. Due to the square root in Eq. (4)
a circular hole opens around the origin [x, p] = [0, 0]. This
is also clear from Eq. (2) if expressed in the |n, m) basis as
M = n+ m + j. The photon number 7 is linked with x, pina
standard way as n = (x> + p?)/2 (see Appendix A). When M
is strictly larger than 2 j, the value of n cannot drop to zero but
only to some positive integer ny;,. Thus, the circular region
x* + p* < 2n2. of the phase space becomes forbidden [53].
The subspaces M > 2j show no quantum criticality similarly
to those with M < 2j. We, however, leave them out from

our study mainly for the reason that classical propagation of
the Wigner function along the inner boundary would cause
numerical instabilities. Moreover, as we aim at comparing
the postquench dynamics in similar phase space structures,
differing only by the existence of a stationary point, the choice
of subspaces with M < 2j is most appropriate.

III. QUANTUM QUENCH DYNAMICS

A. Survival probability

The survival probability, i.e., the probability of finding the
initial state |y;) in the evolving state |y (¢)) at time ¢ after the
quench, is given by

Py (®) = [(Wi[W @) P = [(Wile” " |y) |

2

= ‘ / dE S(E)e 't 5)

It can be used to monitor the postquench evolution and dis-
close different regimes of the equilibration process. Equation
(5) shows that Py, (t) is related to the Fourier transform
of the so-called strength function or local density of states
S(E) [54]. This quantity is defined as S(E)= ), [Eg|¥i) |
8(E —Eg), where k indexes the energy eigenstates |Ef;) of
Hg, and therefore describes the distribution of the initial state
in the eigenbasis of the final Hamiltonian. Any irregularity in
the evolution of the survival probability (including those due
to ESQPTs) must be reflected in the corresponding strength
function, and vice versa, see Ref. [23]. The full quantum
calculation of the survival probability (5) is performed exactly,
using diagonalization of the initial and final Hamiltonians in
the finite-dimensional Hilbert space.

B. Quasiclassical method

The evolution of the system after the quench can be
modeled by the quasiclassical method based on the Wigner
distribution functions in the phase space [45-51]. This ap-
proach is used here as it enables us to understand and even
foresee some effects, which on the quantum level would re-
main uncomprehended.

The Wigner distribution corresponding to the initial state
reads

r _ 1 *© * . 2ipy
Wix, p) = ;/ VGt Wi — APy, (6)

where x, p are the classically conjugate position and momen-
tum. The initial state is expressed as a linear combination
[¥i) =D, caln,m = M — n), where ¢, are expansion coef-
ficients in the |n, m) basis of the whole oscillator-quasispin
system. The wave function in Eq. (6) is then obtained as
Yi(x) = >, ca¥n(x) where ,(x) is the x-representation of
the Fock state |n) in the oscillator space

1
NVLANEA
with H,, denoting the Hermite polynomial. The justification of
this procedure is given in Appendix A.

To simulate the postquench evolution in the phase space,
we use the truncated Wigner approximation, in which the time

Y (x) = (xn) = ¢ H,(x), (7

032213-3
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FIG. 3. Sketch of the critical quench protocols used in the paper.
Upper row: Forward quench critical protocol. Lower row: Backward
quench critical protocol. The red line indicates the equal energy of
the stationary point and the value v(x) at the coordinate of the center
of mass of the initial Wigner function.

dependent Wigner function W (x, p, t) is calculated with the
aid of the Liouville equation, i.e., solely from the classical
dynamics. For technical details see Appendix B. The quasi-
classical counterpart of the survival probability at time ¢ after
the quench is given by the overlap between the initial and the
evolved Wigner functions, namely by

Pu(t) = 21 / Wix. p) Wix p0)dxdp, (8

where the integration is done over the full phase space.

C. Quench protocols

In this study we always initialize the system in the ground
state of H;. We call the quench critical if the subsequent
equilibration (i.e., time evolution according to Hy) is directly
affected by an ESQPT. This happens if the support of the
strength function S(E) overlaps with the ESQPT critical en-
ergy E.. In the forward quench protocols, we start with the
ground state in the critical subspace for A; = 0 and then
rapidly increase the interaction above its critical value A; >
M. Classically viewed, it represents a state placed initially at
the bottom of the quadratic potential at x = 0 which subse-
quently starts evolving due to the fact that the potential profile
has been abruptly changed. After the quench, the initial state
is located at the stationary point corresponding to the ESQPT,
see Fig. 3, upper row.

The second option of how to make the dynamics influenced
by an ESQPT, is the backward quench protocol, see the lower
row of Fig. 3. We start with the system in the ground state
of H; where A; > A, so classically the state is located at the
minimum energy point with x # 0. The value of A; < A; is
chosen such that the point of the initial minimum is lifted up to
the energy corresponding to the ESQPT energy (as indicated
by the red dot-dashed line in Fig. 3). Unlike in the previous
case, the initial state is not located directly at the stationary
point after the quench. However, for a system with only a

single degree of freedom the energy-conserving dynamics
makes the trajectories explore the whole area of the phase
space with the same energy (provided that it is connected).
Therefore, the stationary point of the classical Hamiltonian
will affect the time evolution at later stages when the station-
ary point will capture some of the trajectories, preventing their
return to the initial point. If A; is chosen in the way that all
trajectories selected by the Wigner function do not occupy the
ESQPT energy, then the quench dynamics is noncritical.

The same type of the forward and backward quench proto-
cols can be applied in any M subspace simply by considering
A < A and A > Ag, respectively. Of course, the critical
quench protocols can be realized only for M = 2j = N.

IV. NUMERICAL RESULTS
A. Forward quench protocols

We start with the forward protocols with A; =0 and
At = SA.. From now on we will plot all results in the time
domain using a scaled dimensionless quantity 7 = (wqj)z.
Figure 4 represents an example of a noncritical quench in
the M = 3j/2 = 300 subspace. Quantum survival probabil-
ity Py in Figs. 4(a) and 4(b) exhibits the standard features
of regular quench dynamics of this type as described in
Ref. [23]. Namely, one can identify an initial Gaussian de-
cay o« exp (—at?), a > 0, followed by sharp revivals whose
amplitudes show power-law decay o 1/t leading to the final
equilibrated regime.

Survival probability P, reconstructed from the classical
evolution of the Wigner function, is also plotted in Figs. 4(a)
and 4(b) with the red dashed line. It faithfully reproduces the
quantum version.

In Fig. 4(c) some snapshots of the classically evolved
Wigner function in the phase space are presented. Initially
at T =0, the Wigner function has a Gaussian shape as it
effectively corresponds to the ground state of a simple har-
monic oscillator. It further evolves along closed trajectories
representing equivalue lines of the classical Hamiltonian. At
short time scales around 7 ~ 17.2, the Gaussian shape is
still preserved and the classically evolved Wigner function is
slightly displaced, which leads to a gradual decrease of P,.
For T = 172, there is a zero overlap with the initial W;. The
shape is also modified as different trajectories propagate with
different velocities. The first revival appears at circa t = 344
when the first period is completed. Note that the original
Gaussian shape has been almost completely recovered, which
corresponds with a nearly perfect revival Py ~ 1.

This scenario further repeats itself. The transition to the
equilibrated regime is related to the fact that individual tra-
jectories dephase as time grows. As a result, the recurrences
start to overlap which is the moment when truncated Wigner
approximation fails. This also qualitatively explains why am-
plitudes of the revivals start decaying. For t = 1720 it is
clearly seen that the classically evolved Wigner function does
not recover the initial Gaussian shape when recurring through
the initial point in the phase space, which is a direct conse-
quence of the above-mentioned dephasing.

Specific decay exponents related to quench dynamics
in interacting many-body systems have been linked with
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FIG. 4. Forward quench in a the noncritical subspace M = 3j/2. The parameters were chosen as j = 200, @ = 2wy, X; =0, A = SA.
(a) Comparison of quantum and classical survival probability. The green line indicates the power-law decay o 1/t of the revivals. (b) Same
as in (a) with the linear scale. (c) Snapshots of the classically evolved Wigner function in the phase space for multiple values of 7. The pink
lines represent energy equivalue lines of the final classical Hamiltonian. The respective time points are marked by crosses in panel (a). The
initial state |;) is the ground state of the initial Hamiltonian. The respective initial Wigner function W, is plotted in grey. Video available from

Ref. [55].

quantum chaos, the type of interparticle interactions or even
onset of thermalization [17,21]. In integrable systems, it has
been shown that the power-law decay 1/t results from an
interplay between the Gaussian shape of the strength function
S(E) and its regular filling with the discrete final energy
eigenstates |Eg) [23,56]. Here, we can analytically derive the
1/t decay of the revivals from the quasiclassical dynamics,
see Appendix C. The first requirement is an approximately
Gaussian shape of an initial Wigner function. This is analo-
gous to the Gaussian profile of S(E). The second requirement
is an approximately linear change of the recurrence times with
the energy of individual trajectories [Eq. (C6)]. This can be
viewed as an analogy to the regular sampling of S(E) in the
final eigenbasis since the quasiclassical periods are linked
to the inverse of the level spacings. In integrable systems,
the requirement on the linear energy dependence of periods
for the trajectories that fill the support of the initial Wigner
distribution is rather plausible. However, a particular situation
in which this requirement is not fulfilled is when some tra-
jectories cross a stationary point of Hy(x, p). This is exactly
the case of critical quenches with the strength function located
across an ESQPT singularity of the spectrum.

Indeed, the critical forward quench in M = 2j = 400 sub-
space, as depicted in Fig. 5, shows different time evolution.
The most striking difference is the long initial survival and
the absence of the large region after initial decay where
the survival probability would vanish as in the noncritical

quench. This is a consequence of the ESQPT, see Ref. [23].
Comparing Py and Py in Fig. 5(a), one can see that the
quasiclassical approach overestimates the quantum survival
probability significantly at early stages. Such a discrepancy is
not observed in the case of noncritical dynamics [Fig. 4(a)],
which leads us to a conclusion that this artifact is not ex-
plained by the semiclassical limit approximation (j — 00)
nor as a numerical error. Rather, we anticipate a genuine
quantum phenomenon, such as tunneling, taking place near
the stationary point. The comparison with the full quan-
tum evolution is briefly discussed in Sec. IV C. Nevertheless
the rough features of the quench dynamics (like the time
of the first revival and the prolongation of the initial de-
cay as compared to Fig. 4) are still captured within our
approach.

Figure 5(c) provides an explanation of the ESQPT-induced
effect on the survival probability from a quasiclassical view-
point. This time the initial Wigner function W, at T =0 is
placed directly at the stationary point of the classical Hamilto-
nian (this point gives rise to the ESQPT at the quantum level).
If a classical trajectory lies at exactly the same energy as the
stationary point, the passage through it is infinitely slow. Sim-
ilarly, the trajectories in the adjacent region are significantly
slowed down here which effectively stabilizes the initial state
at the beginning. This also leads to a rapid dephasing of
the individual trajectories already during the first period, cf.
Figs. 4(c) and 5(c) at the times T = 192 and T = 384. Due to
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FIG. 5. The same as in Fig. 4, but for the forward quench in the critical subspace M = 2j.

the fact that a part of the classically evolved Wigner function
is stuck at the initial point, there is a small overlap for any
7 > 0.

B. Backward quench protocols

In the backward protocols we set A; = 5A, and the initial
ground state |y;) is obtained from the diagonalization of the
Hamiltonian H;. The respective Wigner function in (x, p)
variables corresponding to the classical Hamiltonian (4) is
then computed according to Egs. (6) and (7). See Appendix
A for more details. We will fix M = 2 so the dynamics will
take place in the subspace with the ESQPT. By precise tuning
of As < A, the quench dynamics can be influenced by the
ESQPT (critical quench) or cannot (noncritical quench).

An example of a noncritical quench is depicted in Fig. 6.
Because the initial Wigner function W, can be well approxi-
mated by a Gaussian, the situation is very similar to Fig. 4.
One can observe an initial Gaussian decay and subsequently a
series of revivals decaying as 1/t in Figs. 6(a) and 6(b), again,
see Ref. [23] for details. Figure 6(c) shows a few snapshots of
the classical time evolution of the Wigner function.

If the final value of the control parameter is finely tuned
to Ay = 1.544A, the initial Wigner function occupies a part
of the phase space with the same energy as the energy of
the stationary point. This critical backward quench is depicted
in Fig. 7. The Gaussian profile P oc exp (—at?) of the initial
decay is still present in Figs. 7(a) and 7(b). Indeed, the station-
ary point does not affect the initial evolution as it is located
elsewhere in the phase space. However, when the trajectories
reach that location, some get trapped there similarly as in the
forward critical quench. This leads to a rapid dephasing and so

no revivals appear in the survival probability. Faster dephasing
then essentially leads to faster transition to the equilibrated
regime. Indeed, Fig. 7(c) for T = 1.1 x 10* shows that most
of the available phase space is already covered with trajecto-
ries.

C. Comparison between the classical and quantum evolutions

We complete this section by comparing the classically
evolved Wigner function W (x, p, t) to its full quantum evolu-
tion Wy (x, p, t) in the case of the forward quench. We adopt
the approach [57,58] where the dynamics is compared at the
level of the Husimi functions

1 , /
O, p,t)y=— / W, p/’ t)e—(x—x Y —=(p—p )2dx/dp/ )
T

Equation (9) represents a Gaussian filter of the Wigner func-
tion over the quantum scale (recall the convention 7 = 1).
Thus, the quantum-evolved Husimi function Qgn, which
is always positive definite and smooth, resembles more
faithfully the smoothed distribution of classical trajectories.
Importantly, this rule is applicable even in the cases where
oscillatory parts develop in the quantum-evolved Wigner
function Wy, and the quantum Wigner distribution becomes
very different from the distribution of classical trajectories.
In Fig. 8 we plot the snapshots of the time evolution of
the Wigner functions after the forward noncritical quench as
studied in Sec. IV A. Wy, in Fig. 8(b) shows typical quantum
interference pattern between the tails of the distribution. At
the level of Husimi functions the quantum and classical evolu-
tions show a very good agreement. This is in compliance with
the results depicted in Figs. 4(a) and 4(b) which show that the
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FIG. 6. The same as in Fig. 4, but for a noncritical backward quench from A; = 5A. to A = A, in the subspace M = 2.

quantum survival probability is obtained with high accuracy
based on the classically evolved Wigner function.

As expected, quantum effects are more pronounced in the
critical forward quench, see Fig. 9. Due to quantum interfer-

ence the wave packet evacuates the initial position in the phase
space [x, p] = [0, 0], faster than in the case of the classical
evolution. This can be seen from Fig. 9(a) and corresponds
with our previous findings from Figs. 5(a) and 5(b) where Py,

FIG. 7. The same as in Fig. 4, but for a critical backward quench from A; = 5A. to Ay = 1.544). in the subspace M = 2.
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FIG. 8. Comparison between the classical and the full quantum evolution for the Husimi and the Wigner functions after the noncritical

forward quench in the subspace M = 3j /2. Other parameters are the same as in Fig. 4.
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decreases more rapidly than P during the initial decay. Yet
another interesting effect is observed by comparing Q and Oy,
for the critical quench. The classical evolution does not allow
the packet to split into two or more. This is, however, possible
in the quantum case due to negative interference. We assume
that this happens in Figs. 9(b) and 9(c) for Qyn, as it seems to
vanish (within the numerical precision) near the left turning
point. The classically evolved counterpart Q, as expected, re-
mains fully connected. Despite the genuinely quantum effects
that have impact on the dynamics of the critical quench, we
can conclude that the main features are still faithfully captured
by the classical evolution, e.g., the evolution of the maxima of
Q and Qgp.

The comparison in the case of the backward critical and
noncritical quench would have many similar features. Thus,
we verify that results obtained in Secs. IV A and IV B using
the truncated Wigner approximation are relevant for the quan-
tum case.

V. SUMMARY

We studied quantum quench dynamics in the class of
integrable Dicke-type models, showing that quasiclassical
technique based on the Wigner phase-space distribution func-
tion can faithfully reproduce quantum survival probability
during different stages of equilibration. The method breaks
down at the Ehrenfest time scale when the Wigner distribution
spreads over a considerable fraction of the accessible phase
space before the onset of the equilibrated regime. Up to that
time, all our results are in agreement with those in Ref. [23]
obtained by a pure quantum analysis. The evolution of the
quasiclassical survival probability in the specific stages was
directly linked with both qualitative and quantitative features
of the dynamics of the classically evolved Wigner function
in phase space. In particular, the power law o 7~! decay of
revivals in noncritical quenches was explained by an analytic
quasiclassical calculation (Appendix C).

The quasiclassical method has proven to be a suitable tool
for a qualitative interpretation and intuitive understanding of
different patterns in quantum quench dynamics. In particular
for integrable systems with ESQPTs the method provides
essential insight into the peculiarities of the equilibration pro-
cess in the presence of classical stationary points. The fact
that the trajectories with (approximately) the same energy as
these stationary points get trapped in their vicinity was shown
to provide a qualitative explanation of various ESQPT-related
anomalies of quantum quench dynamics observed in differ-
ent quench protocols. If the stationary point responsible for
the given ESQPT is located within the support of the initial
Wigner distribution (as in the forward quench protocols within
our model), we observe strong stabilization of the initial state.
If, on the other hand, the stationary point is located away from
the support of the initial Wigner distribution (the backward
quench protocols within our model), we observe a suppression
of initial-state revivals and faster transition to the equilibrated
regime. We stress that these simple conclusions can be drawn
only in regular systems, and particularly in systems with a
single degree of freedom.

It was already proposed in Ref. [23] that dynamical fin-
gerprints such as those reported here could be used to detect

ESQPTs experimentally as their direct spectroscopic mea-
surement is in many cases impossible. Therefore, the intuitive
view of the quench dynamics through classical trajectories
as presented in this paper brings additional benefit for inter-
pretation of eventual experimental results. On the other hand,
considering purely classical dynamics has its limitations. Es-
pecially close to the stationary points, quantum correlations
affect the dynamics already at early stages. So, despite the
good overall match, the details of the quantum survival proba-
bility cannot be captured by our method. This is in compliance
with the standard textbook knowledge that the quasiclassical
approach fails in the vicinity of stationary points. Applications
of more sophisticated quasiclassical techniques in relation to
the ESQPTs, perhaps also in nonintegrable systems, remain
open for future studies.
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APPENDIX A: CLASSICAL LIMIT OF THE
TAVIS-CUMMINGS HAMILTONIAN

The classical limit of the Hamiltonian (1) can be obtained
through the mapping

e dys J) = (/7% = jcos ¢, ([ j — j2sing, j.), (A1)
1

(b,b") = —= (X +ip, X —ip), (A2)
/2 p p

where (%, p) and (¢, j,) are two pairs of mutually conjugate
coordinates and momenta [53]. Considering that in the j —
oo limit these quantities can be replaced by ordinary numbers,
we obtain the classical Hamiltonian

P+ pP A
Hy=w +woj. + —=4/J* — ji(Ecos ¢ — psing).
Vi
(A3)
The conserved quantity, Eq. (2), which is rewritten as
552 _|_ ~7
M="TF 44 (A4)

connects the degrees of freedom of the atom and field sub-
systems. Separation of a single effective degree of freedom is
achieved by the canonical transformation [52]

0= 0w
p sin ¢ cos ¢ p

e\ _(b+M—j
(n) =G5 ) (A0
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which leads to the Hamiltonian (4). Since angle ¢ does not
appear in the Hamiltonian, the quantity M (and of course also
M) is an integral of motion.

As we see in Eq. (AS5), the angle ¢ from the qua-
sispin representation (Al) determines the relation of the
new coordinate-momentum pair (x, p) describing the coupled
atom-field system to the old one (X, p) characterizing the
field subsystem alone. However, it turns out that this angle
is completely arbitrary. To show this, we first note that quan-
tum expectation values (J,) and (J,) cannot determine ¢ as
they vanish in any eigenstate of the Hamiltonian with a fixed
eigenvalue of parity P = ¢™ . The discrete symmetry under
this parity transformation applies to a wide class of Dicke-
type Hamiltonians including the present one. Moreover, the
Tavis-Cummings Hamiltonian (1) possesses also a continu-
ous symmetry under the transformation U (a) = €™ ~/) with
arbitrary angle o € [0, 27r). This results in a gauge rotation
(b, b") > (e7™b, ®b") of the boson operators and a simul-
taneous counter-rotation J,, > e=J, e~ of the quasispin
operators with k = x, y, z [53]. In fact, the conservation of
quantity M follows from this symmetry. In the coordinate-
momentum form the transformation reads as follows:

X cosa  sina) (X

)= . _s (A7)
p —sine  cosa)\p
J! cosae —sina [Jx

=1 , (A8)
J; sin o cos o Jy

where formula (A7) is of the same form as the canonical trans-
formation (AS5). Therefore, any preselected value of angle ¢
can be altered to any other value ¢’, particularly to ¢’ = 0,
by applying the gauge transformations in Egs. (A7) and (A8)
witha = ¢ — ¢'.

With this background we are ready to accept that the classi-
cal Hamiltonian (4) can be written with (x, p) replaced by the
original coordinate-momentum pair (¥, p). A direct derivation
avoiding canonical transformation in Egs. (A5) and (A6) is
possible via inserting j, calculated from the constraint (A4)
into the classical Hamiltonian (A3) with ¢ = 0. In view of
the above considerations, this can be interpreted merely as a
choice of a particular gauge in which (x, p) of the coupled
system coincides with (¥, p) of the field subsystem.

These explanations justify the procedure used in this paper
to calculate the Wigner function (6). The coordinate and mo-
mentum operators in any fixed-M subspace of H, @ H, are
written in analogy to those in the Fock space H,, of the field
subsystem, cf. Eq. (A2), but in the form that strictly conserves
the value of M:

| i .
ﬁ(b L_+bLy), p ﬁ(b L_—bLy). (A9
Here L, = [J? — J.(J, = 1)]~/2J. are normalized ladder op-
erators in H, which compensate changes of the boson number
n induced by b and b. It can be shown that for very large j
and |m| < j the operators in Eq. (A9) approximately satisfy
the expected commutation relation [x, p] =i. Under these
conditions the relation b'J_ + bJ; & x,/j? — J2 immediately
transforms the interaction term of the Hamiltonian (1) into its
classical limit in Eq. (4). Using the known recursive relation
for one-dimensional harmonic oscillator eigenstates ¥, (x) we

X =

can easily prove that the eigenvector of the position operator
in Eq. (A9) with an eigenvalue x (the same symbol as for the
operator) is given by |x) =) ¥, (x)*|n,m = M — n). This
results in the expression of the initial state wave function
according to Eq. (7) and the text formula above it.

APPENDIX B: TECHNICAL DETAILS OF THE
QUASICLASSICAL SIMULATION

The propagation of the Wigner function Wi(x, p) from
Eq. (6) towards ¢ > 0 is realized according to the classical
Liouville equation with the Hamiltonian (4) for a bunch of
classical trajectories. The initial positions of these trajectories
[x;, pi] are located on a regular grid indexed by / and sampling
a finite region of the phase space which is designated by
nonzero values of the initial Wigner distribution.

Each trajectory is associated with a specific weight corre-
sponding to the value of the initial Wigner distribution at that
phase-space point (for our choices of initial states being the
ground states of Hj, the respective Wigner function has no
negative components; therefore, its probabilistic interpretation
is applicable).

The classically evolved distribution W (x, p, t) is evaluated
on a large regular grid of the [x, p] space which spans the
whole region where the classical Hamiltonian is really de-
fined. This grid is different both in the number of sampling
points and spacings A,, A, from the grid [x;, p;] which is
used for the initial positions of the trajectories. In our com-
putations we used a grid of the size 255 x 250 (spacing is
Ax 2 0.023, A, = 0.024 for forward quench and A, = 0.01,
A, = 0.028 for backward quench) for the initial positions of
the trajectories. The classically evolved function W (x, p, t)
was calculated on a grid of the size 400 x 250 (A, = 0.0375,
A, = 0.04) for the purpose of evaluating the quasiclassical
survival probability, given by Eq. (8). The snapshots and
videos of the classically evolved Wigner function were vi-
sualized on a grid of 500 x 500 and 600 x 500, respectively
(A 20.06, A, =0.1).

In order to get the magnitudes of W (x, p,t) on the large
regular grid, one needs a suitable interpolation between the
points defined by the evolved trajectories [x;(¢), p;(¢)] which
form a sort of a dense floating web in the [x, p] space. To
accomplish that we define W(x, p,t) as a sum of narrow
Gaussians with their centers given by the trajectories at time
t, [x;(t), p;(t)]. The width of the Gaussians corresponds to
the spacing of the initial grid for trajectories, A, = x;41 — Xy,
A, = pi+1 — pi, while the height of the Gaussians is equal
to the initial weights of the trajectories given by Wi(x;, p;) =
W(x;, pi,t = 0).

Common schemes for the time propagation are based on
a power expansion of the position and momentum function
in time where the higher derivatives are obtained from the
previous time steps and the Hamilton equations of motion.
Such expansions are nonconverging in the case of the Tavis-
Cummings model, and thus we apply a different approach.
We make use of the energy conservation law which implies
that each trajectory follows an equivalue line of the classical
Hamiltonian in the two-dimensional phase space. First, the en-
ergy equivalue line is determined for each point [x;, p;], which
defines the initial condition for a trajectory in the phase space.
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p E,

FIG. 10. Schematic picture of the phase space around the initial
point (xo, p = 0). The circle marks the domain of W; and the blue
dashed lines represent examples of the energy equivalue lines which
are parallel with p axis (approximation i.) and equidistant (approxi-
mation ii.) in that domain.

The equivalue line is defined by a set of positions [x], p;],
which are determined using standard geometrical procedures
applied for a two-dimensional surface of H. (x, p) defined on
an equidistant grid in the x and p coordinates. Then the time
elapsed between each two points, tlj o tlj , 1s reconstructed
using the Hamiltonian equations of motion.

This quasiclassical approach to computing survival prob-
ability does not capture quantum correlations, and therefore
is bound to fail whenever they become significant. The break-
down occurs whenever the semiclassical van Vleck Gutzwiller
propagator [61-64] starts to include more then one root. In
order to obtain the long-time behavior, more sophisticticated
quasiclassical methods including quantum corrections must
be employed, see Refs. [65-67]. The specific features of
equilibration related to ESQPTs appear dominantly at earlier
stages of the time evolution. Thus, the quasiclassical approach
as described above represents a reliable tool for our study.

APPENDIX C: QUASICLASSICAL ANALYTIC
EVALUATION OF A NON-CRITICAL QUENCH

In this Appendix we derive the Gaussian initial decay as
well as the o< 1/¢ power-law attenuation of the revivals in the
case of a noncritical quench. We assume that the initial Wigner
function has a form of a Gaussian centered at point (xg, po) in
the phase space, i.e.,

—x0)? — po)?
Wi = Nexp [—M} exp [—M] - (€D

2 2
20 2(7,,

where o, and o), are the respective dispersions and A is a
proper normalization. As the evolution always starts from rest,
from now on we set pg = 0. To make further calculations
feasible, we employ the following approximations.

(1) Around the initial point (xg, p = 0) there is a domain
of size 0,0, = i corresponding to the quantum uncertainty.
In the classical limit # — O the size of this region is small
so we assume the energy equivalue lines to be approximately
parallel with the p axis within the phase space initially covered
by the probability density, see Fig. 10.

(i1)) We also assume that the classical Hamiltonian can be
approximated linearly within this small region. The classical

potential V (x) = H.(x, p = 0) is approximately a linear func-
tion in the vicinity of xo, i.e., V(x)|iny, = Eo + V'(x0)(x —
Xo), where Ey = H(xg, 0) and V'(xp) = dVv/dx|,—,,. The ki-
netic energy, on the other hand, is represented by a constant
as dH. /dp = 0. This means that in this region Hy(x, p) is
approximately constant in p.

These assumptions can be justified by a detailed investi-
gation of H.(x, p), from Eq. (4). As a result, we write the
classical Hamiltonian around (xg, 0) as

Hy(x, p) = Eg + V' (x0)(x — x0) ,

where Ey = H(xo, 0) and V' (xg) = dV/dx| =y,
Now we define the classical survival probability for a given
energy shell £

(C2)

Pu(t,E) = 21 / Wi(x, pYW (x, p, 1) S[Ha(x, p) — Eldxdp.
©3)

Apparently, by integration of P (¢, E) over the energy do-
main, one recovers P (¢) from Eq. (8). Let t(E) be a period
of the trajectory. P, (¢, E') acquires non-zero values only when
the trajectory is recurring through the initial region. This
means that further on we can restrict our evaluation to the
times which are approximately integer multiples of the pe-
riod t = nt(E). According to the assumption i., the trajectory
evolves only in p direction, so one can write

(x— Xo)z}

W(xapat)z-/\/exp |:_ 20_2

— A(f — 2
_W} o nt(E).
! C4)

The time change p is linked with the properties of the potential
as p = —V’(xo). We also directly inserted the time argument
in the form r — nt (E) which reflects the periodicity.

Using Eq. (C2) we define x(E) = (E — Ep)/V'(x0) + xo
and evaluate the integral

X exp|:

Pu(t, E) = 27 / Wi(x, pW (<(E), p. 1)dp

2
= ZnMﬁop exp |:— <—£(;0;€00 ) ]

’ 2
X exp [—(V (x°)> 0 —nr(E))z]. (C5)

20

)4

As already noted, to obtain P (¢) equivalent to Eq. (8), we
have to integrate over the energy domain. Before we do so, we
need to insert one more assumption on the function t(E). We
will consider the simplest nontrivial dependence

T(E) = t(Eo) + B(E — Ep) .,

where t(E)y) is the period of the trajectory passing through xq
(which has energy Ej) and $ is a real number.
Now we can write

Pa(t) = 27 N?op /T / N exp [-A*(E — E)’]

(Co)

x exp[—B*(C(t) — (E — Ey))*1dE , (C7)

032213-11



MICHAL KLOC et al.

PHYSICAL REVIEW A 103, 032213 (2021)

with

_ 1 _ V'(xo)np
S Ve 20,
t —t(Ep)n

np '

) (C8)

Ct) = (€9)

The integration (C7) yields

2nN?o,m

BRIV

ex —ﬂcz(t) (C10)
Pl g :

If we focus on the initial decay, we set n = 0. In that case
BC(t) = V'(x0)t /20, and B = 0. So the initial time evolution
of survival probability is

/ 2
Vi(x0) tz] . (€1
4013

PSZO(Z‘) = ZﬂNQUPOXV/(xO)n exp |:_

which corresponds to the observed initial Gaussian decay.

Further on, let us reveal the origin of 1/ attenuated
revivals. The maxima of (C10) are reached when the expo-
nential factor becomes equal to one. This is obtained for r =
T(Ep)n which makes coefficient C(¢) vanish. For such values
of ¢, the center of W (x, p, t) is exactly recurring through the
initial point x(. Note that now we investigate these revivals in
survival probability P2="/* (n) as a function of the number of
recurrences.

Let us define the asymptotic limit A?> <« B(n)*> which is,
according to Eq. (C8), identical to the requirement given by

s> 2 2 (C12)
o V'(x)?'

~1

This inequality is generally fulfilled if the potential is steep
enough around xy, 7 is sufficiently large, and 8 has a signifi-
cantly nonzero value. Taking into account the condition (C12)
and the fact that C(t(Ey)n) = 0, one obtains
2N 20’[%7'[ 1
Vi(xo)lBln
Recalling n = t /7 (Ey), Eq. (C13) shows the power-law decay
1/t of the revivals. Even more, the power law holds better for
later reccurences (larger n), i.e., when the requirement (C12)
is better justified.

In the case of the critical forward quench, this derivation
fails (mainly) because the assumption ii. is not fulfilled. In-
deed, x is a stationary point of the classical potential V'(xy) =
0. In the critical backward quench, however, both the assump-
tions (i) and (ii) are reasonably fulfilled; therefore, the initial
Gaussian decay (C11) is observed. The 1/t power-law decay
of the revivals is not observed, because the assumption on the
linear scaling of the period with energy (C6) does not hold.
This is a direct result of the dephasing of the trajectories at the
stationary point of H,;. For analytical insight into computation
of the survival probability from the quantum perspective we
refer the reader to Ref. [56]. The results are in agreement with
those derived in this Appendix.
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