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Weak measurement with the peak-contrast-ratio pointer
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Weak measurement as a nonperturbative theory has been shown to be powerful in the fundamentals of quantum
mechanics and high-precision metrology, in which the pointer is of great importance to parameter estimation and
experimental design. In this work, we find that under the conditions of weak coupling and Gaussian meter, the
probability distribution after the postselection follows a bimodal function and the peak contrast ratio (PCR) can
be applied as a special pointer, which is different from the shift of mean value. To obtain the PCR, only two values
corresponding to the two peaks in the distribution function are required. We theoretically present the relation of
the PCR and parameters to be estimated, and then demonstrate it in an experiment. Weak measurement with the
PCR pointer has the advantages of reducing the requirements of the apparatus and suppressing noise, which also
provides a heuristic approach for studying weak measurement when the weak value is very large.
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I. INTRODUCTION

Since the evolution of a quantum system is driven both
by the Hamiltonian and measurements, compared with clas-
sical measurements, quantum measurements are much more
intriguing. For an understanding of the role of measurements
in quantum mechanics, von Neumann developed a standard
model to describe how the quantum system and the mea-
surement meter are coupled [1]. The concept of the pre-
and postselected measurement was originally proposed by
Aharonov et al. to study the time symmetry problem in the
quantum process [2]. When the coupling strength between
the system and the meter is sufficiently small, the pre- and
postselected measurement is in a weak measurement scheme.
Aharonov et al. theoretically found that the result of a mea-
surement of a component of the spin-1/2 particle can be
amplified by a large number called “the weak value” [3],
which opened up a gate for the study of weak measurement
in various fields.

For now, the widely used pointer in weak measurement
is the shift of mean value (SMV), such as the coordinate
shifts [4–8], the momentum shifts [9–11], the frequency
shifts [12–19], the temporal shifts [20,21], the angular
rotation shifts [22], and the photon number shifts [23,24].
According to the mathematical expression of the SMV, its
working region can be divided into three parts, which are
named the linear response region, the intermediate region,
and the inverted region, respectively [25]. Nevertheless,
most of the previous studies were confined to the linear
response region. In the linear response region, the SMV can
be amplified linearly by the weak value, which is known
as the weak value amplification technique. However, since
the weak value is restricted by the uncertainty of the meter
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wave function, the SMV may still be imperceptible if the
uncertainty is tiny. So, in order to extend the application of
weak measurement, new approaches which can allow the
weak value to be large are demanded. Another problem often
questioned in weak measurement is that when the pre- and
postselections are nearly orthogonal, the probability of a
successful measurement will be very small [26,27]. To obtain
a complete distribution function, the repeated measurement
times should be large and the requirements of the detecting
apparatus are strict. For example, the resolution of the
apparatus should be high enough and the detecting range
should be broad. Furthermore, it has been found that although
certain types of technical noise can be suppressed in weak
measurement [28–30], the disturbance to the distribution
function cannot be underestimated, which inevitably increases
the difficulty of obtaining an accurate SMV. Many efforts
have been made to solve these problems. For instance, the
power-recycled metrology was proposed to eliminate the
inefficiency of the rare probability [31]. Some research also
used a split-detection method to reduce the requirement of
the apparatus resolution [32–34]. However, in these efforts,
the complete distribution function is still necessary.

Here we propose another pointer, the peak contrast ratio
(PCR). Under the conditions of weak coupling and Gaussian
meter, we theoretically show that two values corresponding to
the two peaks in the distribution function are already enough
for realizing weak measurement. With the PCR pointer, the
weak value can be very large and obtaining a complete dis-
tribution function is not necessary indeed. We also show that
the noise can be suppressed well. Finally, a proof-of-principle
experiment is presented to confirm the availability of the PCR
pointer.

This paper is organized as follows. In Sec. II, we start with
the theory of weak measurement and present the distribution
functions after the postselection in x and p spaces. In Sec. III,
we introduce the PCR pointer to realize weak measurement.
In Sec. IV, we describe the experimental setup and discuss the
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FIG. 1. Schematic diagram of weak measurement with the PCR
pointer. S denotes the system and M denotes the meter. The single
and double lines correspond to the quantum and classical processes,
respectively.

results. Finally, a brief conclusion is drawn in Sec. V. For the
sake of simplicity, we make h̄ = 1 and often omit inessential
factors by using the proportionality sign “∝” instead of the
exact equality sign “=”.

II. WEAK MEASUREMENT SCHEME

As shown in Fig. 1, let us consider a pre- and postselected
measurement scheme in which a system ρ and a meter ρm are
in the pure states |ψ〉 and |ψm〉, respectively. The coupling is
turned on in the time interval (ti, t f ). Then, a projective mea-
surement �φ = |φ〉〈φ|, to the system only, play a role of the
postselection. Finally, a pre- and postselected measurement is
accomplished after reading out the pointer corresponding to
the variable x or p of the meter, where x and p satisfy the
commutation relation [x̂, p̂] = i. It should be noted that here x
and p do not represent coordinate and momentum particularly.

According to the von Neumann measurement model, the
system and the meter are coupled by the interaction described
by the Hamiltonian [1,3]

H = g(t )Â ⊗ p̂, (1)

with g(t ) the instantaneous coupling rate, Â the operator cor-
responding to the measured quantity A of the system, and
p̂ the operator corresponding to p. Hence by solving the
Schrödinger equation, the unitary transformation U can be
obtained, which takes the form

U = exp

(
−i

∫ t f

ti

Hdt

)
= exp(−iγ Â ⊗ p̂), (2)

where γ = ∫ t f

ti
g(t )dt is defined as the coupling strength.

Following the previous approach, we take the meter wave
function as a Gaussian, which in x or p space is presented as

ψm(x) ∝ exp

[
− (x − x)2

4(�x)2

]
(3)

or

ψm(p) ∝ exp

[
− (p − p)2

4(�p)2

]
, (4)

where x, p and �x, �p are, respectively, the mean values and
the uncertainties of x and p at t = 0.

The word “weak” of weak measurement is usually un-
derstood in a way that the coupling strength in a pre- and
postselected measurement is sufficiently small. In order to

figure out how small of a coupling strength can be consid-
ered sufficient, we can express the Hermitian operator Â with
eigenvalues ai and a complete set of orthonormal eigenvec-
tors |ai〉 as Â = ∑

i ai|ai〉〈ai| and the pure states |ψ〉 of the
system as |ψ〉 = ∑

i ci|ai〉, with |ci|2 indicating the proba-
bility of finding the system in eigenstate |ai〉. In a standard
measurement, which refers to a measurement without the
postselection, the coupled state of the system and the meter
in x space is given by

|ψ f (x)〉 = 〈x| exp(−iγ Â ⊗ p̂)|ψ〉|ψm〉
= 〈x|

∑
i

exp(−iγ ai p̂)ci|ai〉|ψm〉

=
∑

i

ciψm(x − γ ai )|ai〉. (5)

A projective measurement performing on eigenstate |ai〉 will
lead to a corresponding wave packet ψm(x − γ ai ). However,
when the distance between any two wave packets ψm(x −
γ ai ) and ψm(x − γ a j ) is much smaller than the uncertainty
of x, which may be represented as

|γ (ai − a j )| � �x, (6)

the two wave packets will severely overlap so that a measure-
ment will provide almost no information. In our case where
the wave function ψm(x) follows a Gaussian, there is a sat-
urated uncertainty relation �x�p = 1/2 [35]. Then, Eq. (6)
can be further rewritten as

|γ (ai − a j )|�p � 1. (7)

As long as the coupling strength is so weak that Eq. (6) or
(7) is generally satisfied, we should deem that the pre- and
postselected measurement is in a weak measurement scheme.
In weak measurement, the unitary transformation can be ex-
panded and held up to the first-order term only, namely (see
Appendix A),

U = exp(−iγ Â ⊗ p̂) � 1 − iγ Â ⊗ p̂. (8)

Under this circumstance, the distribution functions after the
postselection in the x and p spaces will take the following
forms, respectively (see Appendix B):

�(x) = Tr[(|x〉〈x| ⊗ �φ )U (ρ ⊗ ρm)U †]

∝
{

1 + γ (x − x)

(�x)2
ReAw +

[
γ (x − x)

2(�x)2

]2

|Aw|2
}

× |〈φ|ψ〉|2 exp

[
− (x − x)2

2(�x)2

]
(9)

and

�(p) = Tr[(|p〉〈p| ⊗ �φ )U (ρ ⊗ ρm)U †]

∝ {1 + 2γ pImAw + γ 2 p2|Aw|2}

× |〈φ|ψ〉|2 exp

[
− (p − p)2

2(�p)2

]
, (10)

where Aw = 〈φ|Â|ψ〉/〈φ|ψ〉 is the so-called weak value. The
weak value has many novel properties [26,36–40]. For exam-
ple, it is generally arbitrary in the complex space.
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III. THE PEAK-CONTRAST-RATIO POINTER

In the previous studies of weak measurement, with the dis-
tribution functions presented above, the usually used pointer
is the SMV, which is given by

δ〈x〉 =
∫ +∞
−∞ (x − x)�(x)dx∫ +∞

−∞ �(x)dx
(11)

or δ〈p〉 =
∫ +∞
−∞ (p − p)�(p)d p∫ +∞

−∞ �(p)d p
.

In order to obtain the SMV, we need to detect the com-
plete distribution function, which may be not practically easy.
When the pre- and postselections are nearly orthogonal, which
means |〈φ|ψ〉|2 � 1, the probability after the postselection
will be quite small. Thus the repeated measurement times
should be large enough. On the other hand, the detecting range
of the apparatus should be broad. The resolution in x or p
space should be high enough as well to follow the Nyquist
sampling theorem [41]. However, the improvements of the
detecting range are usually at the cost of the reductions of
resolution, and vice versa. In fact, it can be noted that the
distribution function will gradually peak at two points with
the measurement times increasing. If we concentrate on the
two peaks only and even disregard where they exactly located
in x or p space, then obtaining a complete distribution function
will be unnecessary. Correspondingly, the repeated measure-
ment times and the requirements for the apparatus can both be
reduced. Henceforth, we will show that another pointer, the
PCR, may offer a different way to realize weak measurement
well.

For the case of the distribution function in x space, we
assume that the weak value is purely real for simplicity and
then define

u = 2(�x)2

γ Aw

, (12)

so that Eq. (9) further becomes

�(x) ∝
[
γ (x − x)

2(�x)2
Aw + 1

]2

|〈φ|ψ〉|2 exp

[
− (x − x)2

2(�x)2

]

∝ [(x − x) + u]2 exp

[
− (x − x)2

2(�x)2

]
. (13)

Here what we are concerned about is the u, indicating that
the quantity to be measured can be the coupling strength, the
weak value, or even the uncertainty of x, as long as the other
two parameters are determined. Without much difficulty, we
can find that there exist two local maximum points denoted
as x1 and x3, and one local minimum point denoted as x2, in
the distribution function. The exact expressions of these three
points are

x1 = 1
2 [−u −

√
u2 + 8(�x)2] + x,

x2 = −u + x,

x3 = 1
2 [−u +

√
u2 + 8(�x)2] + x,

(14)

respectively. So the graph of �(x) consists of two peaks and
a valley, and then we can say that �(x) follows a bimodal

distribution. When u = 0, which means that the weak value
Aw → ∞, it can be found that �(x) is symmetric about the
axis x = x. However, once u is not equal to zero, �(x) will
no longer be symmetric. So we may deem that u plays a
role of breaking the symmetry of the distribution function. In
addition, when Aw is not so large that the condition |γ Aw| �
�x is satisfied, it can be found that x3 � |γ Aw| + x, which
presents the well-known linear relation between the SMV and
the coupling strength.

Now given the two maximum points x1 and x3, the PCR
can be obtained, which is defined by

Rx = �(x3) − �(x1)

[�(x3) + �(x1)]/2

= 2(α+e−α− − α−e−α+ )

α−e−α+ + α+e−α−
, (15)

where α± = [u ±
√

u2 + 8(�x)2]2/8(�x)2. It is easy to find
that Rx is in an odd function of u, an intuitive understanding
of which is that the positions of the left and right peaks are
exchanged as the sign of u changes. For the case that |u| �
�x, Eq. (15) can be simplified to

Rx � 2
√

2(�x)−1u, (16)

which indicates a linear relation between Rx and u. Thus we
may call the region where |u| � �x as the linear response re-
gion. We should note that since the PCR is taken as the pointer,
the linear response region defined here is quite different from
the traditional linear response region when the SMV is taken
as the pointer. Taking into account the exact expression of u,
the linear response region of the PCR can be further written
as �x � |γ Aw|. However, as mentioned above, the linear
response region of the SMV reads |γ Aw| � �x. Therefore,
the PCR pointer provides a heuristic approach for studying
weak measurement when the weak value is very large. If we
intend to measure γ or Aw, we are encouraged to reduce the
value of �x to increase the corresponding dynamical range.
On the other hand, if we intend to measure �x, we can enlarge
the values of γ and Aw instead. For the other extreme case that
|u| � �x, it follows that

Rx � ±2, (17)

the correct sign of which depends on the sign of u. Since Rx

is constant, we may call the region where |u| � �x as the
constant region. On account of the independence of Rx and u
in the constant region, Rx will provide almost no information
of u. So, in practical application of the PCR pointer, we
should keep away from the constant region. From Eq. (17),
we can also note that the value of Rx ranges from −2 to 2.
It is worth emphasizing that the principal condition of weak
measurement, i.e., Eq. (6) or (7), must always be satisfied.

For the case of the distribution function in p space, we
assume that the weak value is purely imaginary for simplicity
and then define

v = 1

γ Aw

+ p. (18)
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Thus, Eq. (10) can be rewritten as

�(p) ∝ (γ pAw + 1)2|〈φ|ψ〉|2 exp

[
− (p − p)2

2(�p)2

]

∝ [γ Aw(p − p) + γ Aw p + 1]2 exp

[
− (p − p)2

2(�p)2

]

∝ [(p − p) + v]2 exp

[
− (p − p)2

2(�p)2

]
. (19)

It can be noted that Eqs. (13) and (19) take the same form
mathematically, so all the discussion above for the distri-
bution function in x space can have its counterpart for the
distribution function in p space. Similarly, there exist two
local maximum points denoted as p1 and p3, and one lo-
cal minimum point denoted as p2, which take the following
forms, respectively:

p1 = 1
2 [−v −

√
v2 + 8(�p)2] + p,

p2 = −v + p,

p3 = 1
2 [−v +

√
v2 + 8(�p)2] + p.

(20)

Here, it is the v that plays a role of breaking the symmetry of
the distribution function. The PCR in p space now is given by

Rp = �(p3) − �(p1)

[�(p3) + �(p1)]/2

= 2(β+e−β− − β−e−β+ )

β−e−β+ + β+e−β−
, (21)

with β± = [v ±
√

v2 + 8(�p)2]2/8(�p)2. Also, Rp is in an
odd function of v. In the extreme case that |v| � �p, we can
obtain Rp in the linear response region, which is given by

Rp � 2
√

2(�p)−1v. (22)

Taking Eq. (18) into account, the linear response region may
be further written as |γ Aw|(p + �p) � 1. Hence it can be
seen that in order to increase the dynamical range of γ , Aw,
or �p, we should make the other two parameters as large as
possible. In the constant region, which should be kept away
from, Rp takes the following form:

Rp � ±2, (23)

the correct sign of which depends on the sign of v.
In practical applications, a consideration of the noise which

can disturb the distribution function after the postselection
is inevitable. Taking the x-space distribution function for an
example, we let ε(x) denote the noise function and take the
following form:

ε(x) = a + b�(x), (24)

where a indicates the homogeneous noise and b�(x) indicates
the noise which is proportional to the intensity of the distri-
bution function. Both a and b are time dependent. It should
be noted that here we do not specifically discuss the types
of noise, so that ε(x) can be regarded as the general result
of various noises. We may consider that the intensity of the
noise is always much smaller than the maximum intensity of

the distribution function, namely,

ε(x) � max[�(x1),�(x3)], (25)

which also implies that a � max[�(x1),�(x3)] and b � 1.
Then, when the noise is taken into account, the PCR in x space
becomes

Rε
x = �(x3) + ε(x3) − �(x1) − ε(x1)

[�(x3) + ε(x3) + �(x1) + ε(x1)]/2

� Rx(1 + b)

[
1 − b − 2a

�(x3) + �(x1)

]

� Rx

[
1 − 2a

�(x3) + �(x1)

]
,

(26)

where all the higher-order terms are neglected. On the other
hand, when the noise is introduced, the SMV in x space takes
the following form (see Appendix C):

δ〈x〉ε � δ〈x〉
[

1 − a

�(x0)

]
. (27)

It can be noted that for both the PCR and SMV pointers,
it is the homogeneous noise that plays a dominating part.
Since �(x0) is at the same order as max[�(x1),�(x3)], there
should be a relation a � �(x0) due to the condition given by
Eq. (25). Therefore, it turns out approximately that Rε

x ≈ Rx

and δ〈x〉ε ≈ δ〈x〉, which indicates that the noise can be sup-
pressed well for both of the two pointers. Furthermore, we
can obtain that

3√
2π

� �(x3) + �(x1)

2�(x0)
� 12√

2πe
,

which also holds for the distribution function in p space. So
the PCR pointer is better at suppressing noise, although this
effect may not be very significant.

IV. EXPERIMENT

In the following, we propose an experimental protocol,
depicted in Fig. 2, to demonstrate the availability of the PCR
pointer. A white laser and a following Gaussian filter together
constitute the meter state. So the input meter variable is the
angular frequency denoted as ω. Since the source used is
classical, repeated measurement times just correspond to the
light intensity. Then the light beam travels through the first
polarizer (P1) which preselects the system at the state

|ψ〉 = 1√
2

(|H〉 + |V 〉), (28)

where |H〉 and |V 〉 represent the horizontal and vertical
polarization states, respectively. A half-half wave-plate com-
bination introduces a time delay τ (τ = 1.22 × 10−16 s),
which corresponds to the coupling strength, between the hor-
izontal and vertical polarization states [15]. Thus the operator
representing the measured quantity here is

Â = |H〉〈H | − |V 〉〈V |. (29)

Afterwards, a quarter wave plate (QWP) together with the
second polarizer (P2) postselect the system at the state (see
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FIG. 2. Experimental setup. A white laser as the light source;
GF: Gaussian filter with the central wavelength 633 nm and the
FWHM (full width at half maximum) 10 nm; P1 and P2: Polarizers
with optical axes set at 45◦ and ϕ − 45◦, respectively; HWP1 and
HWP2: Half-half wave-plate combination with optical axes perpen-
dicular to each other, the latter one of which can be rotated around
its vertical axis by a certain angle to introduce a time delay; QWP:
Quarter wave plate with the optical axis set at −45◦. A spectrometer
is used as the detector.

Appendix D)

|φ〉 � 1√
2

[exp(−iϕ)|H〉 − exp(iϕ)|V 〉], (30)

with ϕ the angle at which the polarization direction of P2 de-
viates from −π/4. Therefore, the weak value can be obtained
immediately that

Aw = −i cot ϕ. (31)

Since the detecting apparatus is a spectrometer, the input and
output meter variables are identical. So it is the PCR defined
in Eq. (21) that should be adopted to do weak measurement.

For the purpose of measuring a practically significant quan-
tity, we choose the phase difference, which is defined by

ξ = τv = − tan ϕ + τω. (32)

We first adjust the polarization direction of P2 to make the
spectrum after the postselection present the bimodal dis-
tribution and then make the intensities of the two peaks
exactly the same. In this way, we can figure out that ξ is
equal to zero. Under such initial conditions, we next fine
tune the polarization direction of P2 so that the value of
ξ takes 3.49 × 10−4, 6.98 × 10−4, 10.47 × 10−4, 13.96 ×
10−4, 17.45 × 10−4, 20.94 × 10−4, and 24.43 × 10−4 rad,
respectively. The experimental results are shown in Fig. 3,
which agree well with the theoretical expectation. The PCR
in ω space denoted as Rω shows a high sensitivity to a change
of phase of the order of 10−4 rad. The black dotted line corre-
sponds to Eq. (22), proving that Rω is linearly proportional to
v when the condition |v| � �ω is satisfied.

In order to estimate the experimental uncertainty of the
phase difference denoted as �ξ , we may use the relation [42]

�ξ = �Rω

∂Rω/∂ξ
. (33)

Recording the postselected spectra at least 50 times with a
time interval of one second, the standard deviation of the
measured �Rω with respect to ξ is presented in Fig. 4(a).

FIG. 3. The PCR Rω in a function of the phase difference ξ . The
red squares correspond to the experimental results and the black solid
line corresponds to the theoretical prediction. The black dotted line
shows the linear relation Rω � 2

√
2(�ω)−1v when |v| � �ω.

The relation of �Rω and ξ indicates that a greater intensity
difference between the two peaks can make the output of the
PCR pointer more stable. This property can be accounted for
well by the noise analysis model established above. Since
the sum �(x3) + �(x1) detected increases with the increase
of ξ , the fluctuations Rε

ω − Rω become smaller according to
Eq. (26). By using Eq. (21), we then plot �ξ with respect
to different ξ in Fig. 4(b). It can be seen that in spite of the
fact that �Rω reduces with the increase of ξ , the uncertainty
�ξ eventually is proportional to ξ . We can lay the blame of
increasing �ξ on the decreasing rate of ∂Rω/∂ξ being larger
than the decreasing rate of �Rω [see Eq. (33)]. It, finally,
turns out that the experimental precision can be effectively
retained at the order of 10−6 rad. Under exactly the same
experimental conditions, this precision competes well with
the precision 10−4 as (equivalent to a precision of phase of

FIG. 4. (a) The experimental uncertainty of the PCR. (b) The
experimental uncertainty of the phase difference.
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10−6 rad) obtained in Ref. [16] where the SMV pointer was
applied.

V. CONCLUSION

In conclusion, when the initial meter is Gaussian and the
coupling strength is weak, the probability distribution after
the postselection follows a bimodal function. We have shown
that the PCR can be utilized as an alternative pointer to do
weak measurement. We have found that in the linear response
region, the PCR is linearly proportional to the quantity to
be measured, while in the constant region, the PCR remains
nearly unchanged. In practical applications, the working re-
gion should be kept away from the constant region. We have
also demonstrated that the noise can be effectively suppressed.
Furthermore, an experiment to measure a phase difference
has been made. The experimental results agreed well with
the theoretical expectation and the measured precision of the
phase difference was retained at the order of 10−6 rad, which
have confirmed the availability of the PCR pointer.

In order to further show the advantages of the PCR pointer,
we will design a special measurement protocol in our future
work. In the protocol, we place two multipixel photon coun-
ters, respectively, around where the two peaks locate and then
correlate them with a lock-in amplifier. For the two photon
counters, the detecting ranges can be narrow and the resolu-
tions can be low, so that technically the dark current will be
suppressed well and the response time will be greatly reduced.
Therefore, we believe a weak measurement of higher effi-
ciency and precision will be achieved when the PCR pointer
is applied.
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APPENDIX A: WEAK MEASUREMENT APPROXIMATION

Without loss of generality, we may rewrite the condition
given by Eq. (7) as

|γ (ai − a0)(p − p0)| � 1, (A1)

where a0 is one of the eigenvalues ai, and p0 is one of the
meter variables p.

When both a0 and p0 are equal to zero, it follows at once
that |γ ai p| � 1. So the exponential term in Eq. (5) can be
expanded and held up to the first-order only, namely,

exp(−iγ ai p̂) � 1 − iγ ai p̂. (A2)

Therefore, the weak measurement approximation presented in
Eq. (7) can be considered reasonable. However, more gen-
erally, there exist some cases where none of ai or p takes
the value of zero. Under this circumstance, more detailed
discussion is demanded.

In order to elucidate this question, we can express the
operator corresponding to the measured quantity as

Â =
∑

i

(a′
i + a0)|ai〉〈ai| =

∑
i

a′
i|ai〉〈ai| + a0 ÎA, (A3)

where a′
i = ai − a0 and ÎA denotes the system unit operator.

Meanwhile, the operator corresponding to the meter variable
can be written as

p̂ = p̂′ + p0 Îp, (A4)

where Îp denotes the meter unit operator. Now in a standard
measurement, the coupled state of system and meter in x space
is given by

|ψ f (x)〉 = 〈x| exp(−iγ Â ⊗ p̂)|ψ〉|ψm〉
= 〈x|

∑
i

exp[−iγ (a′
i p̂

′ + a0 p̂′ + a′
i p0 + a0 p0)]

× ci|ai〉|ψm〉, (A5)

where the unit operators are neglected for simplicity. It can be
noted that the term exp(−iγ a0 p̂′) indicates a shift of γ a0 in
x space of the meter wave function. For each eigenstate |ai〉,
the shifting value is the same, so that the term exp(−iγ a0 p̂′)
is actually trivial and therefore can be suppressed. The terms∑

i exp[−iγ (a′
i p0 + a0 p0)] indicate phases added to the sys-

tem state, which can be suppressed by Ui(1) transformations,
where the subscript i denotes each eigenstate |ai〉. In addition,
these Ui(1) transformations can be realized by an appropriate
choice of the preselection. Therefore eventually Eq. (A5) can
be simplified to

|ψ f (x)〉 = 〈x|
∑

i

exp(−iγ a′
i p̂

′)ci|ai〉|ψm〉. (A6)

According to the condition given by Eq. (A1), the weak mea-
surement approximation in Eq. (8) is generally tenable.

APPENDIX B: CALCULATION OF
THE DISTRIBUTION FUNCTIONS

The distribution function after postselection in x space is
given by

�(x) = Tr[(|x〉〈x| ⊗ �φ )U (ρ ⊗ ρm)U †]

= 〈x|〈φ|U |ψ〉|ψm〉〈ψm|〈ψ |U †|φ〉|x〉
� |〈x|〈φ|(1 − iγ Â ⊗ p̂)|ψ〉|ψm〉|2

= |〈φ|ψ〉
[
ψm(x) − γ Aw

∂

∂x
ψm(x)

]
|2

∝
{

1 + γ (x − x)

(�x)2
ReAw +

[
γ (x − x)

2(�x)2

]2

|Aw|2
}

× |〈φ|ψ〉|2 exp

[
− (x − x)2

2(�x)2

]
, (B1)

in the fourth line of which the relation p̂|x〉 = i ∂
∂x |x〉 is used.

So using the other relation p̂|p〉 = p|p〉 and following the
same procedure as presented, the distribution function after
postselection in p space can be obtained immediately.

032212-6



WEAK MEASUREMENT WITH THE PEAK-CONTRAST-RATIO … PHYSICAL REVIEW A 103, 032212 (2021)

APPENDIX C: DERIVATION OF THE SMV WHEN
THE NOISE IS INTRODUCED

When the noise is taken into account, the SMV is given by

δ〈x〉ε =
∫ +∞
−∞ (x − x)[�(x) + ε(x)]dx∫ +∞

−∞ [�(x) + ε(x)]dx

=
∫ +∞
−∞ (x − x)[�(x) + a

1+b ]dx∫ +∞
−∞ [�(x) + a

1+b ]dx
. (C1)

Since a
1+b is not integrable on (−∞,+∞) and, in practice,

the detecting range of the apparatus is always confined, we
change the integrating range to [x − r, x + r] and let 2r be
large enough to make

∫ +∞
−∞ �(x)dx � ∫ x+r

x−r �(x)dx. On the
other hand, we also assume that the integrating range is not too
broad so that we will have

∫ x+r
x−r �(x)dx � ∫ x+r

x−r adx. Then the
SMV can be further written as

δ〈x〉ε =
∫ x+r

x−r (x − x)�(x)dx∫ x+r
x−r �(x)dx + ∫ x+r

x−r
a

1+bdx

�
∫ x+r

x−r (x − x)�(x)dx∫ x+r
x−r �(x)dx + ∫ x+r

x−r a(1 − b)dx

� δ〈x〉
[

1 − 2ar∫ x+r
x−r �(x)dx

]
,

(C2)

where all the higher-order terms are neglected. Applying the
mean value theorem, it follows at once that

∫ x+r
x−r �(x)dx =

2r�(x0), where x0 ∈ [x − r, x + r]. Hence, finally, we obtain

δ〈x〉ε � δ〈x〉
[

1 − a

�(x0)

]
. (C3)

Considering the so-called three-sigma rule for the Gaussian
function, �(x0) may be determined by the simple relation

�(x0) � 1

6�x

∫ +∞

−∞
�(x)dx

= 1

6�x

[
1 +

(
γ

2�x

)2

|Aw|2
]
|〈φ|ψ〉|2. (C4)

APPENDIX D: POSTSELECTION APPLIED
IN THE EXPERIMENT

The combination of a quarter wave plate and a polarizer
has been successfully applied as the postselection in Ref. [43]
when the incident light is monochromatic. Here we will
demonstrate that this kind of postselection also works for
the case where the incident light is polychromatic but the
bandwidth of which is narrow.

On the basis of the horizontal and vertical polarization
states |H〉 and |V 〉, the function of a quarter wave plate (QWP)
whose optical axis is set at −45◦ can be illustrated in the
matrix form

QWP =
(

cos τ0ω −i sin τ0ω

−i sin τ0ω cos τ0ω

)
, (D1)

where τ0 denotes a time delay determined by the thickness
of the QWP. When the incident light is monochromatic and
the angular frequency ωc of which matches the QWP, it turns
out that τ0ωc = π/4. However, for the case of polychromatic
incident light, we may rewrite γ0ω as the following form:

τ0ω = τ0(ωc + δω)

= τ0ωc(1 + δω/ωc). (D2)

Now if the bandwidth is narrow so that the relation δω/ωc �
1 is satisfied, then we may have τ0ω � τ0ωc. Under this cir-
cumstance, the matrix above reads

QWP � 1√
2

(
1 −i
−i 1

)
. (D3)

Therefore, the postselection takes the following form:

|φ〉 � 1√
2

(
1 −i
−i 1

)(
cos(ϕ − π/4)
sin(ϕ − π/4)

)

= 1√
2

exp(iπ/4)

(
exp(−iϕ)
− exp(iϕ)

)

= 1√
2

[exp(−iϕ)|H〉 − exp(iϕ)|V 〉],

(D4)

where the phase term exp(−iπ/4) in the third line is neglected
since it makes no difference to the distribution functions.
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