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Coherence-based characterization of macroscopic quantumness
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One of the most elusive problems in quantum mechanics is the transition between classical and quantum
physics. This problem can be traced back to Schrödinger’s cat thought experiment. A key element that lies at
the center of this problem is the lack of a clear understanding and characterization of macroscopic quantum
states. Our understanding of macroscopic quantumness relies on states such as the Greenberger-Horne-Zeilinger
(GHZ) or the NOON state. Here we take a first-principle approach to this problem. We start from coherence
as the key quantity that captures the notion of quantumness and require the quantumness to be collective and
macroscopic. To this end, we introduce macroscopic coherence which is the coherence between macroscopically
distinct quantum states. We construct a measure that quantifies how global and collective the coherence of the
state is. Our work also provides a first-principle way to derive well-established states like the GHZ and the NOON
state as the states that maximize our measure. Our approach paves the way towards a better understanding of the
quantum-to-classical transition.
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For more than a century, quantum mechanics has suc-
cessfully explained a wide range of phenomena in physics.
There is, however, one simple yet challenging question that
has puzzled some of the greatest minds in physics and still
remains unsolved. Namely, it is still unclear why the macro-
scopic world around us is classical and what the nature of the
transition from the quantum physics at the microscopic level
to the classical one at the macroscopic level is. This problem
was manifested by Schrödinger in the famous thought exper-
iment of Schrödinger’s cat [1]. Yet, after about a century, this
problem is still the subject of active research and especially in
the past two decades has attracted a lot of attention [2–8].

Different approaches have been taken to explain the dis-
crepancy between the microscopic and macroscopic worlds.
On the one hand, there are the collapse models which suggest
that the theory of quantum mechanics needs to be modified
to comply with our classical observations [9]. On the other
hand, there are approaches that search for the solution within
quantum mechanics [10–19]. For instance, in many cases, de-
coherence can explain the emergence of classical states from
quantum ones. Or similarly, it has been shown that the lack of
precision could make quantum states look like classical states
[5,6,20].

One of the key challenges of finding a resolution to the
quantum-to-classical transition is the ambiguity of the prob-
lem, i.e., the lack of a clear and cohesive picture of what
macroscopic quantum states and effects are.

This problem has been intensively investigated for the
past two decades and a variety of measures and definitions
of macroscopic quantumness have been suggested [2,3,21–
41]. These measures vary in approaches, formulations, and
applicability. Some measures are based on comparison
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to well-established states such as the Greenberger-Horne-
Zeilinger (GHZ) state [42] or the coherent cat states [1,43].
Some other measures quantify the macroscopic quantumness
of a state by the oscillations in the probability distribution with
respect to some measurement. For example, Lee and Jeong
characterized the macroscopic quantumness of photonic states
based on the intensity of oscillation frequencies of its Wigner
function [37]. Following this idea, Fröwis and Dür proposed
to use quantum Fisher information (QFI) for characterization
of macroscopic quantumness [32,36,44].

Lack of cohesion and diversity of definitions and measures
indicate that, although we have a better understanding of the
problem, we still do not have a clear notion of what macro-
scopic quantumness is.

Here we present a simple approach to the characterization
of macroscopic quantumness. We start with coherence [45]
which is widely believed to be the underlying feature that dis-
tinguishes quantum and classical physics [45]. We construct a
measure of macroscopic quantumness which is a monotone
for quantum coherence that incentivizes the coherence be-
tween macroscopically distinguishable states. This measure
is closely connected to the work by Yadin and Vedral [46].
They introduced a general framework for macroscopic quan-
tumness in connection to quantum coherence. This framework
establishes a class of coherence measures based on four con-
ditions. The first three conditions are identical to the ones
for a coherence monotone [45]. The last one ensures that the
coherence measure would identify coherence at macroscopic
level. Yadin and Vedral reviewed several examples for mea-
sures that satisfy these four conditions, including some of
the well-established measures such as the Fisher information
[32] and Lee and Jeong measure [37]. Our work is similar
to the ones that fall in this family of coherence monotones.
We emphasize that we are not reinventing the framework.
Arguably, our measure can be seen as a simplified version
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of measures in this framework. For more information, see
Appendix G.

This is a first-principle approach to define and quantify
macroscopic quantumness. More specifically, our measure
does not rely on specific example states such as the GHZ and
instead it is constructed based on two principles: quantum-
ness, which is represented by coherence, and macroscopisity,
which is captured by the macroscopic distinguishability of the
the states involved in the quantum coherence.

Naturally, macroscopic quantum states are expected to
have relatively large amounts of coherence. However, for a
state to be recognized as a macroscopic quantum state, not
only it should have large measurable coherence, but the co-
herence should also be distributed macroscopically. To clarify
this, consider the following two spin states:

|ψ1〉 = |0〉 + |1〉√
2

⊗ |0〉⊗(N−1), |ψ2〉 = |0〉⊗N + |1〉⊗N

√
2

,

(1)

where |0〉 and |1〉 correspond to up and down spins re-
spectively. Most coherence measures would assign the same
amount of coherence to these two states since their density
matrices both have similar off-diagonal elements, both in
value and number. However, the off-diagonal elements of |ψ1〉
are between |00 · · · 0〉 and |10 · · · 0〉, whereas for |ψ2〉 they
are between |0〉⊗N and |1〉⊗N . The difference between the two
states is that, for the former, the states differ in only one spin
and are not macroscopically distinguishable, whereas, for the
latter, they could be distinguished for large enough N and
with the right measurement. For instance, for a magnetization
measurement in the z direction, |0〉⊗N gives N ( h̄

2 ) whereas
|1〉⊗N gives −N ( h̄

2 ). This means that, for large enough N , the
states |0〉⊗N and |1〉⊗N can be distinguished with a macro-
scopic magnetization measurement. In this sense, it can be
argued that, although both states have the same amount of co-
herence (quantumness), |ψ2〉 has the additional property that
its quantumness is distributed macroscopically, i.e., coherence
is between states that are macroscopically distinguishable.
Here we present a characterization of macroscopic quantum-
ness based on this notion. Namely, we start with a notion of
quantumness, i.e., the coherence, and add the extra require-
ment that it should be macroscopic. The advantage of this
approach is that it does not rely on well-established states
or a phenomenological behavior of them. Instead, to some
extent, it gives a first-principle approach to the characteri-
zation of macroscopic quantumness. We will show that this
first-principle approach is consistent and can characterize the
well-established macroscopic quantum states properly.

We start with our notation and terminology. For a density
matrix ρ = ∑

i, j ρi, j |i〉〈 j|, the coherence is characterized by
the off-diagonal elements ρi �= j . We refer to ρi, j as coherence
elements between states |i〉 and | j〉.

Typical coherence monotones would treat all the coherence
elements uniformly. However, as illustrated in the example
in Eq. (1), this approach would not be suitable for charac-
terization of macroscopic quantum states. For a coherence
monotone to captures macroscopic quantumness, it has to
incentivize coherence elements between states that are more
macroscopically distinct; i.e., for a coherence element ρi, j ,

FIG. 1. Schematic picture for macroscopic coherence. The spec-
trum of an operator A, a1, a2, a3, is depicted on the horizontal axis.
Two coherence elements are shown, one between the first and the
second eigenvalues of A and one between the first and the third. The
idea is that the states involved in a coherence elements may or may
not be macroscopically distinct, according to the measurement of
some operator A. If they are macroscopically distinct, that makes the
coherence macroscopic and these macroscopic coherence elements
can characterize macroscopic quantumness.

the more macroscopically distinct the two states |i〉 and | j〉,
the more that element should contribute to the monotone.
To this end, we introduce “macroscopic coherence,” which
refers to the coherence terms ρi, j such that the states involved,
i.e., |i〉 and | j〉, can be macroscopically distinguished with
some measurement. For a schematic picture, see Fig. 1.

Initially, there are two ambiguities in this approach. First,
it is not clear what characterizes the macroscopic distinction
between the two states |i〉 and | j〉, and second, the coher-
ence elements depend on the basis. The former is due to the
unclear border between macro and micro and for this, we
can rely on what is considered a macroscopic distinction in
an experimental setting. The latter is because coherence is a
basis-dependent quantity. But both of these ambiguities are
expected in the characterization of macroscopic quantumness.
For instance, for a GHZ state with N spins, it is not clear
for how large of a number N the state would qualify as a
macroscopic state. Similarly, for identifying quantumness, the
basis of the measured observable is important. This would
mean that our measure for macroscopic quantumness should
depend on the measurement.

To quantify the macroscopic coherence, we first need a
monotone for coherence and next we need to quantify the
macroscopisity of the coherence. For both of these, we need
to specify the measured observable.

Assume that the observable of interest is A = ∑
i ai|i〉〈i|.

The eigenbasis of A sets the basis for the coherence. For
quantification of coherence we start with

D2−D∑
i �= j

|ρi, j |, (2)

where D is the dimension of the Hilbert space [45,47].
Next we need to quantify the macroscopic distinction

between the states. Note that the elements of an orthonor-
mal basis are mutually orthogonal and therefore the inner
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product does not capture the difference between say |0〉〈1|
and |0〉〈N |. One natural choice for the macroscopic distinc-
tion between the two states |i〉 and | j〉 is |ai − a j |, i.e., the
difference between the eigenvalues associated with |i〉 and | j〉.
If the difference is large enough to be resolved with a macro-
scopic measurement, the states |i〉 and | j〉 are macroscopically
distinct. For example, for a position measurement of a macro-
scopic object, one can argue that the states |−1(meter)〉 and
|1(meter)〉 would be macroscopically distinct as they can be
distinguished with naked eye. Mathematically we introduce
the distance

dA(i, j) = |ai − a j |. (3)

For a measure of macroscopic quantumness, instead of uni-
formly considering all of the coherence elements, we weigh
them based on their corresponding distances. This penalizes
contribution of coherence elements with small dA(i, j) and in-
centivizes the contribution from elements with large dA(i, j).

To turn the coherence monotone in Eq. (2) into a mono-
tone for macroscopic coherence, we add the distance to the
measure, which gives ∑

i, j

dA(i, j) |ρi, j |. (4)

This incentivizes macroscopic coherence and suppresses the
microscopic coherence. Note that we even included the diag-
onal elements that have no coherence in the sum but they are
automatically suppressed by dA(i, i) = 0 and the sum remains
unchanged.

This, however, has a flaw, namely, there are two ways that
the measure can increase: one is by increasing the coherence
(not necessarily the macroscopic elements) and the other is by
increasing the macroscopicity of the coherence elements. For
instance, consider the state

|ψ3〉 =
( |0〉 + |1〉√

2

)⊗N

. (5)

For large enough N , the quantity in Eq. (4) would be signifi-
cantly affected by the large number of off-diagonal elements
in the density matrix of |ψ3〉 or equivalently, large amounts
of coherence, although most of them are not macroscopic. To
fix this issue, we can normalize the coherence elements. This
means that instead of |ρi, j |, we use |ρi, j |∑

i, j |ρi, j | which indicates

the fraction of all of the elements in the density matrix corre-
sponding to the coherence element ρi, j . This gives

M(ρ) =
∑

i, j dA(i, j) |ρi, j |∑
i, j |ρi, j | . (6)

This measure can be interpreted as the average of the distance
dA(i, j) over all of the different elements of the density matrix.
To see this more clearly, we can partition the elements of the
density matrix into classes with different values for dA, i.e.,

Cδ = {ρi, j |dA(i, j) = δ}. (7)

Based on this, we can define the following probability
distribution:

P(δ) =
∑

ρi, j∈Cδ
|ρi, j |∑

i, j |ρi, j | . (8)

This is the probability of getting a coherence element with
dA(i, j) = δ. This probability distribution translates the mea-
sure in Eq. (6) to

M(ρ) = d̄ =
∑

δ

P(δ)δ. (9)

This, which is in fact the average distance between the states
corresponding to the coherence terms ρi, j , i.e., d̄A(i, j), gives
a quantification for the macroscopic quantumness of the state.

Here there is an ambiguity associated with the reference
that determines the macroscopic amount of M. For instance,
one may change the value of M by altering the unit in which
the observable is expressed. As we emphasized before, we
define our measure with reference to what is considered
macroscopic for the specific experiment. To decide whether M
is macroscopic or not, we can compare the amount of M with
the amount that is considered macroscopic for the specific
experimental setup which is used to measure and investigate
the state.

Alternatively, we can modify the definition of the measure
to a dimensionless quantity. To this end, we can normalize the
distance dA(i, j) in Eq. (3) to

d̄A(i, j) = |ai − a j |
dA,thresh

, (10)

where dA,thresh is the threshold that identifies a macroscopic
value. This value is set based on the specific experimental
equipment, setup, and the measurement setting. This defini-
tion for the distance gives a dimensionless quantity for M in
Eq. (6) that can be used to compare between different quantum
states in different experimental settings. For instance, it can be
used to compare between photonic and spin states.

For a state with its coherence elements focused between
states that are not macroscopically distant according to the
observable A or states with small coherence, the measure gives
a small value. On the other hand, if the state has a large amount
of coherence and the coherence elements are mostly focused
between states that can be macroscopically distinguished, the
measure assigns a large amount of macroscopic quantumness
to the state.

As an example, consider the states in Eq. (1) under the
measurement of the total magnetization in the z direction.
Both states have two diagonal and two off-diagonal elements,
all with the value of 1/2. For ψ1, the distance corresponding
to the off-diagonal element, i.e., d (|00 · · · 0〉, |10 · · · 0〉), is 1
and this gives M(ψ1) = 1/2. For the GHZ state, the distance
corresponding to the off-diagonal element is N , which gives
M(ψGHZ) = N/2. This shows that the measure scales and
grows with the system size for the GHZ state, but as expected,
for |ψ1〉, it stays constant. This gives a natural effective size
for the system that describes the scale at which the coherence
is distributed.

Here we assumed that the observable A is a discrete op-
erator; however, the measure can be extended to continuous
operators by discretizing the spectrum and defining bins. The
discretization, i.e., the bin size, can be set based on the preci-
sion of the measurements.

This measure provides a way to define ideal states, i.e.,
states with maximum macroscopic coherence. A maximum
macroscopic quantum state (MMQS) can be defined as a state
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which maximizes the measure in Eq. (9). For instance, it is
easy to show that the GHZ state is an MMQS for spin-type
systems. In general it is possible to prove the following theo-
rem for our measure.

Theorem 1. For a bounded observable A with nondegen-
erate maximum and minimum eigenvalues a0 and aN , the
following state maximizes the measure in Eq. (9):

|ψMMQS〉 = |a0〉 + eiφ |aN 〉√
2

, (11)

with |a0〉 and |aN 〉 the eigenvectors of A corresponding to the
minimum and maximum eigenvalues a0 and aN respectively
and φ some phase.

For more details and the proof, see Appendix A.
This theorem indicates that states like the GHZ and NOON

states maximize our measure for macroscopic quantumness in
their corresponding Hilbert spaces.

This characterization, as mentioned before, depends on
the measured observable. But it is also possible to make it
measurement independent by maximizing over all possible
measurements. However, it is often impractical and some-
times impossible to carry out the maximization [8]. For
practical purposes, it it is more convenient to specify a mea-
surement or set of measurements and investigate the states
with respect to those measurements.

This measure can also be used to define an effective size
for the macroscopic quantumness of a state. This is similar
to [21,29,32,38,48]. To this end, we compare the value of
the measure with the corresponding MMQS. More precisely,
consider a system that consists of N entities with state ρ

and assume that the measure returns a value M(ρ) for the
macroscopic quantumness of the state. We define the effective
size Neff as the size of the smallest MMQS that has the same
amount of macroscopic quantumness, M(ρ). Mathematically,
that is

Neff (ρ) = min{n | M(ρ) � M(MMQS(n))}, (12)

where MMQS(n) is the MMQS with n particles. For a spin
system like the examples we considered, Neff (ρ) = 2M(ρ).

I. EXAMPLES

Next we calculate our measure for some well-known states.
We consider two systems: first spin ensembles and then pho-
tonic quantum states. In the examples, the threshold distance
dthresh is considered the unit; however, it is important to notice
that its amount must be determined with respect to the specific
experiment.

A. Spin ensemble systems

We start with an ensemble of spin 1/2 particles. Here
we consider the total magnetization, which is a natural and
practical measurement for spin systems.

Without loss of generality, we take this to be the mea-
surement of magnetization in z direction. The corresponding
observable is A = ∑

i σ
(i)
z with σ (i)

z = |0〉〈0| − |1〉〈1| on the
ith spin of the ensemble.

FIG. 2. This plots shows how our measure for macroscopic quan-
tumness varies with N for the GHZ, uniform, Dicke, NOON, and
BAT states (see the Examples Sec. I for the details of calculations).
N is the number of elements (spins or photons) in the system. The
inset gives a schematic plot of the probability distribution function
P(d ) states.

We start with the GHZ, which is the state |ψ2〉 in Eq. (1).
As was explained before, the measure gives

MGHZ = N

2
. (13)

The probability distribution P(δ) is plotted in the inset of
the Fig. 2 and it is clear that the mean distance is N/2.

It is interesting to compare the GHZ state with |ψ3〉. We
refer to this state as the uniform state. Similarlu to the GHZ
state, the uniform state is macroscopic and has nonzero co-
herence elements. The difference is that, in contrast to the
GHZ state, the coherence is not collective and each spin has
its independent coherence. The probability distribution corre-
sponding to this state is also plotted in the inset of Fig. 2.

For large number of spins N , using Stirling’s approx-
imation ln N! = N ln N − N , the measure asymptotically
converges to

Muni ≈ eN ln(
(N+ 1

2 )2

(N−1)(N+2) ). (14)

For more details, see Appendix B.
This gives

lim
N→∞

Muni = 1 = O(N0), (15)

i.e., it converges to the constant value 1. This is consistent with
the fact the the coherence in this state is the collection of the
individual coherences.

Another interesting state is the Dicke state [49,50]. For
a system with N elements with binary states, {|0〉, |1〉}, the
Dicke state is defined as the uniform superposition of all the
states with k elements in the 0 state and N − k in the 1 state. If
the elements are spin 1/2 particles, the Dicke state would be
an eigenstate of total magnetization in the z direction. So for
the collective magnetization measurement (the total magneti-
zation in the z direction), the distances corresponding to all of
the coherence elements are zero, which leads to MDicke = 0.
But, if we consider the single-particle measurements of mag-
netization in z direction, the value of the measure for this state
is MDicke = k(N−k)

N . For more details see Appendix C. Thus,
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TABLE I. The value of the measure for photonic states. N is the
number of photons, α is the annihilation eigenvalue of the coherent
state |α〉, and ε is the squeezing parameter.

Two-mode Two-mode
State NOON BAT SCS SCS squeezed state

Measure N
2 O(N ) |α| 2|α| 4 tanh ε

1−(tanh ε)2

for k = O(N/2) and N � 1, the state is highly macroscopic
quantum.

The example of the Dicke state also shows how our mea-
sure depends on the basis and measurement.

B. Photonic systems

Next we investigate photonic states with our measure. For
the measured observable, we consider energy or, equivalently,
the photon number. The state that we consider is the NOON
state, which is defined as

|NOON〉 = |N/2〉|0〉 + |0〉|N/2〉√
2

. (16)

This state consists of two modes. These could be the vertical
and horizontal polarization that can be separated with a polar-
izing beam splitter.

The calculation of the measure is similar to the one for the
GHZ state and gives

MNOON = N

2
. (17)

Another state of interest is the superposition of coherent
states (SCS), also known as the cat state [43]. Mathematically
that is

|SCS〉 = (|α〉 + | − α〉)/z, (18)

where |α〉 is a coherent state and z = √
2 + 2 Re(〈α| − α〉) is

the normalization factor.
For large enough |α|, the two states |α〉 and |−α〉 are

approximately orthogonal to each other, i.e., 〈α|−α〉 ≈ 0 and
therefore, in the basis of the quadrature operator X (θ ) =
X cos θ + P sin θ with tan θ = Im(α)

Re(α) , the density matrix can
be approximated as

ρSCS = 1
2 (|α〉〈α| + |−α〉〈−α|
+ |α〉〈−α| + |−α〉〈α|). (19)

From Eq. (19) it is easy to see that P(d ) is 1
2 for both d = 0

and d = |α − (−α))| = 2|α|. So for the measurement of X (θ )
our measure gives

MSCS ≈ 1
2 × 0 + 1

2 × 2|α| = |α|. (20)

Since |α|2 is the mean number of photons in the system, the
measure increases by increasing the number of photons.

A similar state is the two-mode SCS state which is
defined as

|two-mode SCS〉 = |α〉|α〉 + |−α〉|−α〉
z′ , (21)

where z′ =
√

2 + 2Re(〈α| − α〉2). For the value of measure
in the basis of the quadrature X1(θ ) ⊗ I2 + I1 ⊗ X2(θ ), similar
calculations give

Mtwo-mode SCS = 2|α|. (22)

We also consider the two-mode squeezed state and BAT
state. The results are shown in Table I. Also we plotted the
amount of our measure for some of these states in Fig. 2.
For more examples and further details of the calculations, see
Appendix E.

II. COMPARISON WITH OTHER MEASURES

In this section we compare our measure with other mea-
sures. The results are summarized in Table II. The comparison
is done based on how different measures classify specific
states of interest.

We do not consider all the existing measures for macro-
scopic quantumness. We focus on some of the more well-
known measures that can also be applied as generally and
as widely as our measure. For instance, some measures are
limited to specific classes of states, e.g., spin states, or states
of the form |A〉 + |D〉 [2,3,21,23,29,34,35,48]. Also, for the
ones we consider, if they are not applicable for a specific state
that is used for the comparison, the results is indicated as not
applicable (N.A.) in the table. A more through comparison is
included in Appendix F.

III. CONCLUSION

In conclusion, we presented an approach for the charac-
terization of macroscopic quantumness which is in fact a
coherence measure. But in addition to the coherence, it also
quantifies how global and collective the coherence is. Our

TABLE II. Comparison of our measure with other measures for well-established states. The green color means that the amount of the
correspondent measure is in agreement with the amount obtained by our measure. The yellow color means that the correspondent measure is
in agreement with the amount obtained by our measure but it has different scaling order either in N or |α|. N.A. stands for “not applicable.”
Also, 1 � p � 2 denotes the measure of Shimizu and Miyadera.

Our Bjork and Mana Shimizu and Miyadera Lee and Jeong Fröwis and Dür Yadin and Vedral
measure (J. Opt. B 2004 [23]) (PRL 2002 [22]) (PRL 2011 [31]) (NJP 2012 [32]) (PRA 2015 [38])

GHZ N/2 N.A. p = 2 O(N ) O(N ) O(N )
NOON N/2

√
N p = 2 O(N ) O(N ) N.A.

Dicke [k = O(N/2)] O(N ) N.A. p = 2 O(N ) O(N ) O(N )
Dicke [k = O(1)] O(1) N.A. p = 1 O(1) O(1) O(1)
SCS |α| 2|α| N.A. |α|2 |α|2 N.A.
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approach can be seen as a more axiomatic alternative to es-
tablished measures of macroscopic quantumness.

It also provides a first-principle approach to derive maxi-
mum macroscopic quantum states (MMQS) such as the GHZ
state. We showed that the maximization of our measure over
all the states would lead to MMQS. This provides a way
to arrive at states such as the GHZ state in the context of
macroscopic quantumness without making any assumption
about their macroscopic quantumness.

This approach opens up an avenue for understanding
macroscopic quantumness and paves the way towards a
cohesive and unified characterization of macroscopic quan-
tumness.
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APPENDIX A: MMQS

Theorem. In a system and in the basis of eigenvectors of
the bounded observable Â, the state

|ψMMQS〉 = |a0〉 + eiφ |aN 〉√
2

(A1)

maximizes the measure M. Here, |a0〉 and |aN 〉 are the
eigenvectors of Â with minimum and maximum eigenvalues
respectively and φ is a phase. Irrespective of φ and if Â is not
degenerate, |ψMMQS〉 is unique.

Proof. First of all we prove the state |ψMMQS〉 maximizes
M among all pure states in the range of spectrum of Â. Con-
sider an arbitrary pure state |ψ〉 in the spectrum of Â as below:

|ψ〉 =
N∑

i=0

ci|ai〉 ≡ ρ =
N∑

i j=0

cic
∗
j |ai〉〈a j |; (A2)

the |ak〉’s, k ∈ {0, . . . , N}, are the eigenvectors of Â corre-
sponding to the eigenvalues ak . If i � j, i, j ∈ {0, . . . , N},
then ai � a j . For |ψ〉 the measure is:

M =
∑

i j |ci||c j |di j∑
i j |ci||c j | . (A3)

We know that
∑N

i=0 |ci|2 = 1. Maximizing M, we neglect this
constraint but later we will turn back to it.

Differentiating M in |ck| and equating it to zero, we find
the following set of equations:

∀k ∈ {0, . . . , N},
∂M

∂|ck| = ∂

∂|ck|
(∑

i j |ci||c j |di j∑
i j |ci||c j |

)

=
(
2

∑
i |ci|dik

)(∑
i j |ci||c j |

)
(∑

i j |ci||c j |
)2

−
(
2

∑
i |ci|

)( ∑
i j |ci||c j |di j

)
(∑

i j |ci||c j |
)2 = 0. (A4)

As M =
∑

i j |ci||c j |di j∑
i j |ci||c j | , we substitute M in the second fraction of

the relation (A4), thus it is simplified:

∀k ∈ {0, . . . , N},∑
i |ci|dik − ∑

i |ci|M∑
i j |ci||c j | = 0

⇔ M
∑

i

|ci| =
∑

i

|ci|dik

⇔ M =
∑

i |ci|dik∑
i |ci| . (A5)

The ck ,s maximizing M satisfy the Eq. (A5).
Now consider the equations associated with k = 0 and

k = 1:

k = 0, M =
∑

i |ci|di0∑
i |ci| ,

k = 1, M =
∑

i |ci|di1∑
i |ci| . (A6)

By cross multiplication, we can write

k = 1, M =
∑

i |ci|di1∑
i |ci| ⇔ M

∑
i

|ci| =
∑

i

|ci|di1

⇔ M
∑

i

|ci| = |c0|d01 +
∑
i �=0

|ci|di1. (A7)

Knowing di1 = di0 − d10 for i > 1 and replacing it in (A7),

M
∑

i

|ci| =
∑

i

|ci|di1 = |c0|d10 +
∑
i �=0

|ci|(di0 − d10)

=
(

|c0| −
∑
i �=0

|ci|
)

d10 +
∑
i �=0

|ci|di0. (A8)

Regarding the relations (A6), the last term in (A8) is
M

∑
i |ci|, so they cancel each other and we have

|c0| = |cN | +
∑

i �=0,N

|ci|. (A9)

Now we do the same procedure for k = N and k = N − 1:

k = N − 1, M =
∑

i |ci|di,N−1∑
i |ci| ,

k = N, M =
∑

i |ci|di,N∑
i |ci| . (A10)

By cross multiplication, we can write

k = N − 1,

M =
∑

i |ci|di,N−1∑
i |ci|

⇔ M
∑

i

|ci| =
∑

i

|ci|di,N−1

⇔ M
∑

i

|ci| = |cN |dN,N−1 +
∑
i �=N

|ci|di,N−1. (A11)
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Knowing di,N−1 = di,N − dN,N−1 for i < N − 1 and replacing
it in (A11),

M
∑

i

|ci| =
∑

i

|ci|di,N−1

= |cN |dN,N−1 +
∑
i �=N

|ci|(di,N − dN,N−1)

=
(

|cN | −
∑
i �=N

|ci|
)

dN,N−1 +
∑
i �=N

|ci|di,N .

(A12)

Regarding the relations (A10), the last term in (A12) is
M

∑
i |ci|, so they cancel each other and we have

|c0| = |cN | −
∑

i �=0,N

|ci|. (A13)

Equations (A9) and (A13) imply that

k �= 0, N → ci = 0, |c0| = |cN |. (A14)

Hence, when |c0| = |cN | and the other ci’s are zero, M is an
extremum. If |c0| = |cN | and also is nonzero, the extremum is
maximum too, because for all nonzero values of |c0| = |cN |,
regardless of any constraints, the amount of the extremum is
dmax

2 :

Mmax = 2|c0|2 × 0 + 2|c0|2 × dmax

2|c0|2 + 2|c0|2 = dmax

2
. (A15)

The state |ψMMQS〉 is the only pure state in the range of the
spectrum of Â that |c0| = |cN | �= 0, therefore it maximizes M.

Note. Generally, by doing the exact same procedure for
each k and k + 1, the set of equations in (A4) turns to the
below set of equations below, which are equivalent to (A4):

∀k ∈ {0, . . . , N},
k∑

i=0

|ci|2 =
N∑

i=k+1

|ci|2. (A16)

These equations only have answers when either all ci’s are
zero (in this case M = 0 and is minimum) or just |c0| and |cN |
are nonzero and equal. The latter obtains the maximum for M.

Now, we prove the state (A1) also maximizes M among
mixed states in the spectrum of Â.

Consider the mixed state ρ; we can decompose it in N
ensembles:

ρ =
N∑
i

Pi|ψi〉〈ψi|, (A17)

where i ∈ {0, . . . , N} and |ψi〉’s are orthogonal. The |ψi〉’s
and their corresponding density matrices can be written as
follows:

|ψi〉 =
N∑

x=0

ci
x|ax〉 ≡ |ψi〉〈ψi| =

N∑
x,y=0

ai
xy|ax〉〈ay|, (A18)

where x, y ∈ {0, . . . , N}. We know the relations between ai
xy

and ci
x:

ai
xy = ci

xci∗
y , ai

xx = ci
xci∗

x = |cx|2. (A19)

Also,

|cy|2 =
∣∣ci

x

∣∣2∣∣ci
y

∣∣2

∣∣ci
x

∣∣2 =
∣∣ai

xy

∣∣2

axx
. (A20)

Regarding
∑

y |cy|2 = 1 and with respect to Eq. (A20), we
have the following constraints for ai

xy:

∑
y

|cy|2 = 1 ⇒
∑

y

|ai
xy|2

axx
= 1,

f i
x =

∑
y

∣∣ai
xy

∣∣2 − ai
xx = 0 (A21)

and ∑
x

|cx|2 = 1 ⇒
∑

x

axx = 1,

f i
0 =

∑
x

axx = 1. (A22)

The measure M for ρ is

M =
∑

x,y

∣∣∑
i Piai

xy

∣∣dxy∑
x,y

∣∣∑
i Piai

xy

∣∣
=

∑
x,y

√(∑
i Piai

xyR

)2 + ( ∑
i Piai

xyI

)2
dxy∑

x,y

√(∑
i Piai

xyRbig)2 + ( ∑
i Piai

xyI

)2
. (A23)

ai
xyR and ai

xyI are the real and imaginary parts of ai
xy respec-

tively. Besides, we denote the denominator of M on the right
side of (A23) with D.

Maximizing M, we differentiate M in ai
xyR and ai

xyI and
with respect to the constraints f i

x , we use the Lagrange mul-
tipliers method. We can directly apply the constraints (A22)
in D:

D =
∑
x,y

√√√√(∑
i

Piai
xyR

)2

+
(∑

i

Piai
xyI

)2

=
∑

x

√√√√(∑
i

Piai
xxR

)2

+
(∑

i

Piai
xxI

)2

+
∑

x,y,x �=y

√√√√(∑
i

Piai
xyR

)2

+
(∑

i

Piai
xyI

)2

. (A24)

Because ai
xx � 0 are real, we can write

D =
∑

i

Pi

∑
x

ai
xx

+
∑

x,y,x �=y

√√√√(∑
i

Piai
xyR

)2

+
(∑

i

Piai
xyI

)2

. (A25)
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By the constraints (A22), the first term in the right side of
(A25) is

∑
i Pi

∑
x ai

xx = 1, thus

D = 1 +
∑

x,y,x �=y

√√√√(∑
i

Piai
xyR

)2

+
(∑

i

Piai
xyI

)2

. (A26)

Note. By applying the constraints (A22), and with respect to
dxx = 0, M is no longer a function of ai

xy.
Carrying the calculations for maximizing M, we reach the

equations below:

x �= y,
ρxyR(dxy − M )

D|ρxy| = λi
x

2Pi
ai

xyR, (A27)

x �= y,
ρxyI (dxy − M )

D|ρxy| = λi
x

2Pi
ai

xyI , (A28)

λi
x

(
2ai

xx − 1
) = 0. (A29)

ρxyR = Re(ρxy), ρxyI = Im(ρxy), and λi
x’s are the Lagrange

multipliers associated with f i
x .

We show the calculations for deriving Eqs. (A27); the other
equations are derived in the same way. By differentiating M
in ai

xyR,

∂M

∂ai
xyR

=

4Pi

(∑
i Piai

xyR

)
dxy√(∑

i Piai
xyR

)2
+
(∑

i Piai
xyI

)2
D

D2

−

4Pi

(∑
i Piai

xyR

)
√(∑

i Piai
xyR

)2
+
(∑

i Piai
xyI

)2

D2

×
∑
x,y

√√√√(∑
i

Piai
xyR

)2

+
(∑

i

Piai
xyI

)2

dxy.

(A30)

In the above relation we can substitute the following terms:

ρxy =
√√√√(∑

i

Piai
xyR

)2

+
(∑

i

Piai
xyI

)2

, (A31)

ρxyR =
∑

i

Pia
i
xyR, (A32)

M =
∑

x,y

√( ∑
i Piai

xyR

)2 + ( ∑
i Piai

xyI

)2
dxy

D
. (A33)

With these substitutions, ∂M
∂ai

xyR
in (A30) is simplified as

∂M

∂ai
xyR

= 4PiρxyR(dxy − M )

D|ρxy| . (A34)

Applying the constraints (A21) is done by subtracting λi
x

∂ f i
x

∂ai
xyR

from ∂M
∂ai

xyR
. Because

∂ f i
x

∂ai
xyR

= ∂

∂ai
xyR

(∑
y

∣∣ai
xy

∣∣2 − ai
xx

)
= 2ai

xyR, (A35)

at last we end up the following equation:

ρxyR(dxy − M )

D|ρxy| = λi
x

2Pi
ai

xyR,

which is the same as (A27).
Replacing ai

xyR and ai
xyI from Eqs. (A27) and (A28) in

(A21),

∑
y �=x

[(ρxyR)2 + (ρxyI )2](dxy − M )2

D2|ρxy|2 = λi2
x

4P2
i

(
ai2

xx − ai
xx

)
.

(A36)

Because ρ2
xyR + ρ2

xyI = |ρxy|2,

∑
y �=x

(dxy − M )2

D2
= λi2

x

4P2
i

(
ai2

xx − ai
xx

)
. (A37)

Since dxy’s have different amounts and M � dmax
2 [if M � dmax

2

the theorem is proved because M(|ψMMQS〉) = dmax
2 ], the left

side of (A37) is positive, therefore λi
x’s must be nonzero.

From Eqs. (A29), ai
xx’s are 1

2 , consequently from the con-
straints (A22) we find that |ψi〉’s are pure states with 2 × 2
density matrices in which the diagonal elements are 1

2 , there-
fore |ψi〉’s must be of the form (eiφ|ai〉 + |a j〉)/

√
2. Thus if

only all |ψi〉 = |ψMMQS〉, M is maximized and ρ is the density
matrix corresponding to |ψMMQS〉 and the theorem is proved.

�

APPENDIX B: CALCULATION OF THE MEASURE FOR
THE UNIFORM STATE

Here we calculate the measure for the uniform state in the
basis of total spin z. Total spin z in a spin ensemble system
in which the particles take the values 0 or 1 for the spin-z
observable is equal to the number of particles having the value
of spin z equal to 1, so in the basis of total spin z we can
represent the density matrix of the uniform state as

1

2N

∑
{i},{ j}

|i1i2 · · · iN 〉〈 j1 j2 · · · jN |, (B1)

in which ik and jk indicate the spins of the kth particles in the
z direction and take the values 0 or 1.

First we calculate P(d ); we need to find the density matrix
elements corresponding to the distances with the amount of d .
These elements are those in which the discrepancy of numbers
of 1 in |i1i2 · · · iN 〉 and 〈 j1 j2 · · · jN | is equal to d . If |i1i2 · · · iN 〉
has total z magnetization equal to m, then m number of ik’s
must be 1 and the other (N − m) are zero, so we have

(N
m

)
possible choices. In order to require |i1i2 · · · iN 〉〈 j1 j2 · · · jN | to
be associated with the distance d , the total z magnetization of
〈 j1 j2 · · · jN | must be m + d or m − d , so for the first we have( N

m+d

)
and for the last we have

( N
m−d

)
possible choices. Thus,

based on the product rule, the number of elements associated
with the distance d is

Nd = 2
N∑

m=0

(
N

m

)(
N

m + d

)
. (B2)
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Because all of the elements in the density matrix of uniform
state are equal to 1

2N , and the number of elements is 2N × 2N :

P(d ) = Nd

2N ∗ 2N
= 2

∑N
m=0

(N
m

)( N
m+d

)
22N

. (B3)

Having P(d ), we can calculate the measure directly for this
state:

M = 2
∑N

d=0

∑N
m=0

(N
m

)( N
m+d

)
d

22N
. (B4)

M can be simplified as

M = (N + 1)!(2N + 1)!

N!(N + 2)!22N
(B5)

At last, in the limit N � 1 using Stirling’s approximation, we
have

M = eN ln(
(N+ 1

2 )2

(N−1)(N+2) ).

APPENDIX C: EVALUATION OF THE MEASURE FOR
DICKE THE STATE

A Dicke state is defined as

|Dicke〉 = 1√(N
k

) ∑
all permutations

|N, k〉i, (C1)

in which the ket |N, k〉i is an eigenvector of z magnetization
that belongs to a system having N number of spins, with
eigenvalue of k and ith permutation of k out of N . The cor-
respondent density matrix takes the form

ρDicke = 1(N
k

) ∑
all permutations i, j

|N, k〉i j〈N, k|. (C2)

All the components of ρDicke have equal value of 1/
(N

k

)
,

so to evaluate the measure, we only have to find the num-
ber of off-diagonal elements associated with the distance d ,
which we denote by Nd . In the case of single-particle spin-z
measurement, the distance d is associated with the elements
|N, k〉i j〈N, k| in the density matrix in which d number of spins
in the same position have different amounts of spin z. If we fix
|N, k〉i there are

(k
d

) · (N−k
d

)
choices for |N, k〉 j and overall we

have
(N

k

)
choices for |N, k〉i. Therefore, by the product rule we

have

Nd =
(

k

d

)(
N − k

d

)(
N

k

)
. (C3)

Having Nd and considering that all of the elements of the
density matrix ρDicke are equal, it will be straightforward to
calculate M:

MDicke =
∑k

d=0

(k
d

)(N−k
d

)(N
k

)
d(N

k

)2 . (C4)

MDicke in (C4) can be simplified as

MDicke = k(N − k)

N
. (C5)

APPENDIX D: GENERALIZED GHZ

Another interesting state is the generalized GHZ state con-
sidered in [8,21]. The generalized GHZ state is defined as

|φε〉 = |0〉⊗N + (cos ε|0〉 + sin ε|1〉)⊗N

2 + 2 cosN ε
. (D1)

We calculate the measure for this state in the limits N � 1
and ε � 1 and Nε < 1, which gives

MGHZε
≈ Nε

2
. (D2)

As we see, quantum macroscopicity of generalized GHZ,
evaluated by our measure, is plausible compared to the
amount that the Dür et al. measures obtain in the same limits,
which is Nε2 [50].

APPENDIX E: SOME OTHER PHOTONIC STATES

1. Mixed SCS

Mixed SCS is defined as

ρ ∝ |α〉〈α| + |−α〉〈−α|. (E1)

In the case of |α| � 1, the two coherent states |α〉 and | −
α〉 could be considered orthogonal to each other [51]. Hence
in the basis of the quadrature X cos θ + P sin θ with tan θ =
Im(α)
Re(α) and for large amounts of |α|, the density matrix of mixed
SCS turns to a diagonal one and the measure becomes zero for
the state. This result has meaning when we compare the mixed
SCS with SCS; Compared to SCS, a mixed SCS has lost its
coherence terms in the aforementioned basis and it should not
be macroscopic quantum.

2. Thermal state

The thermal state [51] is a thermal classical mix of photons
with the density matrix

ρThermal =
∑

N e−βN |N〉〈N |
Z

, (E2)

Z = ∑
N e−βN is the normalization factor (i.e., in terms of

statistical mechanics it is the partition function). Because the
density matrix has no coherence (off-diagonal) terms,

MThermal = 0. (E3)

3. Two-mode squeezed state

We also consider the two-mode squeezed state which is
defined as

|2-mode squeezed〉 =
√

1 − (tanh ε)2
∞∑

n=0

(tanh ε)n|n, n〉.
(E4)

Calculation of the measure for this state gives

M = 2
∑

n>m(tanh ε)n+m(n − m)∑
n, m(tanh ε)n+m

. (E5)

The term in Eq. (E5) can be simplified as

M = 4 tanh ε

1 − (tanh ε)2
. (E6)
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As we see in the relation (E6), if tanh ε → 1, M goes to
infinity, so for ε � 1 the two-mode squeezed state is a macro-
scopic quantum state.

4. BAT state

Another photonic state which is of interest in this context
is the BAT state [52]. The BAT state is defined as

|BAT〉 =
N/4∑
k=0

√
(N/2 − k)!

√
(2k!)

k!(N/4 − k)!
√

2(N/2)
|N/2 − 2k〉1|2k〉2.

(E7)

Directly calculating the measure for BAT state, we obtain

M =
4

∑N/4
k,l

√
(N/2−k)!(2k)!(N/2−l )!(2l )!

k!l!(N/4−k)!(N/4−l )! |k − l|∑N/4
k,l

√
(N/2−k)!(2k)!(N/2−l )!(2l )!

k!l!(N/4−k)!(N/4−l )!

. (E8)

We have plotted the amount of MBAT versus N in the interval
0 < N < 100, as shown in Fig. 2. It is evident from the plot
that the measure for the BAT state is O(N ). So, for large
number of photons N � 1, the BAT state has high amount
of macroscopic quantumness based on our measure.

APPENDIX F: COMPARISON WITH OTHER MEASURES

Dür et al. presented two measures for macroscopic quan-
tumness of a generalized GHZ state based on comparison
with maximum size of a GHZ state that can be obtained
by the distillation process or has the same decoherence rate
[21]. Both measures give O(Nε2) as the value of quantum
macroscopicity of a generalized GHZ in the limits N � 1
and ε � 1. Our measure gives Nε/2 for this setting, which
is similar in the scaling with respect to N , although it has a
different scaling in ε.

Bjork and Mana suggested a criterion of macroscopic
quantumness for Schrödinger’s cat states, i.e., |A〉 + |D〉 based
on how fast the state becomes orthogonal to itself when
subjected to a specific unitary transformation [23]. In their
paper, they calculate their measure for the NOON, generalized
GHZ (in the limits N � 1 and ε � 1), and SCS states and
obtain the amounts of

√
N ,

√
Nε, and 2|α| respectively. The

measure of Bjork and Mana classifies these states similarly
to ours, although, the scalings are slightly different. However,
our measure is in better agreement with the scaling of other
measures for these states.

Shimizu and Miyadera have introduced a measure of
macroscopic quantumness based on the the spread of en-
tanglement in a multipartite macroscopic system [22]. To
characterize this insight, they chose the variance of an addi-
tive operator. They quantify macroscopic quantumness by an
index p, where 1 � p � 2, that shows the scaling order of the
variance in the number of elements (e.g., particles, spins) [26].
The index p takes its maximum, i.e., p = 2, for the GHZ and
NOON states. For a Dicke state, if k = O(N/2) then p = 2
and if k = O(1) then p = 1, thus in the latter case the state has
no quantum macroscopicity. All these results are in agreement
with our measure. We showed in Theorem 1 that our measure
is maximized for NOON and GHZ. Also, for single-particle
measurement of the magnetization in the z direction, for the

Dicke state, our measure gives zero if k = O(1) and has max-
imum scaling order in N if k = O(N/2).

Lee and Jeong proposed that the macroscopic quantumness
of a photonic state is related to the amplitude and intensity of
frequencies in its Wigner function [37]. In their work, they
calculated their measure for SCS, GHZ and NOON state and
obtained the amounts of |α|2, N , and N respectively. Similarly
to our measure, their measure also takes its maximum for
these states. For SCS, our measure scales with |α| but that
of Lee and Jeong scales with |α|2. Another state that Lee and
Jeong investigated was the generalized GHZ, for which their
measure takes Nε2/2 in the limits N � 1 and ε � 1.

Fröwis and Dür proposed to use Fisher information for
the characterization of macroscopic quantumness for a many-
body state [32]. Their measure gives an effective size for
the state, which for some of the states of interest takes the
following forms:

(1) GHZ: Neff = O(N ).
(2) NOON: Neff = O(N ).
(3) Dicke state with k = O(N/2): Neff = O(N ).
(4) Dicke state with k = O(1): Neff = O(1).
(5) SCS: Neff = 4|α|2.
(6) Generalized GHZ (in the limits N � 1 and ε � 1):

Neff = O(Nε2).
For 1–4 our measure obtains the same scaling order in N

and is in agreement with the measure of Fröwis and Dür.
Also, O(N ) is the maximum scaling order in N for these
states in both measures. For SCS, both measures suggest high
macroscopic quantumness for large amounts of |α|; however,
the scaling order is different. For generalized GHZ the scaling
order in N is equal in both proposals, although they scale
differently in ε.

Yadin and Vedral, in addition to the general framework,
also introduced a measure for quantification of the macro-
scopic quantumness in spin ensembles. It works based on
the maximum size of a GHZ state that can be obtained by
a distillation process from the state of interest [38]. Their
measure gives the following values for the GHZ, Dicke, and
generalized GHZ state

(1) GHZ: Nf = N .
(2) Dicke state: Nf = 1 + 2k(N−k)

N .
(3) Generalized GHZ (in the limits N � 1 and ε � 1):

Nf = Nε2/2.
Here Nf denotes their measure. Our measure is in complete

agreement with the results 1–3, except that for the generalized
GHZ the scaling in ε is different. Both measures are maxi-
mized for the GHZ state and the scaling is of the order O(N ).
Also for Dicke state, if k = O(N ), the proposals take their
maximum order in N which is O(N ), and if k = O(1) they
are of the order O(1).

APPENDIX G: RELATION WITH THE GENERAL
FRAMEWORK OF YADIN AND VEDRAL [46]

In their general framework of macroscopic quantumness
[46], Yadin and Vedral discuss that, for an observable A, a state
exhibits macroscopic coherence if there exists superposition
of eigenstates of A having macroscopically different eigenval-
ues [46]. They also argue that any measure for quantifying the
concept of macroscopic coherence should meet the conditions
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below [46]:
M1: M(ρ) � 0 and M(ρ) = 0 ⇐⇒ ρ = 0.
M2a: For a free operation ξ we have M(ρ) � M(ξ (ρ)).
M2b: For ξ = ∑

α ξα in which ξα are free operations,
M(ρ) � ∑

α PαM(σα ), in which σα = ξα (ρ)/Pα has the prob-
ability Pα = Tr[ξα (ρ)].

M3: Convexity: M(
∑

i Piρi ) �
∑

i PiM(ρi ).
M4: Consider |ψ〉 = |i〉+| j〉√

2
and |φ〉 = |m〉+|n〉√

2
. If |ai −

a j | � |am − an| then M(|ψ〉〈ψ |) � M(|φ〉〈φ|).

The first three conditions are identical to the ones for a re-
source theory of coherence [45]. Condition M2 implies that a
free operation in the context of coherence should not increase
coherence of the system.

Condition M3 implies that mixing cannot increase
coherence.

Condition M4 is the most important one in the context of
macroscopic quantumness. This condition makes sure that the
coherence is a macroscopic coherence.
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