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Effective decoherence of realistic clocks: General theory and application to a topological insulator
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It has been well established that the evolution of an isolated quantum system can appear as undergoing pure
dephasing to an observer using an imperfect clock. In this work, we apply this theory to the transport phenomenon
in open quantum systems. Starting with a system intrinsically undergoing nonunitary evolution in ideal time, we
consider the effect of a realistic clock that approaches Gaussian distribution in the long-time limit. For quantum
transport, it eventually leads to a general physical prediction: a stable probability current in a quantum transport
system must be robust against any transformation that conforms with a simple formula given by an ideal Gaussian
stationary clock. This understanding of quantum transport is demonstrated numerically in a topological insulator,
where it also explains the robustness of the quantum Hall response against pure dephasing.
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I. INTRODUCTION

The observation that the quantum Hall response is pre-
cisely quantized [1] led to the discovery of the topological
phase of matter [2–5]. So far, it has been shown that the Hall
conductivity of a topological insulator is guaranteed topologi-
cally [6,7] to be a (half) integer multiple of a constant [8], even
in the presence of substrate disorder and electron-electron
interaction [9,10]. Recently, there has been wide interest in
topological insulators subject to external influences [11–14],
such as thermalization [15–21], quantum quench [22–25],
and decoherence [26–31]. In particular, it was suggested that
the quantum Hall response is robust against pure dephasing
[32–35]. Remarkably, both the current operator and the per-
turbed quantum state are shown to be nontrivially affected
under pure dephasing, while the interplay between the two
impacts maintains a net zero impact on the probability current
[34]. This could be a mathematical coincidence, but it might
also be guaranteed by an underlying general principle.

In this work, we propose a simple physical explanation
for the robustness of the quantum Hall response against pure
dephasing, which also gives a general principle for quantum
transport under Markovian noise beyond pure dephasing. It
relies on a seemingly distant concept—realistic clock.

Long ago, the difficulty of introducing a time observable
[36,37] in conventional quantum theory led to the conditional
probability interpretation of time, where time emerges from
the entanglement between a clock subsystem and the remain-
der of a timeless universe [38–44]. Recently, after overcoming
early criticisms [44–47], the theory received renewed interest.
Since ideal time is physically inaccessible [47–49], it in turn
led to the idea of relational time. That is, the time evolution
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of the same quantum system can be different for observers
with different information of time [50]. Specifically, as simply
illustrated in Fig. 1, a closed quantum system can be observed
as undergoing pure dephasing without relaxation [51] to an
observer using an imperfect clock [52–57].

Here, we generally start with a quantum system intrinsi-
cally obeying memoryless linear dynamics [58,59] under ideal
time, and we formalize its effective dynamics as observed
under a real clock. The real clock is characterized with a
stochastic process of ideal time, and its behavior is generally
allowed to change with clock time. When the said stochastic
process has independent increments [60], a memoryless sys-
tem dynamics is recovered as a series expansion fully given
by the instantaneous stochastic process. Specifically, with an
ideal Brownian stochastic process, we recover an effective
dynamics that is formally consistent with the previous result
for a Gaussian clock [53]. To overcome the causality issue
of a Gaussian stationary clock, we also consider the asymp-
totic physical prediction of realistic clocks that approaches
the ideal Gaussian stationary clock in the long-time limit,
which are expected to give asymptotically identical physical
predictions.

With our real clock, we eventually deliver a physical pre-
diction in quantum transport, specifically in the Hall response
of an open topological insulator [3–5]. We propose that the
robustness of the Hall current against pure dephasing is guar-
anteed by relational time. The clock we assumed does not
affect the measured value of a macroscopic stable current.
Therefore, if the quantum Hall response is robust against time
inaccuracy under a Gaussian stationary clock, which is in
turn equivalent to pure dephasing, the quantum Hall response
then has to be robust against pure dephasing, regardless of its
physical cause.

Furthermore, with a generalized formula of the real clock
effect, we can give more predictions on the robustness of the
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FIG. 1. A simple example of effective decoherence due to an
imperfect clock. The circle is the intersection between a plane and
the Bloch sphere of a closed two-level quantum system. Consider a
simple extreme situation where the clock runs randomly, with equal
probabilities, at one of two different rates in each repeat experiment.
When the clock shows t = 0, the system is initialized in a pure state
|ψ0〉, but when the clock shows t = t1, the system is either in |ψ1〉
or |ψ ′

1〉. The observed quantum state of the system at clock time t1

with repeat experimentation is then ρ(t1) = 1
2 |ψ1〉〈ψ1| + 1

2 |ψ ′
1〉〈ψ ′

1|,
which is a mixed state.

Hall response. That is, a stable current in a quantum transport
system must remain unchanged under transformations of its
master equation that are formally identical to the real clock
effect. This prediction is demonstrated numerically with the
Hall conductivity of open topological insulators. It is also pos-
sible to test this prediction experimentally, most likely with a
platform of ultracold atoms on an optical lattice [61–69].

The remainder of this paper is structured as follows: In
Sec. II, we formalize the real clock effect for a quantum
system intrinsically obeying general time-independent linear
dynamics. In Sec. III, we recover the Gaussian clock and ad-
dress its causality issue via the asymptotic long-time limit, and
we show how specifically a Markovian master equation trans-
forms into another time-local master equation under a Gaus-
sian stationary clock. In Sec. IV, we show how a stable current
in a quantum transport system must remain unchanged under
a real clock, and we demonstrate numerically that the Hall
conductivity of a two-dimensional two-band open topological
insulator remains unchanged when the model is transformed
according to the formula of an ideal Gaussian stationary clock.
Finally, in Sec. V, we conclude and summarize our results.

II. GENERAL FORMALISM

Consider an evolving quantum system that obeys general
time-independent linear dynamics in relation to ideal time. We
examine how its dynamics appears in measurement under a
real clock.

Similar to the work of Egusquiza [52], we characterize a
real clock statistically. Specifically, we assume that the time
shown by the clock (clock time) in each instance of repeat

experiments is progressing on one of an infinite amount of
possible paths γi(t ). That is, for a clock on a particular path
γi(t ), when the clock time is t , the ideal time is actually γi(t ).
One can imagine that the clock is moving stochastically in a
“space” of ideal time as the clock time passes.

Each γi(t ) may or may not be a continuous function, but we
assume it is continuous in probability. That is, sometimes the
clock may be stuck for a finite period of ideal time, leading
to a jump in trajectory γi(t ), but this does not happen with
a finite probability during any given infinitesimal period of
clock time. This stochastic continuity [70] ensures a continu-
ous probability distribution of γi(t ).

Each hypothetical experiment begins with a joined mea-
surement on the system and the clock, as a result, for every
path, γi(0) ≡ 0. The probability for the clock to follow a
particular path γi(t ) is denoted pi, which satisfies

∑
i pi = 1.

Moreover, the clock paths are required to obey the following
statistical characterizations:∑

i

piγi(t ) = t, (1)

∑
i

piγ
2
i (t ) = s(t ) + t2, (2)

where it can be shown that s(t ) = ∑
i pi[γi(t ) − t]2, which is

the variance of the ideal time at a given clock time, character-
izing the level of inaccuracy.

The density matrix of the system at any given ideal time x is
denoted as ρS (x), and repeat measurements are carried out at a
given clock time t . When the timing of such measurements is
inconsistent, the quantum state measured at any given clock
time is actually an incoherent superposition of states from
different moments of the system’s evolution [53]. As far as the
observer is concerned, at clock time T , the system’s density
matrix reads

ρ(t ) ≡
∑

i

piρS[γi(t )]. (3)

The change in the measurement result of the quantum state
can in turn cause deviation in the observed motion trajectory,
which may eventually lead to an entirely different system
dynamics being extrapolated. To find the time differential
formula of the observed system motion ρ(t ), we first generally
characterize the system dynamics in ideal time as follows:

∂ρS (x)

∂x
= M(ρS[x]), (4)

where time-independent superoperator M is an arbitrary lin-
ear superoperator. It generally represents a system with linear
memoryless dynamics, which can be a closed quantum sys-
tem, a Markovian open system, or a non-Hermitian system.

We can then apply Taylor expansion to the evolution of
observed system density matrix ρ(t ) during an infinitesimal
period of clock time between t and t +δt as follows:

ρ(t +δt ) =
∑

i

piρS[γi(t + δt )]

=
∑

i

pi

{
ρS[γi(t )] + [γi(t + δt ) − γi(t )]ρ̇S[γi(t )]

+ 1

2
[γi(t + δt ) − γi(t )]2ρ̈S[γi(t )] + · · ·

}
. (5)

032207-2



EFFECTIVE DECOHERENCE OF REALISTIC CLOCKS: … PHYSICAL REVIEW A 103, 032207 (2021)

To recover a memoryless observed system dynamics, we
have to impose another assumption: around a given clock time
t , there is a lack of correlation between [γi(t + δt ) − γi(t )]
and γi(t ). In other words, we assume that γi(t ), which may or
may not be a continuous function, is undergoing a stochastic
process with independent increments [60], which means∑

i

pi f [γi(t + δt ) − γi(t )]g[γi(t )]

=
{∑

i

pi f [γi(t + δt ) − γi(t )]

}{∑
j

p jg[γ j (t )]

}
, (6)

where f and g are arbitrary functions of ideal time γi(t ), such
as ρS[γi(t )]. Although γi(t ) is definitely correlated with clock
time t , Eq. (6) is limited to one clock time t , and hence, at a
different clock time t ′, [γi(t ′ + δt ) − γi(t ′)] is allowed to have
a different distribution. If we also require the same distribution
at all clock times, γi(t ) would then have to be a Lévy process
[60]. We note that we do not assume the clock to always obey

Eq. (6); γi(t ) may also violate Eq. (6) around t ′, in which case
the subsequent result simply will not apply around t ′.

Given Eq. (6) and considering that M is linear, Eq. (5) can
be rewritten as a memoryless equation of motion as follows:

ρ̇(t ) = M[ρ(t )] +
∞∑

n=2

Rn(t )

n!
Mn[ρ(t )], (7)

Rn(t ) ≡ lim
δt→0

1

δt

∑
i

pi[γi(t + δt ) − γi(t )]n

= ∂

∂τ

∫ +∞

−∞
xnDt (x; τ )dx

∣∣∣∣
τ=0

, (8)

where we denote x(τ ) characterized by distribution Dt (x; τ ) as
a Lévy process [60] that is obeyed instantaneously by the real
clock at clock time t . The distribution of [γi(t + δt ) − γi(t )] is
therefore D(δt, x), whereas D(0, x) = δ(x). According to Itô’s
Lemma [71,72],

∑
i pi[γi(t + δt ) − γi(t )]2 is of O(δt ) order.

We therefore give

∑
i

pi

2
[γi(t + δt ) − γi(t )]2 =

∑
i

pi

2

{[
γ 2

i (t + δt ) − γ 2
i (t )

] − 2[γi(t + δt ) − γi(t )]γi(t )
}

= 1

2
[s(t + δt ) − s(t )] + 1

2
[(t + δt )2 − t2] −

∑
i

pi[γi(t + δt ) − γi(t )]γi(t ), (9)

in which Eq. (6) gives the value of the last term above as tδt .
We thereby have R2(t ) = ṡ(t ), which is guaranteed by inde-
pendent increments of γi(t ) around clock time t , regardless of
its distribution or past behavior.

III. GAUSSIAN CLOCK

A. Brownian stochastic process

To recover a particular result for our purpose, we particu-
larly consider

Dt (x; τ ) = 1√
2πK (t )τ

e− (x−τ )2

2K (t )τ , (10)

which conforms with the Brownian stochastic process. Itô’s
Lemma has already given the exact value of each Rn, but it
can also be found easily using Eq. (8). Either way, the result
is R2(t ) = K (t ), while for n > 2, Rn(t ) ≡ 0. We then have

R2(t ) = K (t ) = ṡ(t ). (11)

We thereby recover a very simple effective dynamics that
conforms with all previous results [52–57],

ρ̇(t ) = M[ρ(t )] + ṡ(t )

2
M2[ρ(t )], (12)

which applies around clock time t as long as the clock is
undergoing an ideal Brownian stochastic process around time
t . This particular class of real clock directly corresponds to
pure dephasing within a unitary M.

B. Causality issue

Apparently, according to Eq. (12), if the clock maintains
a Brownian stochastic process, and ṡ(t ) remains a constant
X , then the effective system observed under such a real clock
will be indistinguishable from an actual system, with the time-
independent dynamics given as follows:

ρ̇ = M(ρ) + X

2
M2(ρ). (13)

We note that Egusquiza [53] has already eliminated the pos-
sibility of any clock other than an ideal Gaussian stationary
clock to maintain this exact observed dynamics above.

However, an ideal Gaussian distribution only converges
perfectly as |γi(t ) − t | → ∞. Therefore, a realistic clock can-
not be in a perfect Gaussian distribution for finite time t .
Moreover, as pointed out by Egusquiza [53] and can be seen
from Fig. 2, this leads to a significant causality issue near
t = 0: the prediction of a Gaussian stationary clock demands
that the second measurements can happen before the first,
and they must contribute results according to a negative time
extension of ρS (x), which would be nonphysical, especially if
ρS (x) itself obeys dissipative dynamics.

On the other hand, as can be seen from Eq. (3), the
measurement result at clock time T is determined by the dis-
tribution of γi(T ), and it is completely unaffected by the value
of γi(t ) during 0 < t < T . Therefore, we generally consider
an asymptotic clock that in the limit of t 	 0, approaches the
Gaussian distribution and also satisfies

s(t ) → Xt . (14)
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FIG. 2. An illustrative comparison of two real clocks. The red
solid curve is the standard deviation σ (t ) = √

s(t ) for an ideal Gaus-
sian stationary clock given by s(t ) = t ns vs clock time t , while the
blue dotted curve is that of an arbitrary Gaussian clock given by
s(t ) = t [1 − exp(−t2/ns2)] ns. Imagine a quantum system is evolv-
ing on the horizontal axis according to ideal time x = t ; then the
triangles represent Eq. (3).

As illustrated in Fig. 2, as long as all measurements are made
in the long-time limit, the observer should find asymptotically
no evidence that the system ever deviated from the dynamics
given by the Gaussian stationary clock.

Actual physical clocks usually only track discrete intervals
of time, so they might not be able to resolve time near t = 0.
Considering that the one-dimensional random walk [73–75]
is known to approach a Gaussian distribution in the limit of

infinite steps, they might also satisfy Eq. (14). Regardless,
an experimental framework where the model of a Gaussian
stationary clock gives arbitrarily good predictions is possible.
As long as this is the case, experimentally verifiable physi-
cal predictions can be extracted under a Gaussian stationary
clock.

C. Master equation

Here, we specifically give how a time-independent Marko-
vian open quantum system is transformed under a Gaussian
stationary clock. Consider a general master equation,

M(ρ) = H(ρ, H ) +
∑

j

L(ρ,Vj ), (15)

H(ρ, H ) ≡ −i[H, ρ], (16)

L(ρ,Vj ) ≡ VjρV †
j − 1

2
V †

j Vjρ − 1

2
ρV †

j Vj, (17)

where H,Vj are the Hamiltonian and Lindbladians, respec-
tively, of a Markovian open quantum system with respect to
ideal time. Hence, the extra term from the effective dynamic
formula reads

M[M(ρ)] = H[H(ρ, H ), H ] +
∑

jk

L[L(ρ,Vj ),Vk]

+
∑

j

{L[H(ρ, H ),Vj] + H[L(ρ,Vj ), H ]}.

(18)

To further expand the expression, we find it very helpful to
use the following formula:

2[aρb† + bρa†] = L(ρ, a + b) − L(ρ, a − b)

+{ρ, a†b + b†a}, (19)

where a, b are arbitrary linear operators. Tedious but straight-
forward derivation then gives

H[H(ρ, H ), H ] = 2L(ρ, H ); (20)

L[H(ρ, H ),Vj] + H[L(ρ,Vj ), H] = 1
2 [−H(ρ, {V †

j Vj, H}) + X (ρ,Vj, {Vj,−iH}) + X (ρ, iH,V †
j Vj )]; (21)

L[L(ρ,Vj ),Vk] = L(ρ,VkVj ) − 1
4 [X (ρ,VkV

†
j Vj,Vk ) + X (ρ,V †

k VkVj,Vj )] + 1
8 [X (ρ,V †

j Vj,V †
k Vk ) + H(ρ, i[V †

k Vk,V †
j Vj])],

(22)

where we denote

X (ρ,Vj,Vk ) ≡ L(ρ,Vj + Vk ) − L(ρ,Vj − Vk ), (23)

which satisfies

X (ρ,Vj,Vk ) = X (ρ,Vk,Vj ) = −X (ρ,Vj,−Vk ). (24)

Note that i[V †
k Vk,V †

j Vj] can be shown as Hermitian.
Apparently, a system obeying a Markovian master equation

under ideal time can appear as obeying a different master
equation under an ideal Gaussian stationary clock, or the
corresponding asymptotic clock if only measured in the long-

time limit. Here, this new effective master equation is fully
expressed with a correction to the Hamiltonian as well as a
series of additional Lindbladians.

We note that there is an issue here for an ideal station-
ary Gaussian clock due to causality violation. Equation (3)
naturally guarantees the linear dynamical map to satisfy com-
pletely positive and trace preserving [76] for any positively
defined ideal time distribution. However, an ideal Gaussian
stationary clock may not follow the same rule near t = 0
due to the nontrivial weight of the negative time extension of
ρS (x), as shown in Fig. 2. In some special cases, the result of
Eq. (13) might not be physical, which explains why the decay
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rates of some of the Lindbladians are negative in the general
formalism above.

IV. ROBUSTNESS OF QUANTUM HALL RESPONSE

When the effect of an imperfect clock and the effect of
an environment could both cause the same changes in the
observed evolution of a quantum system, one would not be
able to distinguish the two just by observing the system in
question. Since the mechanism of the real clock effect governs
both macroscopic measurement and quantum state evolution,
this indistinguishability can be used to deliver physical predic-
tions. Particularly, for a stable probability current in an open
system, the fact that no change is expected to happen under
a real clock can be generalized to a class of master equations
realized by mechanisms other than the real clock.

A. Robustness of current under real clock effect

In order to show that the measured mean value of a stable
current carried by a quantum transport system during the time
interval between t1 and t2 remains unaltered under an asymp-
totic real clock satisfying Eq. (14) in the limit of t1, t2 	 0,
consider a general scenario as follows: a quantum system
with a stable electric current J0 transports electrons from one
reservoir to another.

In ideal time, to obtain the current of a transport system,
one repeatedly observes the number of electrons in the desti-
nation reservoir for two different moments, respectively. We
note that the measurement is only carried out at one of the
moments in each iteration of the experiment. If the probability
current of each electron is a stable value J0 during the range
of time when electron numbers are measured, and if the prob-
ability of finding Nj (t ) electrons at time t is denoted qj , we
have ∑

j

q jNj (t ) = J0t + N0, (25)

J0 = 1

t2 − t1

[∑
j

q jNj (t2) −
∑

j

q jNj (t1)

]
, (26)

where N0 is a constant number.
In a repeat measurement under a real clock, however,

both the actual measurement time γi(t ) and the population
of electrons Nj (t ) fluctuate statistically in different iterations.
Nevertheless, considering that there is no correlation between
pi and q j , the measured stable current in this case can still be
expressed as

J̄ = 1

t2 − t1

∑
i j

piq j{Nj[γi(t2)] − Nj[γi(t1)]}. (27)

Given Eq. (1), it can then be shown that J̄ = J0.
Note that as long as the hypothetical clock is valid, we are

not required to physically have such a clock to utilize rela-
tional time any more than we would need a moving object to
change the frame of reference. Given an ideal system obeying
Eq. (4) that produces a stable current J0, with or without actu-
ally having the clock, we know, in the corresponding relational
time, that it would effectively obey Eq. (13) and produce J̄ . It
can then be reasoned that any system undergoing the same

dynamics as Eq. (13) must also produce J̄ because it obeys
the same dynamics that we know produces J̄ , which in turn
equals J0.

In other words, for a class of quantum systems with master
equations in the form of Eq. (13) with the same superoperator
M and different non-negative number X , if they are all carry-
ing stable currents, the magnitude of their currents should all
be equal, regardless of the mechanism realizing their master
equations.

B. Model

Specifically, we examine the case of a topological insulator,
where a stable current response in the y direction occurs under
a weak electric field in the x direction. The linearized relation
between the current density and the electric field is charac-
terized by Hall conductivity. In each momentum-conserving
subspace of its Hilbert space, the master equation of a general
open topological insulator is given by

Mk (ρk ) = H[ρk, H (k)] + L[ρk,
√

gDH (k)]

+L[ρk,
√

gSLDσz] + L[ρk,
√

gSLCσ−], (28)

where index k = (kx, ky) denotes momentum, with ρk being
the density matrix within the momentum-conserving sub-
space. Also, gD characterizes the rate of pure dephasing in the
basis of Hamiltonian eigenstates, gSLD characterizes the rate
of site-local pure dephasing, and gSLC characterizes the rate
of site-local cooling. σl , where l = x, y, z, are Pauli matrices,
and σ− = (σx − iσy)/2.

Here, we choose a particular model of two-dimensional
topological insulators, the Chern insulator, which has a Hamil-
tonian as follows:

H (k) = {σx sin kx + σy sin ky

+σz[m + cos kx + cos ky]}ns−1, (29)

where 0 � kx, ky < 2π , and m = −1.5 is an arbitrary param-
eter that affects the topology of the topological insulator.

A very weak static electric field in the x direction is char-
acterized by Peierls substitution,

k → k − eE

h̄
t, (30)

where −e is the electric charge of an electron and E → 0 is
the magnitude of the electric field. We note that the alternative
time-independent scalar potential characterization of the static
electric field, albeit unsolvable, justifies the use of the real
clock.

The system is initialized as ρk (0) = e−βH (k), where
β = 10ns is used to characterize a near-zero temperature, and
H (k) is the original Hamiltonian of the system. This initial
state remains unchanged, even if the effective Hamiltonian is
altered under the real clock effect.

As the system evolves, the current contribution in the y
direction can be extracted from the instantaneous density ma-
trix within each momentum-conserving subspace. Here, we
denote

Iy(t ) = −e

Ex

∫
BZ

dkTr

[
∂H (k)

∂ky
ρk (t )

]
, (31)

Jy(t ) = −e

Ex

∫
BZ

dkTr[Ĵy(k)ρk (t )], (32)
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FIG. 3. Compared results of numerical simulations of Hall conductivities. The dotted lines I0, I1, I2, are Iy(t ), with H (k) being the
original Hamiltonian from Eq. (29) but subject to Eq. (30). These dotted lines do not represent current, but they reflect the evolution of
the tiny perturbation in the quantum state responsible for the Hall response. The solid lines J0, J1, J2, are Jy(t ), with Ĵy(t ) given by the
complete (effective) master equation. These solid lines give the actual Hall conductivity in their respective situation. I0, J0 are given for the
original system, I1, J1 are given under Eq. (34), and I2, J2 are given under Eq. (35). The two figures are given using different parameters:
(a) gHD = 0.25ns−1, gSLD = gSLC = 0; (b) gHD = 0.25ns−1, gSLD = 0.09ns−1, gSLC = 0.25ns−1.

where Iy(t ) is given by the current operator for the closed
translationally invariant tight-binding model, which we em-
ploy to reveal the density matrix evolution. However, the
current operator can be different in open systems [77], so
the value of Iy(t ) is not the actual Hall conductivity unless
the system is closed. The actual Hall conductivity Jy(t ) must
be given by the current operator for Markovian open tight-
binding systems [35], in which

Ĵy(k) = ∂H (k)

∂ky
+

∑
j

iγ j

2

[
∂V †

k, j

∂ky
Vk, j − V †

k, j

∂Vk, j

∂ky

]
, (33)

where V †
k, j are all of the Lindbladians in the master equation

for ρk (t ). Note that the second term is 0 if the system is closed,
and Eqs. (20)–(22) are sufficiently expanded for a numerical
implementation of this operator. The coefficient γ j ≡ 1, since
this value is instead incorporated into V †

k, j . Note that the for-
mula of an open-system current operator also changes as the
master equation itself is transformed.

C. Numerical results

We do not have a general formula for the open-system Hall
response of a topological insulator; the demonstration for the
generalized situation is therefore numerical.

On top of the system dynamics M given in Eqs. (28) and
(29), two different settings for Eq. (13) are considered, which

are characterized as follows:

X = 1ns, (34)

X ′(t ) = t

T
ns, (35)

where T is the full simulation time. With Eq. (34), the
constant-rate increase of variance is consistent with the one-
dimensional random walk; and with Eq. (35), the effective
master equations slowly move within the current conserving
class given by Eq. (13).

As shown in Fig. 3, two different original systems are sim-
ulated with their respective parameters based on Eq. (28). As
shown in their respective figures, for each original system, two
transformed systems are also simulated. Their master equa-
tions are given by Eq. (13) with the two settings characterized
above.

In each figure, the values of I0, I1, I2 are means of the same
observable on density matrices from the original system and
the two transformed systems. However, in each figure, these
values are not identical. Apparently, the original system and
different transformed systems given by X and X ′(t ) can be in
different quantum states. The values of I2 in each figure are
changing with X ′(t ) throughout the simulation. This clearly
shows that the change in parameter X ′(t ) is nontrivial to the
perturbation of the quantum state.

Moreover, since I0, I1, I2 are given by the same operators
at any given time, it shows that the linear response of the
electrons’ quantum state is different under different settings
corresponding to different clocks. Without also considering
the corresponding changes in the current observable, these
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changes are not trivial in terms of the electric current con-
tribution.

However, J0, J1, J2, which are given by open-system cur-
rent operators that also change with the value of parameter X
from Eq. (13), eventually stabilize at the same value in each
figure. As predicted, the actual electric currents in the trans-
formed systems are identical to that in the original system.
In particular, as the second transformed system slowly moves
within the current-conserving class given by Eq. (13), the Hall
conductivity also stabilizes at the original value and remains
unchanged.

Finally, we note that an experimental test of this prediction
is also possible. The simplest experiment requires the engi-
neering of two topological insulators obeying different master
equations from the same class as defined in Eq. (13). To
implement such systems, instead of actual solid-state matter,
one may rely on the highly flexible [69] quantum simulation
platform of ultracold atoms on an optical lattice. For nontrivial
results, it is preferred that both of them are carrying currents
that are no longer quantized under environmental influence
(similar to the simulation of Fig. 3). If the measured Hall
conductivities were identical, then the prediction “survived.”

V. DISCUSSION AND CONCLUSION

In conclusion, we give an explanation for the robustness of
the quantum Hall response against pure dephasing based on
the theory of the real clock. We also generalized the theory
of the real clock to systems that are intrinsically nonunitary
under ideal time, which then gives experimentally verifiable
predictions for quantum transport in open quantum systems.

Starting with a quantum system obeying arbitrary linear
memoryless dynamics that may or may not be unitary, we
formalized its corresponding effective system to an observer
using a real clock. We show that whenever the clock is un-

dergoing a stochastic process with independent increments,
the effective system will obey another memoryless dynamics
given by Eq. (7). Specifically, for an ideal Gaussian stationary
clock, we give the effective master equation of the observed
system. As expected, it is a series of Lindbladian terms on
top of a corrected Hamiltonian. However, in this most general
formalism, some of the Lindbladian terms are with negative
decay rate.

Due to the causality issue, it is not realistic to expect
a physical clock in real life to satisfy the ideal Brownian
stochastic process. To overcome this issue, we consider in-
stead a hypothetical clock that approaches the same ideal time
distribution of a Gaussian stochastic clock in the long-time
limit. In this context, the physical predictions of a Gaussian
stationary clock can still be considered as asymptotically ac-
curate.

For two quantum systems carrying stable currents, we
show that as long as their master equations can be transformed
into one another via the given formula of Eq. (13), the stable
currents carried by these two systems must be equal. This
prediction is demonstrated numerically in a model of the
open-system quantum Hall effect, and we note that the same
principle holds even when the two systems are realized by
effects other than the real clock.
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