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Choice of mutually unbiased bases and outcome labeling affecting measurement outcome secrecy
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Mutually unbiased bases (MUBs) are a crucial ingredient for many protocols in quantum information pro-
cessing. Measurements performed in these bases are unbiased to the maximally possible extent, which is used
to prove the randomness or secrecy of measurement results. In this work we show that certain properties of sets
of MUBs crucially depend on their specific choice, including, somewhat surprisingly, measurement outcome
labeling. If measurements are chosen in a coherent way, the secrecy of the result can be completely lost for
specific sets of MUB measurements but partially retained for others. This could potentially impact a broad
spectrum of applications where MUBs are utilized.
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I. INTRODUCTION

One of the defining features of quantum mechanics is the
impossibility to simultaneously measure a certain set of phys-
ical quantities. This fact led to the definition of the famous
Heisenberg uncertainty principle [1] and understanding of
the quantum model of the hydrogen atom [2]. If a simul-
taneous measurement of two quantities is not possible, or,
in other words, if a measurement of one quantity influences
the expectation of the other measurement, we call these two
measurements incompatible. In this context a very natural
question arises: How incompatible can a pair of measurements
be? The answer to this question is simple: For any quantum
system, one can find a pair of measurements where, irrespec-
tive of the starting state of the system, after performing one
of the measurements the result of the other one is completely
random.

A straightforward generalization is at hand: Can one form
a larger set of measurements that is pairwise fully incompati-
ble? Here again one can answer affirmatively: For each system
one can find at least three such measurements, and the size of
this set depends on the dimension of the system.

In order to tackle these questions more formally, the notion
of mutually unbiased bases (MUBs) [3–6] was introduced.
Two d-dimensional bases, {|ψi〉}i=0,...,d−1 and {|ϕ j〉} j=0,...,d−1,
corresponding to two full projective measurements, are mutu-
ally unbiased when

∀ i, j : |〈ψi|ϕ j〉| = 1√
d

. (1)

Due to their properties, mutually unbiased bases have be-
come an important cornerstone of contemporary quantum
information processing [7]. They are being used for quantum
tomography [4,6], uncertainty relations [5,8,9], quantum key
distribution [10–13], and quantum error correction [14], as
well as for witnessing entanglement [15–21], the design of
Bell inequalities [22,23], and more general forms of quantum
correlations [24–26].

The natural question of the number of unbiased bases in a
given dimension d turned out to be unexpectedly complicated
[27,28]. While the answer is rather simple for qubits—
there are three pairwise mutually unbiased bases, defined
as eigenvectors of Pauli σx, σy, σz operators up to unitary
equivalencies—in general, the construction of MUBs is a very
difficult task. It is known that the number of MUBs has to
be smaller than d + 1 for any dimension and constructions of
d + 1 MUBs are known for d = pr , where p is a prime. How-
ever, for non-prime-power d only the trivial tensor product
construction is known.

Fortunately, for many applications one needs to use only
k � d + 1 MUB measurements. Clearly, there are different
ways to pick the subset of k out of all MUBs. In fact, it is
known that different sets of MUBs are not necessarily equiva-
lent under different mathematical operations, such as global
unitary operations, changing individual vector phases, rela-
beling of outcomes, relabeling of moments, and introducing
complex conjugation [29]. This mathematical inequivalence
is, however, irrelevant in many practical applications where
just satisfying the defining property (1) is required for the task.

More interestingly, it was recently shown that different
subsets of MUBs of can be inequivalent operationally as well.
For example, MUBs turn out to be an optimal strategy in a
communication task called quantum random access coding
(QRAC) [30].

In [31] it was shown that in a certain variant of QRAC,
different subsets of k out of d + 1 MUBs lead to different
strategies with different average success rates. More recently,
it was shown that different subsets of k out of d + 1 MUBs
behave differently under a measure called incompatibility
robustness [32]. Last but not least, very specific MUBs are
required to obtain Bell inequalities [22], which are maximally
violated by maximally entangled states and MUBs.

The full definition of a measurement consists of specifying
the basis as a set of states and labeling these states. Two
measurements consisting of the same set of states are, in
principle, different, even if they measure the same property
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and their results can be classically transformed at any later
stage. From an experimental and operational point of view it
makes sense to distinguish between different measurements
that differ only in labeling (we call this a classical difference)
and two measurements that differ in the states per se (quantum
difference). One can then naturally ask to what extent the
properties of MUBs do change if one makes only a classical
change in them. In other words, do the properties of the
subsets change by simple relabeling of their vectors? In this
work, we affirmatively answer this question by introducing
a quantum information task called a guessing game. There a
subset of d out of d + 1 MUBs is used to hide and guess infor-
mation between two parties. We show that this simple choice
of removing a single MUB from the full set critically affects
achievable results in the game. Even more interestingly, for a
suitable chosen subset of d out of d + 1 MUBs, we observe
the full spectrum of results—perfect guessing and maximal
hiding—just by relabeling the measurement outcomes.

II. RESULTS

The incompatibility of measurements can be demonstrated
and examined with the help of a very simple quantum game,
studied in [33,34]. Here Alice realizes one of m possible mea-
surements on a d-dimensional system and records the result
a of this measurement. The task of Bob is to guess this result
using the following strategy: First, he prepares the state for
Alice to measure, and second, he receives information about
which measurement was performed (see the next section for
the full definition of the guessing game).

If the game is described by classical physics, a pure state
has a determined outcome for all possible measurements.
Therefore, trivially, Bob can prepare a state which leads to
a deterministic outcome irrespective of the measurement per-
formed by Alice.

One can make the scenario partially quantum by making
Bob’s probe state as well as the measurements quantum but
keeping the information about the measurement chosen by
Alice classical—we call this a classical coin scenario. This is
the traditional way to demonstrate incompatibility of quantum
measurements; for compatible measurements Bob still can
guess with certainty, but with increasing incompatibility of the
measurements the uncertainty of his guess increases.

In a fully quantum scenario, called the quantum coin
scenario, depicted in Fig. 1, both the probe state and the
information about the measurement chosen are quantum. Here
Alice realizes the chosen measurement by first applying a
coherently controlled unitary, followed by a measurement in
a standard basis. Bob receives the control state and can use it
to determine Alice’s outcome.

The authors of [33] analyzed the guessing game for two
specific MUB measurements (m = 2). They showed that for
qubits (d = 2), in the quantum coin scenario Bob can guess
Alice’s outcome with certainty. In contrast, that was not
the case for higher dimensions. They concluded that in the
case of two measurements the control state is always a two-
dimensional state and it is impossible to use it to determine a
higher-dimensional outcome.

In [34] we further analyzed the guessing game with the
quantum coin, and we showed that for qubits, with any

ρB

ρC

Ui a

bMb

FIG. 1. Guessing-game description. Alice measures the probe
state ρB with one out of d possible measurements. Alice’s mea-
surement choice is implemented coherently via a controlled unitary∑d−1

i=0 U †
i ⊗ |i〉〈i|, where U †

i maps the basis vectors of the ith basis
onto the computational basis. Alice then measures in the computa-
tional basis, and her outcome is denoted a. Bob’s goal is to guess
Alice’s outcome by preparing a probe state ρB and an optimal mea-
surement described by POVM elements {Mb}d−1

b=0 , through which he
obtains his guess b. Bob wins when b = a. In the classical coin case,
the control state ρC is fully mixed, and in the quantum coin case, ρC

is an equal superposition of computational basis vectors.

number of measurements (independent of their level of com-
patibility) it is always possible for Bob to obtain Alice’s result
with a probability of 1. In contrast, for higher dimensions this
is not the case, so even if Bob receives a large enough control
state, he will not be able to guess the result perfectly for a
specific set of MUBs chosen by Alice.

Here we analyze the problem further. We fix the number
of measurements to m = d , which will make the size of the
measurement outcomes alphabet equal to the dimension of
the control state available to Bob. First, we study the quantum
coin scenario with this choice for different sets of d MUBs,
and for each prime d we construct a set of d MUBs which
allow Bob to guess Alice’s measurement outcomes with cer-
tainty. Further, with a combination of exhaustive search for
d = 3 and d = 5 and numerical methods for higher dimen-
sions we study Bob’s guessing probability with different sets
of d MUB measurements. We consider MUBs obtained by
choosing d out of d + 1 MUBs from standard Wootters-Fields
(WF) construction (see [6] and Eq. (3)), followed by relabel-
ing of their vectors in order to obtain different measurements.

Strikingly, both the lowest and highest guessing probabili-
ties we observe are achieved by excluding the computational
basis from d + 1 WF bases and imposing different labeling
of measurement outcomes on the rest of bases—the original
WF labeling leads to the lowest guessing probabilities, while
our construction, which is yet another outcome relabeling
of this set of MUBs, leads to perfect guessing probability.
More broadly, our study goes far beyond the study of the
guessing game itself, as it shows that different sets of d out
of d + 1 MUBs, which differ in only a classical sense (i.e., by
relabeling), exhibit very different operational properties.

III. GUESSING GAME

Here we give a formal definition of the guessing game and
define a set of d out of d + 1 MUB measurements, which
allows Bob to construct a perfect guessing strategy. In the
guessing game, Alice receives an initial state ρB of dimension
d prepared by Bob. She performs a coherently controlled
unitary transformation UC defined by the set of {U †

a }d−1
a=0 con-

trolled by the “coin” state ρC . In the quantum coin scenario

032206-2



CHOICE OF MUTUALLY UNBIASED BASES AND OUTCOME … PHYSICAL REVIEW A 103, 032206 (2021)

the pure state ρC = |+〉〈+| is used, where |+〉 = 1√
d

∑d−1
i=0 |i〉,

while in the classical coin scenario a fully mixed state ρC = 1
d

is used. After the transformation, Alice measures the state ρB

in the computational basis and sends the control state ρC to
Bob, who also performs a general measurement defined by
positive operator-valued measure (POVM) elements {Mb}d−1

b=0
to obtain his guess b. Bob wins if the results coincide.

The average guessing probability of Bob is defined as

Pg :=
d−1∑
a=0

Tr[(ρB⊗ρC )UC (|a〉〈a| ⊗ Ma)U †
C ]. (2)

Although there are multiple constructions of MUBs for
prime dimensions, to demonstrate our result we will use a
construction of Wootters and Fields [6]:

U WF
a = 1√

d

d−1∑
i, j=0

ωai2+i j |i〉〈 j|. (3)

In the prime dimension d , this construction defines d different
bases and can be supplemented by the computational basis for
the full set of d + 1 MUBs. There are d + 1 different ways
to select the set of d bases. Additionally, for each set of d
bases we will consider relabeling the vectors, which allows
us to construct additional sets of d measurements used in the
guessing game.

A. Classical coin scenario

In the case of a classical coin state, we have ρC = 1
d .

Clearly, this is equivalent to Alice choosing the measurement
uniformly at random and Bob then receiving the information
about which measurement was chosen. Based on this infor-
mation he has to guess the result obtained by Alice. While
for qubits the optimal strategy for Bob is straightforward and
easy to understand (he prepares a coherent superposition of
two basis states of the two possible measurements of Alice)
and yields a guessing probability of 1

2 (1 + 1√
2

), for the higher-
dimensional variant of the game the situation is much more
complicated. In Appendix C we derive an upper bound in the
form 1

d (1 + d−1√
d

) valid for any set of MUBs (this includes re-
labeling since it does not influence Bob’s guessing probability
in the classical coin scenario), which converges to zero for
high d . Furthermore, for the set of MUBs defined in (3) up to
d = 7 we also obtain exact values. For higher d we provide
numerical estimates that show that the bound obtained is not
tight. These results show that without coherent information,
with increasing d , Bob can obtain only negligible information
about the result obtained by Alice irrespective of which set of
MUBs she uses.

B. Quantum coin scenario

The situation is dramatically different for the quantum coin
scenario, in which ρC = |+〉〈+|. First, we show that for a
specific selection of MUBs it is possible for Bob to obtain
Alice’s result with certainty. To achieve this, Alice needs to
select both the proper d WF MUBs (quantum setting) and
label the individual measurement basis vectors in a suitable
way as well (classical setting). Specifically, if Alice chooses

d WF bases without relabeling, Bob can never achieve perfect
guessing, as we have shown in [34].

MUBs which result in Bob’s perfect guessing probability
are defined as

U DPP
a = 1√

d

d−1∑
i, j=0

ωai2+i j−a2i|i〉〈 j|, (4)

which can be seen as relabeling of the vectors of the bases of
the WF construction: U DPP

a | j〉 = U WF
a | j − a2〉.

Let us define Bob’s (pure) probe state |ψB〉 and measure-
ments {Ma}d−1

a=0 as

|ψB〉 = 1√
d

d−1∑
k=0

ω3d−2k3 |k〉,

Ma = |φa〉〈φa|
〈φa|φa〉 ,

|φa〉 := 1√
d

d−1∑
a=0

〈 j|U †
a |ψB〉|a〉,

(5)

where |φ j〉 are unnormalized pure states. In Appendix B we
show that {Ma}d−1

a=0 form a projective measurement. Subse-
quently, we show that such a measurement allows Bob to
guess perfectly Alice’s measurement outcomes if used in con-
junction with the probe state |ψB〉.

Interestingly, if one of the WF bases is exchanged for the
computational basis (which corresponds to a quantum differ-
ence), there is no way for Bob to achieve perfect guessing for
any labeling of the individual measurements. In other words,
if the computational basis is included in the set of MUBs used,
we have strong numerical evidence that Alice can retain some
secrecy towards Bob irrespective of the labeling used; for
dimensions 3 and 5 this can be shown by an exhaustive search
over all the possible relabelings; for higher dimensions we
performed a randomized search (see Appendix D for details).

IV. OPTIMAL HIDING IN THE QUANTUM COIN CASE

We have shown that if Bob can influence the choice of
MUBs used by Alice, he can perfectly guess her outcome.
It is thus very natural to ask the complementary question:
If Alice can retain full control of her measurements, what is
the maximum Bob can learn about her outcome? And how
does this maximum depend on the quantum setting of her
measurements and actual labeling?

To answer this question fully, one would have to search
through all possible MUBs, including their labeling, and find
optimal values. To keep the task tractable, first, we have fo-
cused on the standard WF set of MUBs plus the computational
basis (leading to d + 1 possibilities) plus possible relabelings
expressed via permutation matrices Pπ , which relabel the
computational basis states and leave the MUB property intact:

|〈i|U †
a Ub| j〉| = 1√

d
= |〈i|PπU †

a UbPπ ′ | j〉|.

Due to the intractably large number of combinations, for di-
mensions higher than 5 we first restricted ourselves to cyclic
permutation matrices. On top of that, we have also tested
randomly a large set of noncyclic permutation matrices.
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FIG. 2. Here we depict the bounds of the guessing probability
for the classical and quantum coins for different dimensions. The
quantum coin upper bound (QUB) is analytical and equal to 1.
For d up to 5 the quantum coin lower bounds (QLBs) are over all
relabeling (permutations); for higher dimensions they are over all
cyclic permutations topped up by a random search. For d up to 7
the classical coin lower bounds (CLBs) are tight and obtained by an
exhaustive search. The classical upper bounds (CUBs) are obtained
via matrix inequalities.

For a fixed set of MUBs, we cast the problem a seesaw
semidefnite programming [35] (see Appendix A for details),
which allows us to obtain a lower bound on Pg. We have
randomized the initial point and repeated the optimization to
obtain the lower bounds as depicted in Fig. 2. As a last step,
to look a bit behind the strict limit of WF construction and its
relabeling, we applied the seesaw algorithm to unitaries close
to the MUBs in the space of unitary matrices. In all cases we
obtained values higher than the WF construction; this shows
that the found values constitute (at least) a local minimum in
the space of unitary matrices, while the search over permuta-
tion matrices suggests that they constitute a global minimum
over the space of MUB unitary matrices as well.

While the obtained minima decrease with the dimension,
they stay far above the upper bounds of the classical coin
scenario. Thus, it is clear that irrespective of the selection
of measurements by Alice, obtaining coherent information
about her measurement allows Bob to take a more accurate
guess. At the same time, in the case of the quantum coin,
the maximal and minimal guessing probabilities discovered
with our numerical methods change with the choice of both
measurement bases and their labeling, making it critically
important for Alice to carefully choose the MUBs used in the
guessing game.

An analysis of the actual MUBs that lead to the obtained
minimum guessing probability sheds some light on the prob-
lem. Surprisingly, it turned out that the minimal guessing
probabilities we found are obtained for the standard WF con-
struction of MUBs {U WF

a }d−1
a=0 . So in the case when Alice can

make her choice of measurements, including the labeling, it is
best for her to select the standard construction to minimize the
knowledge of Bob. At the same time we could see that perfect
guessing by Bob was achieved for the DPP construction de-
fined in Eq. (4), which differs from the WF construction only

by relabeling; that is, boundary values we found are achieved
for MUBs that differ only by labeling.

On the contrary, if the computational basis is included in
the system by exchanging it with any of the WF bases, we
have strong numerical evidence that Bob cannot perfectly
guess the outcome, nor can Alice hide it as well as in the WF
case. This suggests that the set of d WF constructed bases
including its relabeling is structurally different than any set in
which the computational basis is used with d − 1 WF bases. It
is worth mentioning that this fact is not connected to the com-
putation basis itself. One can find sets of MUBs containing
computation bases that exhibit the same properties as the WF
set or DPP set as defined in Eq. (4), but the remaining bases
are not given by the WF construction.

V. DISCUSSION

In our work we have shown, using a simple quantum-
mechanical game, that different choices of mutually unbiased
bases have dramatic effects on experimentally achievable re-
sults. Interestingly, for any prime dimension d one can choose
a set of d MUBs that provide the possibility of perfect guess-
ing by Bob of the result obtained by Alice in the quantum
coin scenario. At the same time, we obtained strong numerical
evidence that with a set of MUBs that differs only by relabel-
ing of the individual vectors, Alice can obtain the maximum
hiding of her result that the game allows.

This result is very striking on its own, as it shows a very
interesting and deep structure of the seemingly simple con-
struction of MUBs. Even though all of the bases look very
similar in their mathematical form, the subtle phase interde-
pendences allow for some of the subsets to deliver results truly
different from others.

More than that, the result is interesting from a practical
viewpoint as well. While it might be considered very artificial
to introduce quantum control of the measurement chosen by
Alice, this is, in fact, the way how such control works, for
instance, on the IBM quantum computer, where no classical
control is available [36]. In the future design of quantum
security elements it is possible that for technological reasons,
quantum controls will be a standard procedure. In such a case,
it will be very important to carefully consider the design of the
quantum part so that the selected MUBs are not only secure
as designed but are (reasonably) secure even in the case of
coherent control and possible relabeling.
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APPENDIX A: OPTIMIZATION ALGORITHM

Given a MUB construction encoded by the unitaries
{Ua}d−1

a=0 , we want to estimate the associated optimal strategy
that Bob can use to guess Alice’s outcomes in the quantum
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coin scenario. The optimal strategy would be the result of the
following optimization:

Pmax
g = max

ρB,{Ma}d−1
a=0

d−1∑
a=0

TrAB[(ρB ⊗ ρC )UC (|a〉〈a| ⊗ Ma)U †
C ]

s.t. ρB � 0,

TrρB = 1, (A1)

Ma � 0 ∀ a ∈ {0, . . . , d − 1},
d−1∑
a=0

Ma = 1,

where the optimization variables are Bob’s probe state ρB and
Bob’s POVM elements Ma corresponding to the outcome a.
Also recall that ρC is the control state representing the choice
of measurements, and UC is a controlled unitary used to im-
plement Alice’s measurement settings coherently. The target
function of this optimization problem is nonlinear; therefore,
it cannot be solved directly by semidefinite programming
(SDP). We therefore cast it as two SDPs, which we run al-
ternatively. In the first SDP we optimize over {Ma}d−1

a=0 with
ρB being constant, and in the second one we optimize over ρB

while {Ma}d−1
a=0 are constant: For SDP 1, given ρB,

{Ma}d−1
a=0 = arg max

{Ma}d−1
a=0

1

d

d−1∑
i, j,a=0

〈i|Ma| j〉〈a|U †
j ρBUi|a〉

s.t. Ma � 0 ∀ a ∈ {0, . . . , d − 1},
d−1∑
a=0

Ma = 1.

For SDP 2, given {Ma}d−1
a=0 ,

ρB = arg max
ρB

1

d

d−1∑
i, j,a=0

〈i|Ma| j〉〈a|U †
j ρBUi|a〉

s.t. ρB � 0,

TrρB = 1,

where we simplified the notation with

d−1∑
a=0

TrAB[(ρB ⊗ ρC )UC (|a〉〈a| ⊗ Ma)U †
C ]

= 1

d

d−1∑
i, j,a=0

〈i|Ma| j〉〈a|U †
j ρBUi|a〉

for

UC =
d−1∑
i=0

U †
i ⊗ |i〉〈i|,

ρC = |+〉〈+|,

|+〉 = 1√
d

d−1∑
i=0

|i〉.

The two SDPs are each guaranteed to converge; the seesaw,
however, must stop at a “convergence parameter” ε that we set
to be 10−6. Explicitly, the seesaw algorithm is the following:

Algorithm 1 Seesaw

1:
Initialization: Generate a random density matrix ρ0, distributed
according to the Hilbert-Schmidt measure. Set PW = 0.

2: POVM optimization: Given ρ0, solve the SDP with {Ma}d−1
a=0 as

a variable, and find the solution {M∗
a }d−1

a=0 .
3: State optimization: Given {M∗

a }d−1
a=0 from step 2, solve the SDP

with ρB as a variable, and find the solution ρ∗
B and P∗

W .
4: Convergence check:

• If P∗
W − PW > ε, then set ρ0 = ρ∗

B and PW = P∗
W . Repeat

from step 2.
• If P∗

W − PW < ε, stop the algorithm. The complete solution is
given by P∗

W , ρ∗
B, {M∗

a }d−1
a=0 .

The algorithm is then applied to a large number of initial
random points ρ0. We observed that for small enough ε it
always yields the same result P∗

W , suggesting that the seesaw
algorithm tightly lower bounds the solution of (A1).

APPENDIX B: OPTIMAL STRATEGY

In the DDP construction we considered Alice’s MUB mea-
surements, defined as Ua = 1√

d

∑d−1
i, j=0 ωai2+i j−a2i|i〉〈 j|. Bob’s

optimal strategy in this case is

|ψB〉 = 1√
d

d−1∑
k=0

ω3d−2k3 |k〉,

Ma = |φa〉〈φa|
〈φa|φa〉 ,

|φa〉 = 1√
d

d−1∑
a=0

〈 j|U †
a |ψB〉|a〉,

where |ψB〉 is Bob’s (pure) probe state and {Ma}d−1
a=0 are POVM

elements of the measurement he uses on the probe state ρC =
|+〉〈+| to guess Alice’s outcome. Note that states |φa〉 are not
normalized.

Here we show that {Ma}d−1
a=0 is, indeed, a valid POVM, i.e.

Ma � 0 ∀ a and
∑d−1

a=0 Ma = 1. Positivity is guaranteed by
definition. To prove summation to identity we notice that Ma

are projectors and span the Hilbert space of Bob if { |φ j〉
‖|φ j〉‖ }

d−1

j=0
form an orthonormal basis. Normalization is guaranteed by
definition, so it remains to prove orthogonality:

〈φi|φ j〉 = 1

d

d−1∑
a=0

〈 j|U †
a |ψB〉〈ψB|Ua|i〉

= 1

d3

d−1∑
a,k,l=0

ω−(ak2+ jk−a2k)ω3d−2k3
ω−3d−2l3

ωal2+il−a2l

= 1

d3

d−1∑
a,k,l=0

ω−ak2− jk+a2k+3d−2k3−3d−2l3+al2+il−a2l .

032206-5



DODA, PIVOLUSKA, AND PLESCH PHYSICAL REVIEW A 103, 032206 (2021)

1. Dimensions larger than 3

In what follows, we will show that for d > 3 (d = 3 and
d = 2 are treated separately) the above expression can be
simplified using quadratic Gauss sums. In order to do so, we
will manipulate the exponents of ω. The key idea is to realize
that since ωd = 1, we can work with its exponent modulo d .
Additionally, we introduce a substitution,

m = l + k, n = l − k,

and two constants,

α = 3d−2 ≡ 3−1 (mod d ),

β = 2d−2 ≡ 2−1 (mod d ).

From these definitions it follows that

l ≡ β(m + n) (mod d ),

3α ≡ 1 (mod d ),

k ≡ β(m − n) (mod d ),

2β ≡ 1 (mod d ),

l2 − k2 ≡ mn (mod d ),

il − jk ≡ βm(i − j) + βn(i + j) (mod d ),

l3 − k3 ≡ β2n(3m2 + n2) (mod d ).

We will also use the quadratic Gauss sum:

d−1∑
a=0

ωa2m =
{(

m
d

)
εd

√
d if m �≡ 0 (mod d ),

d if m ≡ 0 (mod d ),

where ( m
d ) is the Legendre symbol:(

m

d

)
=

{
1 if ∃n : m ≡ n2 (mod d ),
−1 if �n : m ≡ n2 (mod d ),

and

εd =
{

1 if d ≡ 1 (mod 4),
i if d ≡ 3 (mod 4).

After the substitution, the expression reads

〈φi|φ j〉

= 1

d3

d−1∑
a,m,n=0

ωamn−a2n−αβ2n3−β2m2n+βm(i− j)+βn(i+ j)

= 1

d3

d−1∑
m,n=0

ω−αβ2n3−β2m2n+βm(i− j)+βn(i+ j)
d−1∑
a=0

ωamn−a2n.

The sum over a is a quadratic Gauss sum:

d−1∑
a=0

ω−a2n+amn =
d−1∑
a=0

ω−n(a−βm)2
ωβ2m2n

= ωβ2m2n
d−1∑
a=0

ω−a2n

=
{
ωβ2m2n

(−n
d

)
εd

√
d if n �≡ 0 (mod d ),

d if n ≡ 0 (mod d ),

where the second equality follows from the fact that
(a − βm)2 iterates over the same values (mod d ) as a2. Sub-
stituting this expression in the previous one, we obtain

〈φi|φ j〉 = 1

d3

d−1∑
m=0

ωβm(i− j)

×
[

d−1∑
n=1

εd

√
d

(−n

d

)
ω−αβ2n3+βn(i+ j) + d

]

= δi j

d

[
εd√

d

d−1∑
n=1

(
n

d

)
ω12(d−2)n3−n j + 1

]
, (B1)

which shows that they are orthogonal as requested. We
then show that this construction gives a guessing probability
Pg = 1:

Pg =
d−1∑
k=0

TrAB
[
U †

C (ρB ⊗ ρC )UC (|k〉〈k| ⊗ Mk )
]

=
d−1∑
k=0

TrAB

(
d−1∑
a=0

U †
a ⊗ |a〉〈a|

)(
|ψB〉〈ψB| ⊗ 1

d

d−1∑
i, j=0

|i〉〈 j|
)

×
(

d−1∑
b=0

Ub ⊗ |b〉〈b|
)(

|k〉〈k| ⊗ |φk〉〈φk|
〈φk|φk〉

)

= TrB

d−1∑
k=0

(
1√
d

∑
a

〈k|U †
a |ψB〉|a〉

)

×
(

1√
d

∑
b

〈ψB|Ub|k〉〈b|
)

|φk〉〈φk|
〈φk|φk〉

= TrB

d−1∑
k=0

|φk〉〈φk| |φk〉〈φk|
〈φk|φk〉

=
∑

k

〈φk|φk〉

= 1

d

d−1∑
a,b,k=0

〈b|a〉〈k|U †
a |ψB〉〈ψB|Ub|k〉

= 1

d

d−1∑
a=0

〈ψB|Ua

(
d−1∑
k=0

|k〉〈k|
)

U †
a |ψB〉

= 1

d

d−1∑
a=0

〈ψB|1|ψB〉 = 1. (B2)

2. Dimension 3

Above we have shown that Bob can guess with probability
1 for d > 3. For the case d = 2 the optimal strategy can be
found in [33]. For d = 3, the proof needs to be adapted due
to the fact that a multiplicative inverse (mod 3) of 3 does
not exist; we then use ω = e

2π i
3 for Alice’s MUB construc-

tion Ua = 1√
d

∑d−1
i, j=0 ωai2+i j−a2i|i〉〈 j|, and with ω9 = e

2π i
9 we
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define Bob’s strategy as

Ma = |φa〉〈φa|
〈φa|φa〉 ,

|φa〉 = 1√
d

2∑
a=0

〈 j|U †
a |ψB〉|a〉,

|ψB〉 = 1√
d

2∑
k=0

ωk3

9 |k〉.

The proof follows exactly the same steps as (B1), with all the
substitutions remaining valid, with the exception of

ωk3−l3

9 = ω
−β2n(3m2+n2 )
9

= ω−β2m2nω
−β2n3

9

= ω−β2m2nω−7n3

9 ,

where we made use of the fact that β = 5 is the multiplicative
inverse of 2 (mod 3) and (mod 9). We then get

〈φi|φ j〉 = δi j

3

[
ε3√

3

2∑
n=1

(
n

d

)
ω

7n3−3n j
9 + 1

]
,

concluding the proof.

APPENDIX C: CLASSICAL COIN

In the classical case, the control state is a computational
basis vector |i〉, chosen uniformly at random, which selects
the measurement used by Alice via the controlled unitary UC .
Therefore, it contains full information about the basis Alice
measures in, which can be obtained by Bob performing a
measurement in the computational basis. Any other measure-
ment by Bob only introduces extra entropy to this information
via uncertainty principle and thus decreases Bob’s guessing
probability. Bob’s optimal guessing strategy is therefore a
simple projection onto the computational basis, which re-
veals Alice’s measurement basis i, followed by a map ñ(i)
that associates to each basis i the most probable outcome
of Alice for that basis. Note that this also means that the
maximum guessing probability in the classical scenario does
not depend on the labeling of the outcomes since the labeling
does not change the probability of the most probable outcome.
Formally,

ñ(i) := arg max
j∈{0,...,d−1}

PA( j|Ui ),

PA( j|Ui) = Tr(ρBUi| j〉〈 j|U †
i ),

Mi =
d−1∑

i=0:ñ(i)= j

|i〉〈i|.

With these definitions we can state the problem as follows:

Pc
g := max

ρB,{Mk}d−1
k=0

d−1∑
k=0

TrAB

[(
ρB ⊗ 1

d

)
UC (|k〉〈k| ⊗ Mk )U †

C

]

= max
ρB

max
n0,n1,...,nd

1

d
Tr

(
d−1∑
j=0

ρBUj |n j〉〈n j |U †
j

)

= 1

d
max

ρB

Tr

(
d−1∑
j=0

ρBUj |ñ( j)〉〈ñ( j)|U †
j

)

= 1

d
λmax

[
d−1∑
j=0

Uj |ñ( j)〉〈ñ( j)|U †
j

]
,

where λmax[T ] is the largest eigenvalue of a matrix T . For
small dimensions, the maximum probability can be found by
evaluating all possible mappings ñ( j) (there are dd of them).
This, however, quickly becomes infeasible; therefore, we look
for an upper bound:

Pc
g = 1

d

(
1 + λmax

[
d−1∑
j=0

Uj |ñ( j)〉〈ñ( j)|U †
j − 1

])
;

to simplify the notation we define

Tj := Uj |ñ( j)〉〈ñ( j)|U †
j − 1

d
,

T :=
d−1∑
j=0

Tj,

which satisfy the following properties:

Tr(Tj ) = 0 ∀ j ∈ {0, . . . , d − 1},
Tr(T †

i Tj ) = 0 ∀ i �= j ∈ {0, . . . , d − 1},

Tr
(
T 2

j

) = d − 1

d
∀ j ∈ {0, . . . , d − 1},

Tr(T 2) = Tr

(
d−1∑

i, j=0

T †
i Tj

)

=
d−1∑
i=0

Tr(T †
i Ti ) +

d−1∑
i, j = 0

i �= j

Tr(T †
i Tj )

= d − 1.

The guessing probability with a classical coin can then be
expressed as

Pc
g : = 1

d
(1 + λmax[T ]).

Since T is traceless and Hermitian, its largest eigenvalue is
positive. We then use the following inequality:

Tr(T 2) = λ2
max[T ]Tr

(
T 2

λ2
max[T ]

)

� λ2
max[T ]

(
1 + min

S∈Md−1:TrS=−1
Tr(S2)

)

= λ2
max[T ]

(
1 + 1

d − 1

)

= λ2
max[T ]

d

d − 1
,

where we denoted the space of Hermitian matrices of order
d − 1 by Md−1. Substituting the trace of T 2, we get the desired
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upper bound:

λmax[T ] � d − 1√
d

,

Pc
g � 1

d

(
1 + d − 1√

d

)
.

APPENDIX D: NUMERIC SEARCH

1. Classical coin

When considering a classical coin, the optimal strategy
is given by searching over all possible maps ñ : Zd →
Zd and taking the largest eigenvalue of the matrix T =∑d−1

j=0 Uj |ñ( j)〉〈ñ( j)|U †
j − 1. There are dd such mappings,

and we could perform this extensive search for d = 2, 3, 5, 7,
obtaining exact bounds for these dimensions. In other dimen-
sions lower bounds were obtained by applying the seesaw
algorithm in Appendix A with ρC = 1/d and randomized
initial points. This algorithm tends to get stuck in local max-
ima; however, in the dimensions in which we could perform
the extensive search we observed that the seesaw algorithm

returned the maximum value more often than by a random
sampling of ñ in the space of maps Zd → Zd .

2. Quantum coin

For the quantum coin, for a small enough convergence
parameter ε (10−6) we did not observe convergences to lo-
cal maxima different from the global maximum. Differently
from the classical case, the choice of unitaries changes the
value of the maximum. We then search for the smallest such
value among all possible unitary constructions. The space
over which we search is given by choosing d + 1 unitaries
out of the d + 1 available from the WF construction and
by relabeling, i.e., applying a permutation matrix to each
unitary. For d = 3, 5 we searched over all possible permu-
tations; for d = 7 we considered only cyclic permutations,
while for higher dimensions we randomly sampled over the
space of permutation matrices. Each search was performed
for all d + 1 choices of unitaries. We observed that the WF
unitaries give the lowest value when the excluded unitary is
the identity.
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