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Discrete-time quantum walk with time-correlated noise
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The dynamics of a discrete-time quantum walk subject to time-correlated noise is studied in this paper. The
noise, which goes beyond the usual telegraph noise with random variables 1 and −1, is modeled as a unitary
coin-type operator and it is generated by a sample path of the Ornstein-Uhlenbeck process. Up to the first order
in the amplitude of noise, a master equation to describe the walk is derived. The dynamics governed by the
master equation is in good agreement with those given by numerical simulations within a certain number of
steps, depending on the parameters of noise. Two remarkable features of long-time dynamics are observed in
the numerical simulations. (1) In the slow noise regime, with the increase of the noise amplitude, the quantum
coherence is suppressed, and the dynamics of noisy discrete-time quantum walk gradually transits to that of
classical random walk. (2) In the fast noise regime, the walker is confined into a few lattice sites, and the width
of the wave packet is much narrower compared with that in the slow noise regime.
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I. INTRODUCTION

The quantum walk (QW), a natural and straightforward
generalization of the classical random walk (CRW) to the
quantum world, is currently a topic of great interest to both
theorists and experimentalists [1–3]. Compared with CRW,
where information propagates at a speed

√
t , one of those

crucial features that QW possesses is a much faster expan-
sion of walker proportional to t in position space due to
quantum coherence. At certain computational tasks, the QW
provides exponential speedup over classical computation and
is used as a powerful tool in the most efficient quantum al-
gorithms [2,4,5]. Moreover, with the ability to engineer and
control the dynamics of QW by controlling various param-
eters in evolution operators, the QW can also be used to
model a wide variety of physical process including photosyn-
thesis [6–8], quantum diffusion [9], optical or spin pumping
and vortex transport [10,11], electrical breakdown [12], lo-
calization [13,14], topological phase [15–20], and so on.
Motivated by the prospect of such an array of applications,
QW are implemented in numerous experimental setups in-
cluding quantum optical lattices [21,22], ion traps [23–25],
photons [18,26–31], and nuclear magnetic resonance [32,33].
These systems offer the possibility to study the quantum dy-
namics of single or many particles in a precisely controlled
experimental setting.

Categorized into two types, the dynamics of the walker
is determined completely by a unitary time evolution. In the
continuous-time quantum walk (CTQW) [34], the dynamics is
described by a Hamiltonian, which defines an evolution con-
tinuous in time but discrete in space, without coinlike degrees
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of freedom. In the discrete-time quantum walk (DTQW) [35],
its dynamics is generally implemented by combining condi-
tional shift operators and coin operators, which act on the
position of a walker and its associated coin, respectively, and
the system evolves in position space taking the interference of
amplitudes of multiple traversing paths [36–39] into account.

In practice, a realistic application of QW should take dis-
order induced by noise and imperfections into account. The
lattice dynamics of the disordered continuous-time quantum
walk has been studied for many years, and a key feature
(i.e., the localization effect) was found in studies of the role
played by system dimensionality [40], correlations [41], and
electron-electron interaction [42]. Different variations of the
standard DTQW have also been proposed, such as two entan-
gled particles [43], entangled coins [44], multistates [45,46],
and different quantum coins in a certain sequence [47]. For
a dynamic disorder, the quantum coins are identical for
all lattice sites, but they change for every step or several
steps [48–50]. The analysis of the time evolution of a quantum
walker in the presence of unitary noise in the Hadamard walk
showed that the standard deviation of the spatial distribution
acquires a diffusive behavior for long steps, similar to the
CRW.

Considering these studies of noisy DTQW are mainly
focused on the influence of time-uncorrelated or space-
correlated noise on dynamics, one may wonder how the
dynamics of DTQW changes due to time-correlated noises.
Furthermore, since noise is introduced to model the interac-
tion between the system and the environment, the dynamics
averaged over noise realizations should be equivalent to a
master equation. Then what is the master equation for a
DTQW subject to noise?

The remainder of this paper will try to answer these ques-
tions as follows: In Sec. II we introduce the model for a
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DTQW subject to time-correlated noise. In Sec. III we derive a
master equation for the noisy DTQW and discuss the influence
of noise parameters on the valid time of the master equa-
tion. In Sec. IV numerical simulations of noisy dynamics are
explored. Section V closes the paper with some concluding
remarks.

II. NOISY SPLIT-STEP QUANTUM WALK

In the CTQW, one can directly define the walk on the
position Hilbert space. In the DTQW, in addition to position
Hilbert space, it is necessary to introduce a quantum coin op-
eration in a coin Hilbert space to define the direction in which
the particle has to move. Due to the coin degree of freedom,
the DTQW can be represented by a split-step quantum walk
(SSQW), which acts on a single spin-1/2 particle (|↑〉, |↓〉)
in a one-dimensional lattice (|x〉, x ∈ Z), reminiscent of the
position and coin Hilbert space. Parametrized by angles θ1

and θ2, a single SSQW can be defined by the time evolution
operator

Ûs = T↓Ry(θ2)T↑Ry(θ1). (1)

This protocol consists of a sequence of unitary operations:

Ry(θ ) =
∑

x

e−iθσy/2 ⊗ |x〉〈x|,

T↑ =
∑

x

|x + 1〉〈x| ⊗ |↑〉〈↑| + |x〉〈x| ⊗ |↓〉〈↓|,

T↓ =
∑

x

|x〉〈x| ⊗ |↑〉〈↑| + |x − 1〉〈x| ⊗ |↓〉〈↓|. (2)

The particle in the SSQW, like other quantum system in
the practical world, would inevitably interact with the envi-
ronment. This interaction can be described by a variety of
noise models. Here we employ a unitary noise operator given
in [48,51,52] that reads

Û = ÛsÛA, (3)

where ÛA = ∑
x e−iÂ(t ) ⊗ |x〉〈x|, Ûs is the time evolution oper-

ator of the noiseless SSQW, and Â(t ) is a Hermitian operator
determined by the environment. In terms of the Pauli matrix,
Â(t ) can be written as

Â(t ) = λx(t )σx + λy(t )σy + λz(t )σz, (4)

where λν (t ), ν = x, y, z are real stochastic variables and σx,y,z

are Pauli operators. The dynamics of the walker can be calcu-
lated by the ensemble average [53,54]

ρ(t ) = 〈Û (t )ρ(0)Û †(t )〉, (5)

where ρ(0) is the initial density matrix and 〈...〉 denotes the
average of unitary dynamics over all possible realizations
of the stochastic processes. Here, for simplicity, we assume
that λν (t ) = γνζν (t ). ζν (t ) comes from a Gaussian process
satisfying

〈ζν (t )〉 = 0, 〈ζν (t )ζν ′ (t ′)〉 = δν,ν ′K (t, t ′). (6)

Although DTQW can be implemented by linear optical com-
ponents as in [29], this increases the experimental complexity
in terms of optical stability, alignment, and cost. Based
on [26], we present a scheme to implement the noisy SSQW
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FIG. 1. Sketch of the setup. The initial pulse is from a pulsed
laser and coupled into the circuit by an acousto-optic modulator
(AOM). H1 and H2 represent the rotation operations Ry(θ1) and
Ry(θ2), respectively. P1 and P2 are introduced to realize the step
operations T1 and T2, respectively. The gray circles of the EOM
represent the input and output of external voltage, respectively. Two
green circles represent two SMFs with different lengths to produce
temporally encoded states.

on an optical feedback loop as illustrated in Fig. 1. In this
scheme, different path lengths in the circuit generate tem-
porally encoded states where different position states are
represented by discrete-time bins. The stochastic unitary op-
eration e−iÂ(t ) is implemented by two electro-optic modulators
(EOMs) that always maintain the same input electric field to
output the same stochastic signals. Two coin operations Ry(θ1)
and Ry(θ2) are implemented by half-wave plate (HWP) H1

and H2, separately. The photonic wave packets are split by a
polarizing beam splitter (PBS) P1 and routed through single-
mode fibers (SMF) of different length, which are labeled by
x + 1 and x, respectively. Considering the packet x arrives at
P2 firstly, therefore, in chronological order the wave packets
are x − 1, x and x, x + 1 are detected successively. Then some
photons are reflected by a beam splitter (BS) for detection and
the transmitted photons continue to go through the circuit.

III. MASTER EQUATION OF NOISY SSQW

The effects of noise in coin operator or conditional trans-
lation on the behaviors of a DTQW have been extensively
studied [48,50,55]. These studies have pointed that the dy-
namics of noisy DTQW averaged over all possible realizations
equals that of a walker interacting with the environment; how-
ever, the expression for the master equation is still unknown.
Faced with this problem, we derive a master equation in the
following. The reduced dynamics of a system embedded in an
environment is generally described by a master equation of
the following form:

d

dt
ρ(t ) = − i

h̄
[Ĥs, ρ(t )] + D[ρ(t )], (7)

where ρ(t ) is the reduced density matrix of the walker with
Hamiltonian Ĥs coupled to the environment. The first term
on the right-hand side accounts for the unitary part of the
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evolution, The second term accounts for the nonunitary dy-
namics resulting from the interaction with the environment.
In this picture decoherence is simulated by averaging over an
ensemble of these stochastic but unitary quantum dynamics.
Although the step protocol is defined explicitly in terms of
the discrete unitary operations T↑,↓ and Ry(θ ), the result-
ing evolution over one step is equivalent to that generated
by a time-independent effective Hamiltonian over the step
time, i.e., e−iĤs = Ûs. Based on the translational symmetry of
the system under study, in the quasimomentum basis |k〉 =
(1/

√
2π )

∑
k e−ikx|x〉, the effective Hamiltonian Ĥs can be

written as

Ĥs =
∑

k

[Ek 
nk · 
σ ] ⊗ |k〉〈k|. (8)

The energy and the components of the Bloch vector are given
by

cos Ek = cos(θ1/2) cos(θ2/2) cos k − sin(θ1/2) sin(θ2/2),
(9)

and 
nk = nx
i + ny 
j + nz
k, with

nx = sin(θ1/2) cos(θ2/2) sin k

sin E (k)
,

ny = cos(θ1/2) sin(θ2/2) + sin(θ1/2) cos(θ2/2) cos k

sin E (k)
,

nz = − cos(θ1/2) cos(θ2/2) sin k

sin E (k)
. (10)

Û = e−iĤs e−iÂ(t ) = e−iĤ (t ), up to the first-order commutation
relation of the Baker-Campbell-Hausdorff (BCH) formula,
this approximate expression for Ĥ (t ) is written as

Ĥst (t ) = Ĥs +
∑

ν

λν (t )L̂ν, (11)

where ν = x, y, z with

L̂x = ∑
k[σx − Ek (
n × 
σ )x] ⊗ |k〉〈k|,

L̂y = ∑
k[σy − Ek (
n × 
σ )y] ⊗ |k〉〈k|,

L̂z = ∑
k[σz − Ek (
n × 
σ )z] ⊗ |k〉〈k|. (12)

The Hamiltonian of the quantum simulator, Ĥst (t ), is com-
posed of the target Hamiltonian, Ĥs(t ), and a stochastic part
that includes a set of Hermitian operators L̂ν with noisy cou-
pling λν (t ). This stochastic part will be used to engineer the
dissipator in Eq. (7).

The stochastic density matrix corresponding to one real-
ization of the Gaussian processes, ρst (t ) = |ψst (t )〉〈ψst (t )|, is
given in terms of the pure state |ψst (t )〉, which is obtained
from the exact solution of the Schrödinger equation generated
by the stochastic Hamiltonian implemented in the simulator
Ĥst (t ) in Eq. (11),

d

dt
ρst (t ) = −i[Ĥs, ρst (t )] − i

∑
ν

γν[ζν (t )L̂ν, ρst (t )], (13)

where ζν was introduced to describe the stochastic processes.
Averaging over different realizations of stochastic processes
ζν (t ), we obtain the dynamics for the noise-averaged density

matrix

d

dt
〈ρst (t )〉 = −i[Ĥs, 〈ρst (t )〉] + D[ρst (t )], (14)

where D[ρst (t )] = −i
∑

ν γν[L̂ν, 〈ζν (t )ρst (t )〉]. Comparing
Eq. (14) with Eq. (7), the master equation describing the
reduced dynamics of open systems, enables us to identify the
second term on the right-hand side as a dissipator responsible
for an effective nonunitary evolution of the noise-averaged
density matrix. Since the stochastic density matrix is a func-
tional of the stochastic field ζν (t ), the explicit form of the
dissipator can be derived by using Novikov’s theorem [53,56],
which gives the mean value of a product of a Gaussian noise
with its functional

〈ζν (t )ρst [ζν (t )]〉 =
∫ t

0
〈ζν (t )ζν (t ′)〉

〈
δρst [ζν (t )]

δζν (t ′)

〉
dt ′. (15)

The functional derivative can be obtained from the stochas-
tic density matrix ρst (t ) = Ûst (t, t ′)ρst (t ′)Û †

st (t, t ′), where the
time evolution operator Ûst(t, t ′) = T exp [−i

∫ t
t ′ Ĥst (s)ds],

and T denotes the time-ordering operator. Therefore, partial
differentiation reads

δρst (t )

δζν (t ′)
= Ûst (t, t ′)(−iγν[L̂ν, ρst (t

′)])Û †
st (t, t ′). (16)

Using this expression, the master equation for the noise-
averaged density matrix is derived as

d

dt
〈ρst (t )〉 = −i[Ĥs, 〈ρst (t )〉] −

∑
ν

γ 2
ν

∫ t

0
dt ′K (t, t ′)

× [L̂ν, 〈[Ûst (t, t ′)L̂νÛ †
st (t, t ′), ρst (t )]〉]. (17)

In this part the initial state |ψ (0)〉 = |x0〉 ⊗ (1/
√

2(|↑〉 −
i|↓〉) with x0 = 51 and θ1 = 0.2π, θ2 = 0.3π . Here we con-
sider time-correlated Ornstein-Uhlenbeck process

〈ζν (t1)ζν ′ (t2)〉 = δνν ′γ 2e−|t1−t2|/τ . (18)

We are interested in the dynamics with different ampli-
tudes γ and correlation time τ of the noise and will discuss
the situation that tunes from the Markovian (or white noise
limit, i.e., τ → 0) to the limit of the quasistatic noise (i.e.,
τ → ∞). The selected parameters can well describe the dy-
namic changes of the system from Markovian to quasistatic
noise transition. We compare the distribution of the analytical
results obtained from Eq. (17) with those of the numerical
results obtained by Eq. (5) and use the similarity S defined
by S = [

∑
x

√
Pa(t )Pn(t )]

2
[18,26–29] to quantify the equality

of two probability distributions (S = 0 for completely orthog-
onal distributions and S = 1 for identical distributions). As
pointed out in the earlier study, although a small imperfection
can cause

√
S to drop to 0.807 ± 0.002 [30], the two in com-

parison have no much differences. So, we choose S = 0.8 as
the threshold in our case.

Markovian case. The form of dissipator greatly simpli-
fies when the stochastic variables {ζν (t )} are described by
Ornstein-Uhlenbeck with τ = 0.1, which can be seen as a
white noises and therefore K (t, t ′) = δ(t − t ′). In particular,
the dissipator now only depends on the average density oper-
ator 〈ρst (t )〉 that we hereafter denote by ρ(t ) to simplify the
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FIG. 2. Time evolution of the density of probability in position
space for a quantum walker on chains with γν = γ . (a)–(c) An-
alytical space distributions [obtained from Eq. (19)] for τ = 0.1,
γ = 0.17, 0.25, 0.35, respectively. (d)–(f) Numerical space distri-
butions [obtained from Eq. (5)] for τ = 0.1, γ = 0.17, 0.25, 0.35,
respectively. (g) Similarity as a function of time.

notation. Eq. (17) in this case reduces to

d

dt
ρ(t ) = −i[Ĥs, ρ(t )] −

∑
ν

γ 2
ν [L̂ν, [L̂ν, ρ(t )]]. (19)

The dynamics are shown in Fig. 2.
Generalization to non-Markovian dynamics. While the use

of white noise leads to a Markovian Lindblad dissipator, a
non-Markovian evolution can be obtained by the use of col-
ored noise. Up to the second order in the strength of noise,
approximating Ûst (t, t ′) by Ûs(t, t ′) ≡ e−iHs (t−t ′ ), we can de-
rive a master equation for the walker subject to colored noise

d

dt
ρ(t ) = −i[Ĥs, ρ(t )]

−
∑

ν

γ 2
ν

∫ t

0
dt ′e(t−t ′ )/τ [L̂ν, [L̂ν (t, t ′), ρ(t )]],

(20)

where L̂ν (t, t ′) = Ûs(t, t ′)L̂νÛ †
s (t, t ′). The probability distri-

butions are shown in Fig. 3.
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FIG. 3. Time evolution of probability in position space of a quan-
tum walker on chains with γν = γ . (a)–(c) Analytical results for τ =
10, γ = 1.1, 2.1, 3.1 obtained from Eq. (20), and (d)–(f) numerical
results for τ = 10, γ = 1.1, 2.1, 3.1, respectively. (g) Similarity as a
function of time.

The similarities as functions of time for Markovian and
non-Markovian cases are presented in Figs. 2(g) and 3(g),
which demonstrate that the similarity decreases with the in-
crease of steps t . The white-dashed lines in Figs. 2 and 3 are
for the similarity between the analytical result and numerical
result being greater than 0.8 before reaching the evolution
steps t marked by the white line. If the similarity is greater
than 0.8, we would say the master equation derived from
Eq. (11) describes well the noisy walk. In fact, noticing the
SSQW can be written as e−iĤs e−iÂ(t ), we can rearrange the
Hamiltonian and write it as e−iĤst (t )−iĤe(t ), so in order to get
the Hamiltonian in Eq. (11), we have to ignore Ĥe. Therefore,
with the increase of evolution steps, the impact of the ignored
part on the dynamics gradually appears, and the similarity
of the two results naturally decreases. The larger the noise
amplitude, the greater the influence of this part on dynamics.
So the valid time of the master equation is shorter under
the same correlation time. This can be easily found from
Figs. 2 and 3. Furthermore, Figs. 2(g) and 3(g) show that
the steps for the similarity decreasing to the threshold value
(i.e., 0.8) for τ = 0.1, γ = 1.1 will be much shorter than that
for τ = 10, γ = 1.1. Time-correlated noise destroys the time
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uniformity of the SSQW and then affects the evolution of the
SSQW. Stochastic sequences with longer correlation times
τ are relatively smoother under the same noise amplitude γ

(see Fig. 8 in Appendix A), which means that the difference
between Ĥst (t ) and Ĥst (t + 1) is smaller and therefore the
influence of noise on the system evolution will be small. So
a longer correlation time induces a longer valid time of the
master equation.

IV. NUMERICAL SIMULATIONS OF NOISY DYNAMICS

Since the master equation can describe the noisy dynamics
well within a certain steps t , depending on the noise pa-
rameters, to explore the long-time behavior of noisy SSQW,
numerical simulations with representative noise parameters
are necessary. Under the action of the Ornstein-Uhlenbeck
noise, the walker spreads over the lattice with a probability
distribution relevant to the amplitude γ and correlation time
τ . The correlation function of the Ornstein-Uhlenbeck pro-
cess is similar to that of telegraph noise studied in [41]; we
here choose τ = 0.1 and τ = 10, respectively, as the typical
parameters for fast noise and slow noise in this work. In
Eq. (11)

∑
ν λν (t )Lν can be seen as ĤA + ĤA,s, where ĤA is the

Hamiltonian of noise and ĤA,s can be treated as the interaction
Hamiltonian. Since this part plays the role of perturbation,
one can require that the energy of this part, Ep, would be
smaller than Es (the energy of Ĥs), i.e., |〈Ep〉| � |ES| �
π , |〈Ep〉| � |〈EA〉| = √

3γ . Therefore the noise amplitude γ

should be larger than 0 but smaller than
√

π2/3. In practice,
in order to make the noisy dynamics more distinguish-
able, we consider γ ∈ [0, 4]. Moreover, we have numerically
checked the dynamics for all kinds of noise parameters and
found that while the probability distribution of each site
may be different, the shapes of the distributions remain
unchanged.

Figure 4 shows the probability distributions of the walker
over lattice sites at three different evolution steps (time) with
representative noise parameters. The blue lines (τ = 10 and
γ = 0.1, a weak noise with low decaying autocorrelation
function) in Figs. 4(a)–4(c) clearly show the characteristic
shape of an unperturbed SSQW. Namely, two evident peaks at
the edges and low probability around the initial position can
be found. While two edge peaks are suppressed, the central
part grows and a Gaussian-type distribution centered around
the initial position arises as the noise amplitude γ increases
[black and red lines in Figs. 4(a)–4(c)], which suggests that
a transition from the quantum to classical walk occurs. The
blue lines (τ = 0.1 and γ = 0.1, a weak noise with fast
decaying autocorrelation function) in Figs. 4(d)–4(f) clearly
show the destructive effect of noise on interference gener-
ated by SSQW. First, the probability distribution shows two
oscillating wings at the edges and an incoherent component
around the center. The central peak increases while the two
oscillating wings decrease, which disappears eventually. The
shapes for τ = 0.1, γ � 0.8 are almost same [see black and
red lines in Figs. 4(d)–4(f)]. From these figures we can find
also that quantum effects are completely suppressed by noise
in several steps, and then the oscillations are smoothed and
converge towards Gaussian distributions in few lattice sites.
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FIG. 4. Probability distribution of a walker over the lattices. The
particle is initially at the localized state |1 + (N − 1)/2〉 ⊗ (|↑〉 −
i|↓〉)/

√
2 with N = 1401, θ1 = 0.2π , and θ2 = 0.3π (valid in the

following work). The total number of steps is T = 1000. The noise
correlation times τ for (a)–(c) and (d)–(f) are 10 and 0.1, respec-
tively. The blue, black, and red lines represent noise amplitudes
γ = 0.1, 0.8, 4, respectively.

By comparing the probability distributions with the same
noise amplitudes and different correlation times, one can also
find that long noise correlation time is helpful to reduce the
damage of noise to quantum coherence.

What emerges from our analysis so far is that in time-
correlated noise regime, we see a transition from quantum
ballistic transport to classical diffusion. The influence of noise
on dynamics may be analyzed in more details by the time
dependence of the standard deviation, as shown in Fig. 5. The
first and the second moments of the spatial distribution at steps
t are given by

〈x(t )〉 =
∑

x

x〈Pt (x)〉 (21)
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FIG. 5. The averaged standard deviation 〈σ (t )〉 as a function
of evolution steps for SSQW subject to noise (Ornstein-Uhlenbeck
process) with different noise parameters.
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and

〈x2(t )〉 =
∑

x

x2〈Pt (x)〉. (22)

The standard deviation 〈σ (t )〉 of noisy SSQW at time t is
given by

〈σ (t )〉 =
√

〈x2(t )〉 − 〈x(t )〉2. (23)

It is well known that the transport properties of DTQW are
quite different from those of CRW, resulting mainly from the
principle of superposition of quantum mechanics. For noise-
less SSQW, the probability distribution of the walker exhibits
a ballistic behavior, and σ (t ) = q0t , where q0 = 0.4370 ±
0.0001 and σ = (0.9813 ± 0.0002)

√
t for CRW [48]. For τ =

10, γ = 0.1, the standard deviation is linear in time and can be
expressed as 〈σ (t )〉 = qt with q = 0.4288 ± 0.0001, which
is very close to the noiseless q0. This corresponds to their
high similarity of the probability distributions. And 〈σ (t )〉 =
(0.7906 ± 0.0004)

√
t for τ = 0.1, γ = 4 corresponding to

the classical diffusion. Therefore we can conclude the stan-
dard deviations for noisy SSQW in Fig. 5 from top to bottom
reflect the transition from noiseless SSQW to CRW.

So far the dynamic characteristics of the SSQW subject to
time-correlated noise have been explored, and now we focus
our attention on its genuine quantum features. Unitary coin
operation Ry(θ ) acts only on the walker’s internal degree of
freedom, leaving it generally in a superposition of spin up
and spin down. Conditional translation T↑,↓ relates the dis-
placement of the walker to its internal degree of freedom.
In this way, spin and position of the system are entangled,
and the evolution of SSQW creates a superposition among
the position states of the system, opening the way for in-
terference effects to take place that ultimately determine the
ballistic behavior for the displacement of the quantum walker.
Entanglement and interference are genuine quantum features
of DTQW since there are no analogs for CRW [57,58].

Consider now a many-body system divided into three re-
gions: regions A and B, and the rest of the system, C. Assume
that A ∪ B ∪ C is in a pure state |φ〉, and let ρAB = TrC |φ〉〈φ|.
If A ∪ B is entangled with part C, then ρAB is a mixed state.
For noisy SSQW, A, B, and C represent the coin, position, and
noise, respectively. TrC means averaging the density matrix
over possible realizations of the stochastic processes. There-
fore, ρ(t ) [Eq. (5)] is a mixed state, and its dynamic can
be described by Eq. (17). In the following, the negativity of
the averaged density matrix will be adopted to quantify the
entanglement between coin and position, which is defined
by [59,60]

N (ρ) = ||ρTx || − 1

d − 1
, (24)

where ||X || = Tr
√

X †X denotes the trace norm of an operator
X . ρTx is the partial transpose of the state ρ in the dc ⊗ dx

(dc < dx) quantum system. Here dx and dc represent the po-
sition degrees of freedom and coin degrees of freedom. For
SSQW, d = 2, and ρTx is defined for an orthonormal basis
{|x〉} as

ρTx =
∑
x1,x2

(Ic ⊗ |x1〉〈x2|ρ(Ic ⊗ |x1〉〈x2|), (25)
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FIG. 6. Negativity as a measure of entanglement between coin
and position as a function of evolution steps for SSQW subject to the
Ornstein-Uhlenbeck process with different noise parameters.

where Ic = |↑〉〈↑| + |↓〉〈↓|. Compared with the N (ρ) =
(||ρTx || − 1)/2, this N (ρ) bounds the maximum value of the
entanglement measure to 1 [59,60]. Besides, considering the
fact that log2{N (ρ)(d − 1) + 1} reduces the Renyi entropy
of a pure state |φ〉 with index q = 1/2 [61], N (ρ) can also
measure the entanglement for noiseless SSQW.

In Fig. 6 we present the negativity between the coin and
position as a function of time. For noiseless SSQW, the
entanglement between position and coin is realized by the
protocol Ûs and approaches to the maximal value, unity, in
several steps. Decreasing the noise amplitude or prolonging
the correlation time, it evolves to the asymptotic values 1 more
quickly. The behavior of entanglement for noisy SSQW can be
understood from the role of noise in SSQW. Noise destroys
the quantum features of SSQW. A transition from ballistic
transport to classical Gaussian diffusion can be found in the
space distribution, and the standard derivation 〈σ (t )〉 changes
from being proportional to steps t to being proportional to

√
t .

Therefore entanglements for noisy SSQW are always smaller
compared with noiseless SSQW and will cost more steps to
reach its maximum.

Quantum coherence makes a QW different from the CRW,
and the analysis of the probability distribution over the lattice
sites and the standard derivation only involve the diago-
nal elements of the density matrix. In order to gain more
insight into the behavior of the system, we study its coher-
ence C. The coherence of a quantum state is investigated
by adopting the normalized coherence measure proposed
in [62,63]

〈C(t )〉 = 1

N − 1

∑
i �= j

|̃ρi j (t )|, (26)

where N is the dimensionality of position Hilbert space,
and ρ̃ is obtained by taking the trace of the averaged den-
sity matrix ρ(t ) over coin degrees of freedom. Figure 7
shows the coherence for noisy SSQW with representative
noise parameters. In the slow noise regime (τ = 10), the
off-diagonal elements of the reduced density matrix grow
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FIG. 7. Averaged coherence 〈C(t )〉 as a function of steps t for
noisy SSQW with different noise parameters.

with time, and the larger the noise amplitude γ , the smaller
the increment of coherence during the same evolution steps.
In the fast noise regime (τ = 0.1), the coherence 〈C(t )〉
for τ = 0.1, γ = 0.1 increases over steps, but that for τ =
0.1, γ = 0.8 and τ = 0.1, γ = 4 increase quite slowly, which
indicates Gaussian spatial distributions around the initial po-
sition with narrow wave packets. We also noticed that the
behaviors of 〈C(t )〉 with different noise parameters are sim-
ilar to the standard derivation 〈σ (t )〉 in Fig. 5. In fact,
their similar behaviors are natural. Coherence describes the
wave nature—the bigger the coherence, the more sites the
wave packet reaches and therefore the larger the standard
deviation 〈σ (t )〉.

V. SUMMARY

We have studied the dynamics of SSQW subject to time-
correlated noise, which is modeled as a coin operator before
each step. The dynamics of the walker was calculated as an en-
semble average over possible realizations of the noise. Based
on the Hamiltonian obtained by the first-order approximation
of the BCH formula, we derived the mater equation of noisy
SSQW, the relationship between similarity and evolution steps
was calculated, and the reason was explained. In the numer-
ical calculation part, we found that the dynamics obviously
depends on the correlation time and amplitude of the stochas-
tic process. Correlation time reflects the similarity of the
stochastic process characterized by correlation function, and
noise amplitude characterizes the coupling strength between
the system and environment. In the fast noise regime, i.e.,
the similarity of a stochastic process decreases rapidly over
time, noise sequence is rough; the walker undergoes time-
disordered unitary evolutions and is finally confined into few
lattice sites. In the slow noise regime, the spatial distribution
of a weakly coupled walker clearly shows the characteristic
shape of a noiseless SSQW, and a transition from quantum
ballistic behavior to classical diffusive over lattice sites occurs
as we increase the noise amplitude. The transition can also be
observed in the standard derivation. Entanglement, as a gen-
uine quantum feature of noisy SSQW, measured by negativity,

will approach the maximum [N (ρ) = 1] eventually, and pro-
longing the correlation time or decreasing the noise amplitude
can reduce the time for entanglement to reach its maximum.
As for coherence, the other quantum feature, its behavior is
similar to that of the stand derivation, which stresses that
coherence makes QW different from CRW.
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APPENDIX A: STOCHASTIC SEQUENCE SAMPLINGS

To demonstrate the landscapes of stochastic sequences
clearly, all subfigures in Fig. 8 displayed three possible noise
realizations under certain noise parameters τ and γ . Figure 8
illustrates two points: (1) with the same noise amplitude γ ,
the stochastic sequences with longer correlation time τ are
relatively smoother; (2) with the same noise correlation time
τ , the larger the amplitude γ , the more the noise deviates from
the average value 0.
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FIG. 8. The stochastic sequence landscapes: τ = 10, γ = 0.1;
τ = 0.1, γ = 0.1; τ = 10, γ = 0.8; and τ = 0.1, γ = 0.8 for (a),
(b), (c), and (d), respectively.
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APPENDIX B: DERIVATION OF THE HAMILTONIAN FOR SSQW

Parametrized by angles θ1 and θ2, a single SSQW can be defined by the time evolution operator

Ûs = T↓Ry(θ2)T↑Ry(θ1). (B1)

This protocol consists of two unitary rotation operations and two translation operators. Based the translational symmetry of this
protocol, in the quasimomentum basis |k〉 = (1/

√
2π )

∑
k e−ikx|x〉, we can get their expressions in a quasimomentum basis as

follows:

Ry(θ ) =
∑

x

e−iθ/2σy |x〉〈x|

=
∑

x

e−iθ/2σy
1√
2π

∑
k1

eik1x|k1〉
∑

k2

1√
2π

e−ik2x〈k2|

=
∑
k1,k2

e−iθ/2σy
1

2π

∑
x

eix(k1−k2 )|k1〉〈k2|

=
∑
k1,k2

e−iθ/2σyδ(k1 − k2)|k1〉〈k2|

=
∑

k

e−iθ/2σy ⊗ |k〉〈k|,

=
∑

k

(
cos θ

2 − sin θ
2

sin θ
2 cos θ

2

)
⊗ |k〉〈k|. (B2)

T↑ =
∑

x

|x + 1〉〈x| ⊗ |↑〉〈↑| + |x〉〈x| ⊗ |↓〉〈↓|

=
∑

x

∑
k1

1√
2π

eik1(x+1)|k1〉
∑

k2

1√
2π

e−ik2x〈k2| ⊗ |↑〉〈↑| +
∑

x

∑
k3

1√
2π

eik3x|k3〉
∑

k4

1√
2π

e−ik4x〈k4| ⊗ |↓〉〈↓|

=
∑
k1,k2

∑
x

1

2π
ei(k1−k2 )xeik|k1〉〈k2| ⊗ |↑〉〈↑| +

∑
k3,k4

∑
x

1

2π
ei(k3−k4 )x|k3〉〈k4| ⊗ |↓〉〈↓|

=
∑
k1,k2

δ(k1 − k2)eik1 |k1〉〈k2| ⊗ |↑〉〈↑| +
∑
k3,k4

δ(k3 − k4)|k3〉〈k4| ⊗ |↓〉〈↓|

=
∑

k

(eik|↑〉〈↑| + |↓〉〈↓|) ⊗ |k〉〈k|

=
∑

k

(
eik 0
0 1

)
⊗ |k〉〈k|. (B3)

T↓ =
∑

x

|x〉〈x| ⊗ |↑〉〈↑| + |x − 1〉〈x| ⊗ |↓〉〈↓|

=
∑

x

∑
k1

1√
2π

eik1x|k1〉
∑

k2

1√
2π

e−ik2x〈k2| ⊗ |↑〉〈↑| +
∑

x

∑
k3

1√
2π

eik3(x−1)|k3〉
∑

k4

1√
2π

e−ik4x〈k4| ⊗ |↓〉〈↓|

=
∑
k1,k2

∑
x

1

2π
ei(k1−k2 )x|k1〉〈k2| ⊗ |↑〉〈↑| +

∑
k3,k4

∑
x

1

2π
ei(k3−k4 )xe−ik3 |k3〉〈k4| ⊗ |↓〉〈↓|

=
∑
k1,k2

δ(k1 − k2)|k1〉〈k2| ⊗ |↑〉〈↑| +
∑
k3,k4

δ(k3 − k4)e−ik3 |k3〉〈k4| ⊗ |↓〉〈↓|

=
∑

k

(|↑〉〈↑| + e−ik|↓〉〈↓|) ⊗ |k〉〈k|

=
∑

k

(
1 0
0 e−ik

)
⊗ |k〉〈k|. (B4)
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On one hand, based on Eqs. (B2), (B3), and Eq. (B4), we can also rewrite the SSQW protocol Eq. (B1) in the quasimomentum
basis as

Ûs =
∑

k

U (k) ⊗ |k〉〈k|. (B5)

Therefore we can derive the expression for U (k) as follows:

U (k) =
(

eik cos θ1
2 cos θ2

2 − sin θ1
2 sin θ2

2 −eik sin θ1
2 cos θ2

2 − cos θ1
2 sin θ2

2

e−ik sin θ1
2 cos θ2

2 + cos θ1
2 sin θ2

2 e−ik cos θ1
2 cos θ2

2 − sin θ1
2 sin θ2

2

)
. (B6)

Considering that U (k) is unitary, we can write

U (k) = e−iEk 
nk ·
σ , (B7)

where 
nk = (nx, ny, nz ) is the unit vector. In addition, we can always expand e−iEk 
nk ·
σ as follows:

e−iEk 
nk ·
σ =
(

cos Ek − inz sin Ek (−inx − ny) sin Ek

(−inx + ny) sin Ek cos Ek + inz sin Ek

)
. (B8)

Comparing Eqs. (B4) and (B8), E (k) and 
n(k) can be expressed as

cos Ek = cos(θ1/2) cos(θ2/2) cos k − sin(θ1/2) sin(θ2/2), (B9)

and

nx = sin(θ1/2) cos(θ2/2) sin k

sin E (k)
, ny = cos(θ1/2) sin(θ2/2) + sin(θ1/2) cos(θ2/2) cos k

sin E (k)
, nz = − cos(θ1/2) cos(θ2/2) sin k

sin E (k)
.

(B10)

Equations (B9) and (B10) are Eqs. (9) and (10) in the main text, respectively.
On the other hand, ÛS is a unitary evolution operator, therefore

Ûs = e−iĤsδt =
∑

k

e−iEk 
nk ·
σ ⊗ |k〉〈k|. (B11)

For QW, δt = 1, which means each step of evolution takes unit time. Therefore, the logarithmic result of Eq (B11) is

Ĥs =
∑

k

Ek 
nk · 
σ ⊗ |k〉〈k|, (B12)

which is Eq. (8) in the main text, and these derivations have been added as an Appendix.

APPENDIX C: DERIVATION OF THE HAMILTONIAN FOR NOISY SSQW

In physics and mathematics it is often useful to write the product eX eY as eZ for some Z . When the operators X and Y do not
commute, as is often the case of dealing with matrices, it may not be easy to find such a Z . Many authors attempted to deal with
this problem by targeting Z (X,Y ) = log(eX eY ). One of the attempts is the Baker-Campbell-Hausdorff formula

Z (X,Y ) = X + Y + 1
2 [X, .Y ] + 1

12 ([X, [X,Y ]] + [Y, [Y, X ]]) + · · · . (C1)

In our topic, Û = ÛsÛA [Eq. (3) in the main text], where Ûs = e−iĤs and ÛA = e−iĤA(t ). Therefore X = −iĤs and Y = −iĤA(t ):

Ẑ = −iĤs − iĤA + 1
2 [−iĤs, . − iĤA] + 1

12 ([−iĤs, [−iĤs,−iĤA]] + [−iĤA, [−iĤA,−iĤs]]) + · · · . (C2)

In Eq. (C2), the second-order and higher-order commutators contain nonlinear terms of noise amplitude λν . So, up to the first-
order commutator in the Baker-Campbell-Hausdorff (BCH) formula, we have

Ẑ = −iĤs − iĤA + 1
2 [−iĤs,−iĤA] = −iĤst . (C3)

By the same procedure to derive Eq. (B2), we can also derive the expression of ÛA in the quasimomentum basis as follows:

ÛA =
∑

x

e−iÂ(t ) ⊗ |x〉〈x| =
∑

k

e−iÂ(t ) ⊗ |k〉〈k| = e−iĤA . (C4)

So, the stochastic Hamiltonian ĤA is

ĤA =
∑

k

[λx(t )σx + λy(t )σy + λz(t )σz] ⊗ |k〉〈k|. (C5)
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The commutation in Eq. (C3) is

[−iĤs,−iĤA] =
∑

k

ĥk ⊗ |k〉〈k|. (C6)

The result of commutation of each k in Eq. (C6) is

ĥk = −Ek[nxσx, λxσx + λyσy + λzσz] − Ek[nyσy, λxσx + λyσy + λzσz] − Ek[nzσz, λxσx + λyσy + λzσz]

= −Ek (nxλy2iσz − nxλz2iσy) − Ek (−nyλx2iσz + nyλz2iσx ) − Ek (nzλx2iσy − nzλy2iσx )

= 2iEkλx(nyσz − nzσy) + 2iEkλy(nzσx − nxσz ) + 2iEkλz(nxσy − nyσx )

= 2iλxEk (
n × 
σ )x + 2iλyEk (
n × 
σ )y + 2iλzEk (
n × 
σ )z. (C7)

Then, −iĤA + 1
2 [−iĤs,−iĤA] = ∑

k ĥsA ⊗ |k〉〈k|,
ĥsA = −i[λx(t )σx + λy(t )σy + λz(t )σz] + iλxEk (
n × 
σ )x + iλyEk (
n × 
σ )y + iλzEk (
n × 
σ )z

= −iλx(t )[σx − Ek (
n × 
σ )x] − iλy(t )[σy − Ek (
n × 
σ )y] − iλz(t )[σz − Ek (
n × 
σ )z]

= −i[λx(t )L̂x + λy(t )L̂y + λz(t )L̂z]. (C8)

Therefore

L̂x = ∑
k[σx − Ek (
n × 
σ )x] ⊗ |k〉〈k|, L̂y = ∑

k[σy − Ek (
n × 
σ )y] ⊗ |k〉〈k|, L̂z = ∑
k[σz − Ek (
n × 
σ )z] ⊗ |k〉〈k|. (C9)

Equation (C9) is Eq. (12) in the main text.
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