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Open quantum systems in thermal nonergodic environments
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We analyze the dynamics of an open system coupled to a nonergodic environment for which the correlation
function does not decay, leading to a failure of the weak coupling and Markov approximations standard in open
systems. We show that nonergodicity appears for environments at finite temperatures that have non-Gaussian
statistics and do not fulfill the eigenstate thermalization hypothesis. We illustrate our statements by considering
a thermal spin-boson environment that models a gas of dye molecules, and show that nondecaying correlations
are connected to a 1/f noise that extends to zero frequencies. This suggests the idea that nonergodic environments
may be at the origin of the 1/f behavior observed in other hybrid environments such as the ones encountered in
superconducting qubits.
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I. INTRODUCTION

Quantum mechanical systems coupled to an environment,
i.e., open quantum systems, appear in a wide range of fields
such as soft and condensed matter physics, quantum chem-
istry, quantum optics, or biology [1,2]. They are also relevant
in quantum technological devices where quantum mechanical
properties, crucial to their performance, are affected by the
environmental noise. In all these contexts, a system of interest
(HS) is considered to be coupled to the environment (HE )
through an interaction of the form HI = BS, where B and S are
the environment and system coupling operators, respectively
[1–6], such that the total Hamiltonian reads

H = HE + HS + BS. (1)

The dynamics of the system mean values, described with its
reduced density operator ρS (t ) = trE {ρ(t )} [with ρ(t ) being
the total state at the time t], is strongly conditioned by the
different moments of the noise operator B with respect to the
environment initial state ρE . When the environment is a set of
harmonic oscillators in a Gaussian state and linearly coupled
to the system, its statistics is Gaussian and all higher-order
moments are either zero or can be written in terms of the
second-order one, the correlation function

CB̃(t ) = trE {B̃(t )B̃(0)ρE }, (2)

via the Wick’s theorem. Here we have defined a renormalized
operator,

B̃ = B(t ) − tr{B(0)ρE }, (3)

accordingly redefining the system Hamiltonian as

H̃S = HS + Str{B(0)ρE }. (4)

We assume, in addition, that the environment is initially in
a thermal state, ρE = ρ th

E = e−βHE /ZE , with ZE the partition
function and β the inverse temperature. Thus, [ρE , HE ] = 0

and, therefore, CB̃(t1, t2) = trE {B̃(t1)B̃(t2)ρE (0)} depends only
on the time difference, t = t1 − t2, i.e., CB̃(t1, t2) ≡ CB̃(t ).
Recent progress in noise spectroscopy in superconducting
qubits [7,8] has revealed the non-Gaussian nature of their
environment, in particular the 1/f noise produced by surface
impurities [9,10]. The non-Gaussianity affects the reduced
dynamics of the system in the strong-coupling regime, when
higher-order moments are relevant. Yet, in the weak coupling
(when g ≈ ||HI || is small compared to all other energy scales),
ρS (t ) is dominated by the correlation function (2), which sug-
gests that Gaussian and non-Gaussian statistics may be hard
to distinguish.

Here, we argue that this might not be the case. The details
are as follows:

(i) We present a class of environments with non-Gaussian
statistical properties that already manifest in the weak-
coupling limit, as they display a nondecaying correlation,
limt→∞ CB̃(t ) = C0.

(ii) We argue that a finite C0 is linked to the statistical prop-
erties of the HE eigenstates, and that it dramatically affects the
accuracy of the weak-coupling approximation and the related
Lindblad equation.

Indeed, in classical statistical physics, it is known that
for a system of noninteracting or weakly interacting par-
ticles, the long-time decay of the correlation is linked to
ergodicity as defined by the Khinchin theorem [11–13].
Thus, for a system in equilibrium, the ergodic property
(limT →∞

∫ T
0 B(t )dt = av[B]) is fulfilled iff limt→∞ CB̃(t ) =

0, where CB̃(t ) = av[B̃(t )B̃] and av[·] denotes an ensemble
average. Hence, nonergodic environments do not fulfill the
sufficient condition derived by Davies [14,15] for a well-
defined weak-coupling limit,

∫ ∞

0
dt |CB̃(t )|(1 + |t |)ε < ∞, (5)
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with ε > 0, and, in accordance, they have been shown to
produce a failure in the standard weak-coupling approxima-
tion [16]. This paper analyzes under which conditions such
nonergodic environments appear, and explains how they lead
to a highly system-environment correlated state that invali-
dates the Born approximation, and therefore the closely linked
weak-coupling approximation. Moreover, we show that be-
sides the trivial Gaussian case, the decay to zero of CB̃(t ) may
be linked to the eigenstate thermalization hypothesis (ETH),
which states that the properties of a quantum system, in our
case the environment, evolve at long times towards those in
a thermal state [17–20]. We analyze an environment of dye
molecules described with a spin-boson model [21–23] and
show how nonergodicity can emerge in such realistic and
nonexotic scenarios. Finally, we relate the nonergodicity to
the appearance of a 1/ f noise spectrum that extends to zero
frequencies.

This paper is organized as follows: In Sec. II, we present
general statements on the correlation function of the en-
vironment based on its spectral decomposition in terms of
environment eigenstates. We analyze the decay of such func-
tion and connect it to the statistical properties of the coupling
operator, the notion of typicality, and the ETH ansatz. In
Sec. III, we study the consequences of having a correlation
function that decays to a finite offset value and how it leads
to a failure of the weak-coupling approach and the Lind-
blad description of an open quantum system. In Sec. IV, we
show how a hybrid environment described by a spin-boson
model can induce a nondecaying correlation function. To this
aim, we present matrix product state (MPS) simulations of
such a function for an increasing number of bosons in the
environment and different values of the environment param-
eters. As it is shown, the correlation function presents an
offset for certain environment parameters. However, although
we have performed the MPS simulations for an increasing
number of environment oscillators and the offset appears to
remain stable, our numerical solution does not allow us to
give any prediction of the survival of the offset for a bosonic
continuum. In addition, we show the connection between the
emergence of an offset and the 1/ f -noise phenomena. Finally,
in Sec. V, we present the conclusions and outlook of our
investigation.

II. ENVIRONMENT CORRELATION FUNCTION

A. General form and the onset of an offset

General statements on CB̃(t ) can be made when repre-
senting it in its eigenbasis. Let ρE = ∑

k ηk|εk〉〈εk| be an
equilibrium state of the environment, with |εk〉 its eigenstates.
Thus, Eq. (2) can be written as

CB̃(t ) =
∑

l,k,ωkl �=0

ηk|Bkl |2eiωkl t + C0, (6)

where ωkl = εk − εl , Bkl = 〈εl |B|εk〉, and

C0 =
∑

k

ηk (Bkk )2 −
(∑

k

ηkBkk

)2

+ d0. (7)

It is expected that for a sufficiently large environment, the
time-dependent term in Eq. (6) decays for t 	 1/min{|ωkl |}.

The correlation function, however, may contain a finite offset
C0 > 0 if

(a) at least two (or more) eigenstates of HE are degenerated
(a contribution cast in the term d0). Unless the system exhibits
accidental degeneracy [24,25], degeneracies are rare as they
are easily removed by the presence of a very small perturba-
tion.

(b) Alternatively, we require that
∑

k ηk (Bkk )2 > 〈B〉2 (as-
suming d0 = 0), for which a necessary condition is that
the sum in k includes at least two eigenstates for which
ηk (Bkk )2 �= 0 is fulfilled.

When we have a dense environment spectrum, as is of-
ten the case, more aspects come into play to determine the
decay or nondecay of the correlation. To show this, let us
first rewrite Eq. (6) in terms of ωkl and Ekl = εk + εl as
CB̃(t ) = ∑

Ekl
η(Ekl )CEkl (t ), with

CEkl (t ) =
∑
ωkl

η(ωkl )|B̃(ωkl , Ekl )|2eiωkl t . (8)

Note that here we have considered the renormalized operator
B̃ given by Eq. (3) and assumed no degeneracies, so that Bkl is
fully determined by the eigenenergies εk and εl . Moreover,
the coefficients of the thermal state have been rewritten as
ηk = η(Ekl )η(ωkl )/ZE , with η(Ekl ) = e−βEkl /2 and η(ωkl ) =
e−βωkl /2. In the continuum limit of Eq. (8), CE (t ) can be con-
sidered as the Fourier transform of FE (ω) = η(ω)|B̃(ω, E )|2.
Thus, following the Paley-Wiener theorem, it is possible to
state that if FE (ω) is smooth and N times differentiable in a
finite support ω ∈ [−ωm, ωm], with 2ωm a finite bandwidth,
then there is always a coefficient CN for which

CE (t ) � CN (1 + |t |)−N , (9)

i.e., the correlation function decays to zero. We note that
since η(ω) is a smooth function, the smoothness condition for
FE (ω) is determined by |B̃(ω, E )|2. Clearly, the appearance of
an offset is strongly related to the statistics of matrix elements
Bkl , specifically to the diagonal ones. Moreover, for dense
spectra, it also depends on the smoothness of the function
FE (ω) defined above. Thus, setting more precise analytical
conditions for the emergence of an offset is a nontrivial task as
it requires one to access the analytical form of the environment
eigenstates or a closed form of the coupling operator B in that
basis. However, it is possible to set the conditions for a zero
offset, that is, an always decaying correlation function, as we
shown in the next section.

B. The role of the statistical typicality and ETH

An environment obeying statistical typicality [26–28] vi-
olates condition (b). Indeed, statistical typicality means that
for all k, Bkk ≈ trE {ρ th

E B}, which leads to a zero offset due
to the normalization condition

∑
ηk = 1. This conjecture can

be justified if the bath is classically chaotic, and therefore is
linked to the ergodic condition described in Sec. I [26].

On the other side, the correlation function will also decay
to zero under ETH conditions. Indeed, following the ETH
ansatz, the matrix element of the observable B̃ between two
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eigenstates can be written as [29]

B̃kl = B
(

1

2
Ekl

)
δkl + e−S( 1

2 Ekl )/2 f0(Ekl , ωkl )Rkl , (10)

where S(E ) is the thermodynamic entropy at energy E , and
Rkl is a random real or complex variable with zero mean
and unit variance (R2

kl = 1 or |Rkl |2 = 1, with · · · represent-
ing the noise average). The function B(E ) is the expectation
value of the observable in the microcanonical ensemble at
energy E , which in the thermodynamic limit corresponds to
its canonical average and therefore is a constant. Considering
CB̃(t ) = ∑

l,k ηk|B̃kl |2eiωkl t and performing the noise average,
we find that it can be written as a function of Eq. (8), but now
with

|B̃(ωkl , Ekl )|2 = f 2
0 (ωkl , Ekl )e

−S( 1
2 Ekl ). (11)

According to the ETH ansatz, f0 is a smooth function, and
therefore CB̃(t ) will decay to zero according to Eq. (9).

Hence, systems whose classical analog is chaotic or, more
generally, for which ETH is suitable will present no offset.
However, the opposite is not necessarily true: the fact that a
system is integrable does not mean that the autocorrelation
function of some of its observables may have an offset. An ex-
ample of this is an environment of harmonic oscillators, where
B = ∑

λ gλ(bλ + b†
λ), with bλ(b†

λ) annihilation (creation) op-
erators [30]. If ρE is in equilibrium, it is fulfilled that Bkk = 0
and therefore there is no offset (see Appendix C).

III. WEAK-COUPLING MASTER EQUATION FOR A
SYSTEM COUPLED WITH A NONERGODIC

ENVIRONMENT

The ETH ansatz leads to a correlation given by Eq. (9) that
fulfills the convergence criteria (5), with an ε such that N >

ε + 1 [notice that CB̃(t ) is just a linear combination of CE (t )].
A correlation function with an offset will not only dissatisfy
Eq. (5), but it will also lead to an ill-defined weak-coupling
master equation and to the absence of a Lindblad limit. To
see this, we analyze the weak-coupling master equation up to
second order in the coupling parameter,

dρs(t )

dt
=

∫ t

0
dτCB̃(τ )[S(t − τ )ρs(t − τ ), S(t )] + H.c.,

(12)

where CB̃(t ) is given by Eq. (6). We now consider the spec-
tral decomposition S(t ) = ∑

ab LabeiEabt 〈a|S|b〉, with Lab =
|a〉〈b| and Eab = Ea − Eb, in terms of the eigenbasis of
H̃S = ∑

a Ea|a〉〈a|, and split the terms into those depending
on the decaying part of the correlation, αB(t ), and those
depending on C0, with CB̃(t ) = αB(t ) + C0. Then, by assum-
ing a fast decay of αB, such that γt (ω) = ∫ t

0 dτ αB(τ )eiωτ ≈∫ ∞
0 dταB(τ )eiωτ , and also considering the secular approxima-

tion, we find ( see the appendices)

dρs(t )

dt
= −i

∑
ab

�ab[LabL†
ab, ρs(t )]

+
∑

ab

γab

[
Labρs(t )L†

ab − 1

2

{
L†

abLab, ρs(t )

}]

+C0

∫ t

0
dτeiEabτ [Labρs(τ ), L†

ab] + H.c. (13)

The terms proportional to the offset do not allow the equation
to be in a Lindblad form. Thus, as discussed in the appen-
dices, the thermal state ρ th

S = exp(−βHS )/ZS is no longer a
steady state of such equation. Moreover, Eq. (13) is no longer
consistent with its second-order time-local counterpart (see
Appendix A), reflecting a failure of the standard weak cou-
pling and thus the related Born approximation that assumes
ρ(t ) = ρS (t ) ⊗ ρE . A way to see this is to express

ρS =
∑

k

ηkρ
k
S (t ), (14)

where we define ρk
S = trE {U (t )(ρS (0) ⊗ ρk

E )U −1(t )}, with
U (t ) = exp(−iHt ) and ρk

E = |εk〉〈εk|. The interesting aspect
of this decomposition is that for each term ρk

S , we consider a
master equation by rewriting the total Hamiltonian as follows:

H = Hk
S + HE + SB̃k, (15)

where we have defined Hk
S = HS + SBkk and B̃k = B − Bkk ,

and Bkk = 〈εk|B|εk〉. Note we do this for every case k, but
the result is always the same Hamiltonian because we always
subtract and sum the term SBkk . Having done that, we find that
the resulting correlation function,

CB̃k
(t ) = trE {ρk

E B̃k (t )B̃k (0)} =
∑
k �=l

|Bkl |2eiωkl t , (16)

will, in principle, decay in time. Thus, the dynamics of each
ρk

S (t ) depending on such well-behaved correlation function
will be compatible with the perturbative and Markov approx-
imations in the weak-coupling limit. The important point is
that the resulting master equation will be different for each k
mostly because it will depend on a different Hk

S . This formal
derivation shows that contrary to what is assumed in the Born
approximation, the total system-environment state is corre-
lated, ρ(t ) = ∑

k ηkρ
k
S ⊗ ρk

E [31].

IV. THE SPIN-BOSON MODEL AS HYBRID
ENVIRONMENT

To illustrate the emergence of an offset in the environment
correlation function, we consider a realistic model consisting
of M independent organic dye molecules. Each molecule have
a complex structure consisting of two electronic internal states
strongly affected by a discrete set of rovibronic modes [32];
thus, it can be treated as a two-party, i.e., hybrid, system that
can be well described by means of a variant of the well-known
spin-boson model, referred to as the Dicke-Holstein model
[33],

HE =
∑

j

{
Hσ j +

∑
λ

(
ω jλb†

jλb jλ + σ z
j x jλ

)}
, (17)
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where the index j runs over all molecules. Here the elec-
tronic part is written as Hσ j = 1

2� j n̂ j · �σ j , where n̂ j =
�−1

j (−� j, 0, ε j ) is a unitary vector, and �σ j = (σ x
j , σ

y
j , σ

z
j ) is

the vector of Pauli matrices. We have defined the Rabi-like
frequency � j =

√
�2

j + ε2
j , with � j and ε j being the spin-

tunneling strength and flip-flop energy, respectively. We have
set h̄ = 1.

The rovibronic part is represented by the bosonic creation
(annihilation) operators b†

jλ (b jλ), with energies ω jλ, and reac-
tion coordinate,

x jλ = g jλ(b jλ + b†
jλ), (18)

where g jλ represents the coupling strength between the elec-
tronic and vibrational modes. Considering a linear dispersion,
this quantity is determined by the spectral function J (ω) =∑

λ g2
λδ(ω − ωλ), which we consider Ohmic [34],

J (ω) = r
ω

ωc
exp(−ω/ωc)θ (5ωc − ω), (19)

where r is a parameter that modules the spin-boson interaction
strength, θ (x) is the Heaviside function, and 5ωc is the cutoff
frequency. Here we set ωc = 1 without loss of generality.
The molecular environment is in a thermal state with inverse
temperature β.

We consider an open system coupled to such hybrid
environment through the standard interaction Hamiltonian
HI = BS, where S is an arbitrary system operator and B =∑

j σ
x
j , such that CB̃(t ) is a sum of single-molecule correlation

functions (SMCFs), i.e., CB̃(t ) = ∑
j C( j)

B̃
(t ), with C( j)

B̃
(t ) =

tr{σ̃ x
j (t )σ̃ x

j (0)ρ th
E }. Thus, since the molecules are not interact-

ing, we only need to study the properties of the jth SMCF,
C( j)

B̃
(t ), which we tackle with exact diagonalization for up to

three vibrational modes (see Appendix D) and MPS for more.
In the following, we drop the index j for simplicity.

A. Single-molecule environment

For certain parameter regimes, the analysis of the SMCF
is quite simple. To show this, we apply the polaron trans-
formation to the single-molecule environment Hamiltonian,
resulting in

HSM = E0 + 1

2
εσ z +

∑
λ

ωλb†
λbλ − 1

2
�(σ+eK + σ−e−K ),

with E0 = ∑
λ g2

λ/ωλ, σ+ (σ−) being the raising (lowering)
spin-1/2 operator, and K = 2

∑
k

gλ

ωλ
(b†

λ − bλ) (see Appendix
B). Thereby, there exists two trivial cases for which the SMCF
is analytically accessible:

(i) First, if the spin-tunneling strength � = 0, the en-
vironment Hamiltonian becomes separable, rendering the
well-known pure-dephasing limit. The eigenstates are separa-
ble spin-boson bare states: |εk〉 = |s, n〉, with s = 0, 1 labeling
the electronic state of the molecule, and |n〉 ≡ |n1 · · · nL〉 its
respective multimode Fock state. Accordingly, the offset C0 =
0, since Bkk = 〈εk|σ x|εk〉 = 0, for all k. Furthermore, after
some analytics, it is possible to prove that CB̃(t ) ∝ e−�β (t ),
where �β (t ) = 8

∑
λ(gλ/ωλ)2 sin2(ωλt/2) coth(βωλ/2) (see

Appendix B).

(ii) The second case is when r = 0, which corresponds
to a spin-boson environment with no interaction between
the electronic and vibrational parts. HSM is again separa-
ble and, as shown in the appendices, the SMCF reduces to
Re{CB̃(t )} = (ε/�)2 cos(�t ) + C0, with the offset given by
C0 = (�/�)2sech2(β�/2). Thus, a nonzero offset requires
that � �= 0 and a finite temperature β−1 > 0. Nonetheless, the
offset disappears at zero temperatures, even when r �= 0. This
is shown by rewriting the thermal weights of ρ th

E as

ηk = e−βεk∑
k e−βεk

= e−β(εk−ε0 )

1 + ∑
k �=0 e−β(εk−ε0 )

, (20)

where ε0 < εk is the ground state. By setting β → ∞, we find
that ηk → 1, iff εk = ε0, and zero otherwise. Thus, in the zero-
temperature limit, the only eigenstate involved in Eq. (7) is the
ground state, such that the condition (b) is no longer fulfilled,
and therefore C0 = 0.

Away from the above cases, the dynamics of the envi-
ronment displays a competition between the dephasing and
the spin coherence. While the offset appears when � �= 0,
resulting in an oscillatory behavior of the SMCF, the role
of r is to induce a damping. In this scenario, the eigenstate
structure of the Hamiltonian is analytically and numeri-
cally hard to access, particularly when dealing with many
vibrational modes. However, since any eigenstate can be writ-
ten as a linear combination of the spin-boson bare states,
i.e., |εk〉 = ∑

sn c(k)
sn |s, n〉, we can infer that a minimal re-

quirement for the offset is that the eigenstates display a
mixing of at least two spin states, that is, Bkk = 〈εk|σ x|εk〉 =∑

n(c(k)
1n (c(k)

0n )∗〈0|σ x|1〉 + c(k)
0n (c(k)

1n )∗〈1|σ x|0〉) �= 0. While spin
coherences are required for a finite offset, certain entangled
eigenstates may have zero contribution. For instance, an en-
tangled eigenstate of the form |εk〉 = c(k)

0,n|0, n〉 + c(k)
1m|1, m〉,

with |n〉 �= |m〉, leads to 〈εk|σ x|εk〉 = 0.
In general, the coherence-dephasing competition can be

qualitatively characterized in terms of the ratio r/�. For inter-
mediate values of r/�, we consider the matrix product state
(MPS) formalism [35,36], implemented in the MPS library
[37,38], to compute the SMCF. This is shown in Fig. 1 for
different values of � [Fig. 1(a)] and different numbers L of
bosonic modes [Fig. 1(b)], which shows that the offset does
not appear to depend significantly on the environment size, at
least for the number of modes and the timescale that we are
able to consider here.

Our analysis (see details in Appendix B 3) suggests that
the best fitting function for the real part of the non-normalized
SMCF, CB(t ) = trE {σ x(t )σ x(0)ρ th

E }, in Fig. 1 is

f (t ) = A0 cos(ω0t )e−B0t a + C̃0e−t/T0 . (21)

Thus, the short-time non-Markovian decay is dominated by
the first factor, which represents a nonexponential decay since
a ≈ √

2 > 1, while the long-time limit dynamics is domi-
nated by an exponential decay with a characteristic correlation
time T0 that takes different values. Indeed, towards the limit
r/� → 0, the correlation time T0 tends to grow larger and the
corresponding term tends to a constant value C̃0, at least at
the timescales here considered. Once the norm (trE {σ xρE })2

is subtracted, this value appears to provide a finite offset.
However, we shall stress here that our numerical method
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FIG. 1. SMCF: (a) Real part of the nonrenormalized SMCF com-
puted using the MPS library [37], for different values of � with
r = 0.25 for an eight-mode (L = 8) dye molecule. (b) Scaling of
the nonrenormalized SMCF with the number of bosonic modes L
for r = 0.25ε and � = 2.5ε. These calculation was done for β = 1
and local MPS dimension dMPS = 10 . . . 15, which showed to be
sufficient for good convergence of our results. In both plots, the
horizontal dashed lines are the corresponding renormalization terms
(trE {σ xρE })2.

only allows us to consider a limited number of oscillators
[see Fig. 1(b)] and to reach a finite time in our simulations.
Thus, we cannot predict with certainty what may happen at
longer times and when adding more environment oscillators.
The transition into a continuum of modes may be a crucial
aspect to consider, as the property of returning to equilibrium
strongly relies on the system composed of a continuum part
[39]. A molecular environment with a finite number of modes
such as the one described here is nonetheless a physically
realistic and relevant scenario, where it is reasonable to expect
an offset and thus information about the initial state being
preserved.

B. Many-molecule environment

Finally, when considering the case of M molecules, the
total offset is enhanced since C0 = ∑

j C( j)
0 . Moreover, the

ensemble of molecules behaves at long times as a collection
of exponentially decaying two-level systems, each having dif-
ferent internal parameters and thus different decay rates 1/T0.
As it is well known, this type of system leads to a 1/ f spec-
trum between the frequency ranges of [1/Tmax, 1/Tmin], where
Tmax(Tmin) are the maximum (minimum) correlation times
[10,40,41]. Interestingly, contrary to the standard case where
no offset is considered, here we find that some molecules
have extremely long and even infinite decay times T0 =
Tmax ∼ ∞, which implies that the 1/ f extends towards the
zero-frequency limit. Interestingly, 1/f behavior has been ex-
perimentally observed to extend to low frequencies (at least up

to the lowest frequency that can be measured) in the context of
superconducting qubits, which are coupled to similar hybrid
environments [41–43].

V. CONCLUSIONS AND OUTLOOK

We argue that a necessary condition for the existence of
a well-defined weak-coupling approximation and valid Born
approximation is to have a correlation function that decays
to zero in time, a feature that is fulfilled for Gaussian and
ETH environments but not in general. To illustrate this, we
show that a spin-boson environment in a thermal state has a
nondecaying correlation function, and show how this connects
with the presence of a 1/f spectrum that in contrast to previous
analysis, extends to zero frequencies. This work opens several
interesting research avenues. First, quantum devices such as
superconducting qubits are affected by similar hybrid envi-
ronments [7,8] and 1/f noise [10,40,41], and thus a rigorous
analysis of the convergence of a weak-coupling expansion and
the related Lindblad equation may be relevant. Second, this
work may be helpful to understand the dynamics of impurities
coupled to materials that do not fulfill ETH, for instance, those
presenting dynamical localization or Hilbert space fragmenta-
tion, where the emergence of an offset has also been described
[44–46]. Other environments where an offset is present can
also be found in the context of quantum chemistry [47]. Fur-
ther, the offset is linked to strong memory effects and to the
inability of the environment to bounce back to its equilibrium
state after interacting with the system, which renders inter-
esting to characterize the non-Markovianity [48–50]. Finally,
the nonergodicity of the environment may be harnessed to re-
cover the open system information by developing appropriate
correction protocols.
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APPENDIX A: MASTER EQUATION FOR CORRELATION
FUNCTIONS WITH AN OFFSET

Up to second order in the weak-coupling parameter, and in
the interaction picture with respect to H̃S , the master equation
reads [1]

dρs(t )

dt
=

∫ t

0
dτCB̃(t, t − τ )[S(t − τ )ρs(t − τ ), S(t )] + H.c.,

where we have crucially considered the Born approximation,
by which, within the right-hand side term, one can reply the
total density operator as ρ(t − τ ) ≈ ρs(t − τ ) ⊗ ρE . In addi-
tion, we have already taken into account that the environment
is in equilibrium, so that the environment correlation func-
tion satisfies the condition CB̃(t, t − τ ) = CB̃(τ ). The above
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equation can now be separated into two terms,

dρs(t )

dt
=

∫ t

0
dτ

∑
l j

αB(τ )[S(t − τ )ρs(t − τ ), S(t )] + H.c.

+C0

∫ t

0
dτ

∑
l j

[S(t − τ )ρs(t − τ ), S(t )] + H.c.,

(A1)

where we have separated CB̃(t ) = αB(t ) + C0 in terms of the
time-dependent part and the offset. Moreover, we assume that
αB(t ) decays very fast, so that it is a good approximation
to consider ρs(t − τ ) ≈ ρs(t ). Nevertheless, such replacement
cannot be made in the term that depends on the offset, where
the integrand is not ensured to have a fast decay. We now
assume that

S(t ) =
∑

ab

LabeiEabt 〈a|S|b〉, (A2)

where Lab = |a〉〈b|, in terms of the eigenstates and eigenval-
ues of H̃S . Therefore, we find that

dρs(t )

dt
= −i

∑
ab,cd

�t
ab,cd [LabL†

cd , ρs(t )] (A3)

+
∑
ab,cd

γ t
ab,cd

[
Labρs(t )L†

cd − 1

2

{
L†

cd Lab, ρs(t )

}]

+C0ei(Eba−Edc )t
∫ t

0
dτeiEabτ [Labρs(τ ), L†

cd ] + H.c.,

(A4)

with Eba = Eb − Ea, and the coefficients defined as

γ t
ab,cd = ei(Eba−Edc )tγ (Eba)〈a|S|b〉〈d|S|c〉,

�t
ab,cd = ei(Eba−Edc )t�(Eba)〈a|S|b〉〈d|S|c〉, (A5)

where we have defined

γ (ω) = Re

{∫ ∞

0
αB(τ )eiωτ dτ

}
,

�(ω) = Im

{∫ ∞

0
αB(τ )eiωτ dτ

}
. (A6)

At this point, we realize that up to the second order that is
considered, the convoluted Eq. (A3) should be equivalent to its
time-local counterpart. This is because the terms on its right-
hand side are already of second order, and therefore we can
make the replacement ρs(τ ) = ρs(t ) + O(g2) to find

dρs(t )

dt
= −i

∑
ab,cd

�t
ab,cd [LabL†

cd , ρs(t )]

+
∑
ab,cd

γ t
ab,cd [Labρs(t )L†

cd − 1

2
{L†

cd Lab, ρs(t )}]

+C0ei(Eba−Edc )t
∫ t

0
dτeiEabτ [Labρs(t ), L†

cd ] + H.c.

(A7)

Nonetheless, if the offset is large, the two equations will
differ significantly, signaling the failure of the weak coupling.

Indeed, when the offset is large, the time-local master equa-
tion (A8) becomes increasingly unstable, as the coefficients
related to C0 grow unbounded. In contrast, the convoluted
equation appears to be more stable, but reflects a dependency
or memory over the whole trajectory of ρs(τ ) that suggests
a strong non-Markovian character and thus compromises the
weak-coupling assumption. To see this, we proceed further,
and consider the standard secular approximation in Eq. (A3),
to find

dρs(t )

dt
= −i[Heff, ρs(t )]

+
∑

ab

γab

[
Labρs(t )L†

ab − 1

2

{
L†

abLab, ρs(t )

}]

+C0

∫ t

0
dτeiEabτ [Labρs(τ ), L†

ab] + H.c., (A8)

where we have defined Heff = ∑
ab �abLabL†

ab, γab =
γ (Eba)〈a|S|b〉〈b|S|a〉, and �ab = �(Eba)〈a|S|b〉〈b|S|a〉.
In the long-time limit, we formally have

dρs(t )

dt
= −i[Heff, ρs(t )] +

∑
ab

γab[Labρs(t )L†
ab

− 1

2
{L†

abLab, ρs(t )}]

+C0

∑
ab

[Labρs(t, Ea − Eb)L†
ab

− 1

2
{L†

abLab, ρs(t, Ea − Eb)}], (A9)

which depends on the quantity

ρs(t, ω) =
∫ t

0
dτeiωτρs(τ ). (A10)

When projected into the system eigenbasis, one can calculate
the rate equations as before,

d〈m|ρs(t )|m〉
dt

=
∑
b�=m

(γmb〈b|ρs(t )|b〉 − γbm〈m|ρs(t )|m〉)

+C0

( ∑
b�=m

〈b|ρs(t, Em − Eb)|b〉

− 〈m|ρs(t, Em − Eb)|m〉
)

. (A11)

Thus, the steady-state condition is

∑
b�=m

(
γmbPst

bb − γbmPst
mm

)
= −C0

∑
b�=m

[〈b|ρs(t → ∞, Em − Eb)|b〉

− 〈m|ρs(t → ∞, Em − Eb)|m〉]. (A12)
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In the standard case, we have that C0 = 0, and thus
one steady-state solution is the thermal one, i.e., Pst

bb ∼
exp(−βEb), provided that the detailed balance is also fulfilled,
i.e., γmb = exp(−βEmb)γbm. Nonetheless, when C0 �= 0, we
find that Pst

bb is no longer a thermal state since it is given by

γmbPst
bb − γbmPst

mm = −C0[〈b|ρs(t → ∞, Em − Eb)|b〉
− 〈m|ρs(t → ∞, Em − Eb)|m〉], (A13)

and thus it depends on the whole history of evolution, includ-
ing the initial state.

APPENDIX B: ENVIRONMENT IN EXTREME CASES

Here we briefly present the derivation of the formulas
used in the main text for the following cases: (1) pure de-
phasing � = 0 and (2) spin coherence, r = 0. In addition,
we also present a case (3) corresponding to weak-coupling
derivation, which will allow us to justify in this limit the
fitting functional used in the main text to characterize the
single-molecule correlation function (SMCF). First, we stress
that throughout the paper, we have only computed single-
molecule correlation corresponding to the jth molecule due
to the nondirect interaction between them. Hence the full
environment Hamiltonian can be written as HE = ∑

j H ( j)
E

and the many-molecule polaron transformation gets defined
then as Ufull = U(1) ⊗ · · · ⊗ U( j) ⊗ · · · ⊗ U(Nmol ), where

U( j) = exp

(
1

2
σ z

j Kj

)
, (B1)

with Kj = 2
∑

λ

g jλ

ω jλ
(b†

jλ − b jλ). Henceforth, in the compu-
tation of the SMCF, we ignore the index j, and therefore
we redefine H ( j)

E ≡ HSM. Considering that the formula for
the SMCF implies the computation of a trace, we can ap-
ply arbitrary unitary transformation U with which we can
write

〈σ x(t )σ (0)〉E = trE
{
e−itHSMσ xeitHSMσ xρ th

E (0)
}

= trE
{
e−itHSMσ xeitHSMσ xρ th

E (0)
}
, (B2)

where

Ue−itHSMU −1 =
∑

p

(−it )p

p!
U HSM · · · HSM︸ ︷︷ ︸

p times

U −1

=
∑

p

(−it )p

p!
HSM · · · HSM︸ ︷︷ ︸

p times

= e−itHSM , (B3)

and where we have used the short notation HSM = UHSMU −1.
It can also be shown that

σ x = Uσ xU −1 = σ+eK + σ−e−K ,

σ z = Uσ xU −1 = σ z,

bλ = UbλU −1 = bλ − gλ

ωλ

σ z,

with which HSM gets transformed into

HSM = ε

2
σ z +

∑
λ

ωλb†
λbλ +

∑
λ

g2
λ

ωλ

−�

2
(σ+eK + σ−e−K ). (B4)

1. Pure-dephasing case

Let us first consider � = 0 and this Hamiltonian is separa-
ble, and thus e−itHSM = e− 1

2 itεσ z
e−it

∑
ωλb†

λbλ . Then, the SMCF
can be expressed as

CB̃(t ) = 〈σ x(t )σ x(0)〉E − 〈σ x〉2
E

= eiεt 〈σ+σ−〉σ 〈eK (t )e−K (0)〉R

+e−iεt 〈σ−σ+〉σ 〈e−K (t )eK (0)〉R

−〈σ+〉σ 〈eK (0)〉R − 〈σ−〉σ 〈e−K (0)〉R, (B5)

where we have used the separability of HSM to write ρ th
E (0) =

ρσ ⊗ ρR, with ρσ = e− 1
2 βεσ z

/Zσ and ρR = e−β
∑

λ ωλb†
λbλ/ZR.

Thus, the respective traces are denoted as trσ {· · · ρσ } =
〈· · · 〉σ , and trσ {· · · ρR} = 〈· · · 〉R. Further, the operator K (x)
is defined as

K (x) = eix
∑

λ ωλb†
λbλKe−ix

∑
λ ωλb†

λbλ

= 2
∑

λ

g2
λ

ω2
λ

(b†
λeix − bλe−ix ), (B6)

which satisfies

[K (x), [K (x), K (y)]] = [K (y), [K (x), K (y)]] = 0

and

[K (x), K (y)] = i8
∑

λ

g2
λ

ω2
λ

sin[ωλ(x − y)]. (B7)

Therefore, we can use the Baker-Campbell-Hausdorff iden-
tity,

eK (x)e−K (y) = eK (x)−K (y)− 1
2 [K (x),K (y)], (B8)

and the thermal average,

〈e
∑

λ(cλbλ+dλb†
λ )〉R = e

∑
λ cλdλ[2n(ωλ )+1], (B9)

with the thermal distribution n(ωλ) = (eβωλ − 1)−1, and the
complex numbers cλ and dλ. With these formulas, we
can compute the two-point thermal correlator of the type

〈eK (x)e−K (y)〉R = exp[
∑

λ

g2
λ

ω2
λ

hλ(β )] with

hλ(β ) = −2|ξλ(x, y)|2 coth(βωλ/2) + i4μλ(x, y), (B10)

and with

ξλ(x, y) = i2eiωλ(x+y)/2 sin[ωλ(x − y)/2],

μλ(x, y) = sin[ωλ(x − y)].

Considering this, together with the identity 〈eK (x)e−K (y)〉R =
〈eK (y)e−K (x)〉∗R, and that for a thermal initial state 〈σ±〉σ = 0
and 〈σ+σ−〉σ = (1 + e−βε )−1, we obtain the final expression
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for the SMCF,

CB̃(t ) =
(

eiεt

1 + e−βε
+ e−iεt

1 + eβε

)

× exp

[
−i4

∑
λ

g2
λ

ω2
λ

sin(ωλt )

]

× exp

[
−8

∑
λ

g2
λ

ω2
λ

sin2(ωλt/2) coth(βωλ/2)

]
, (B11)

which implies no offset, as expected, for the pure-dephasing
case.

2. No dissipation

Let us now consider r ≈ 0. The polaron-transformed
Hamiltonian HSM takes the the form

HSM = 1

2
� n̂ · �σ +

∑
λ

ωλb†
λbλ, (B12)

since gλ ∝ r ≈ 0 ⇒ e±K ≈ 1. Here we have defined a Rabi-
type frequency � = √

�2 + ε2, where n̂ = (nx, ny, nz ) =
�−1(−�, 0, ε) is a unitary operator, and �σ = (σ x, σ y, σ z ). To
compute the SMCF, we directly use the identity

eiαn̂·�σ = 1̂ cos(α) + i(n̂ · �σ ) sin(α), (B13)

with α = � jt/2, and the separability of HSM to express

σ x(t )σ x(0) = eitHSMσ xe−itHSMσ x

= [σ x cos(α) + i(nx + nzσ
zσ x ) sin(α)]

×[σ x cos(α) − i(nx + nzσ
zσ x ) sin(α)]

= cos2(α) + (
n2

x − n2
z

)
sin2(α)

+2nxnzσ
zσ x sin2(α) + inzσ

z sin(2α)

= cos2(�t/2) + �2 − ε2

�2
sin2(�t/2)

−2
ε�

�2
σ zσ x sin2(�t/2) − i

ε

�
σ z sin(�t ),

(B14)

where we have used the identity sin(2x) = 2 cos(x) sin(x).
After computing the thermal average, 〈·〉E |r=0 results in

〈σ x(t )σ x(0)〉E |r=0 = 1

�2

[
�2 − ε2 + 2ε2 cos2(�t/2)

]
− i

ε

�
tanh(βε/2) sin(�t ), (B15)

since 〈σ zσ x〉E |r=0 = 0 and 〈σ z〉E |r=0 = tanh(βε/2). For the
renormalization term, we have

〈σ x〉E |r=0 = trσ {σ xρσ }trR{ρR}
= 1

ZE
tr{σ x exp(−βn̂ · �σ )}

= −�

�
tanh(β�/2), (B16)

where we have again used the identity (B13), but this
time considering iα = −β�/2. Furthermore, we have con-
sidered that the partition function can be written as

ZE = cosh(β�/2). We finally arrive at the SMCF,

CB̃(t )|r=0 = 〈σ x(t )σ x(0)〉E − (〈σ x〉E )2

= ε2

�2
cos(�t ) + �2

�2
sech2(β�/2)

−i
ε

�
tanh(βε/2) sin(�t ) , (B17)

where we have the trigonometrical identities cos(2θ ) =
2 cos2(θ ) − 1 and sech2(x) = 1 − tanh2(x). Clearly, the last
term on the right side corresponds to the offset, that is,

C0 = �2

�2
sech2(β�/2) ∈ R . (B18)

3. Weak coupling also for the initial state and the importance
of having an environment in equilibrium

Another possibility to approach the SMCF is to consider
the case in which the interaction between the electronic and
vibrational parts of HE is weak, such that the initial thermal
state can be approximated as

ρ th
E = ρ th

σ ⊗ ρ th
R + ρcorr ≈ ρ th

σ ⊗ ρ th
R , (B19)

where we consider that ρ th
σ = exp(−βHσ )/Zσ and ρ th

R =
exp(−βHR)/ZR, with Zσ,R the partition functions, and HR =∑

λ ωλb†
λbλ. Thus, we are neglecting the correlation term ρcorr,

which is of the order of r2. Moreover, not only does this
approximation restrict the results to a weak electron-boson
coupling, but also it leads to an environment initial state
that is no longer in equilibrium, which means that strictly
speaking, the correlation function is no longer stationary, i.e.,
CB̃(t1, t2) �= C(t1 − t2). We remind the reader that the station-
ary condition is crucial for a rigorous derivation of the weak
coupling and Lindblad master equations. For simplicity, we
concentrate in the case t1 = t and t2 = 0. Using the cyclic
property of the trace, we write the correlation function as
follows:

〈σ x(t )σ x(0)〉E = trσ {σ xρ̃σ (t )}, (B20)

where ρ̃σ (t ) = trR{e−itHSMσ xρ th
σ ⊗ ρ th

R eitHSM}. Therefore, we
can use the eigenstates of the free spin part of the Hamilto-
nian Hσ = 1

2 (εσ z − �σ x ), labeled by |μ〉 (μ = ±), to express
Eq. (B20) as

〈σ x(t )σ x(0)〉E =
∑
μν

〈μ|σ x|ν〉ρ̃νμ(t ), (B21)

with ρ̃νμ(t ) = 〈ν|ρ̃σ (t )|μ〉. Following [51], for instance, we
can obtain the matrix element of ρ̃σ by solving the following
system of differential equations:

∂

∂t
ρ̃++ = −γ(+−,+−)ρ̃++ + γ(−+,−+)ρ̃−−,

∂

∂t
ρ̃−− = −γ(−+,−+)ρ̃−− + γ(+−,+−)ρ̃++,

∂

∂t
ρ̃−+ = −i(ε− − ε+ + σ−− − σ++)ρ̃−+

+
(
γ(−−,++) − γ(+−,−+) + γ(+−,+−)

2

)
ρ̃−+,

(B22)
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where γ(μν,μ′ν ′ ) are relevant damping coefficients and σ±,±
are the Lamb-shift terms. The initial conditions are set by
ρ̃σ (0) = trσ {σ xρσ (0)}. The solutions of the system of differ-
ential equation have the form

ρ̃++(t ) = a1 + b1e−λt ,

ρ̃−−(t ) = a2 + b2e−λt ,

ρ̃+−(t ) = b3e−λ0t , (B23)

where λ = γ(−+,−+) + γ(+−,+−). The a j and b j ( j = 1, 2) are
real, while λ0 and b3 are complex, and all of them depend
explicitly on the damping and the Lamb-shift coefficients, as
well as on the initial state ρ̃μν (0). The nonrenormalized SMCF
is then given by the function

〈σ x(t )σ x
j (0)〉E = 〈−|σ x|−〉a1 + 〈+|σ x|+〉a2

+ e−λt (〈−|σ x|−〉b1 + 〈+|σ x|+〉b2)

+〈−|σ x|+〉b3e−λ0t + 〈+|σ x|−〉b∗
3e−λ∗

0t .

(B24)

Interestingly, the form of this solution is very similar to the
one of the fitting functional [see Eq. (9) in the main text].
Indeed, once renormalized, i.e., after subtracting 〈σ x〉2, its real
part takes the form

f r�1(t ) = Re{〈σ x(t )σ x(0)〉E } − 〈σ x〉2

= Ã0e−Re{λ0}t cos(Im{λ0}t ) + C0e−λt

+ b0 − 〈σ x〉2. (B25)

The first term on the right-hand side corresponds to an ex-
ponentially decaying damping, ∼e−Re{λ0}t . This is due to the
fact that we are assuming the weak-coupling approximation
between electrons and phonons, while the analogous term in
the fitting function [see Eq. (9) in the main text] presents a
non-Markovian structure, ∼e−B0t a

with a ≈ √
2 > 1. Notice

that in the weak-coupling solution given by Eq. (B25), there
is a constant term b0 that does not cancel with 〈σ x〉2. One
may be tempted to say that this corresponds to an offset.
However, we argue that such an offset is ill defined, as our
initial nonequilibrium state (B19) produces a time-dependent
renormalization factor, 〈σ x〉E ≈ trE {ρσ (t ) ⊗ ρRσx}.

In contrast, we shall emphasize that the offset described
in the main text corresponds to a correlation function of an
environment in equilibrium. Indeed, in the main text, we take
the full thermal initial state ρ th

E , for which

〈σ x〉E = trE {eiHE tσ xe−iHE tρ th
E } = trE {σ xρ th

E } (B26)

is time independent.

APPENDIX C: CORRELATION FUNCTION IN THE
HARMONIC LIMIT

Let us now consider the particular case of Gaussian envi-
ronments. In this case, the environment should be formed by
a set of independent harmonic oscillators, and thus we relabel
the environment eigenstates and eigenenergies in terms of the
standard indices: one referring to the oscillator λ and another
one referring to its internal state nλ that reflects the number of
quanta in such oscillator (we consider a single molecule and

thus skip the index j),

|εk〉 ≡ |nλ〉,
εk ≡ εnλ

= ωλ(nλ + 1/2). (C1)

Thus, the correlation function can be written as

CB̃(t ) =
∑
λ′,nλ′

∑
λ′′,nλ′′

e−βωλ′ |Bnλ′ ,nλ′′ |2ei(εn
λ′ −εn

λ′′ )t
.

To obtain Gaussian statistics, we furthermore need a linear
coupling operator B = ∑

λ gλ(a†
λ + aλ), such that Bnλ′ ,nλ′′ is

〈nλ′ |B|nλ′′ 〉 =
∑

λ

δλ′,λδλ′′,λgλ

(√
nλ′′ + 1δnλ′ ,nλ′′ +1

+√
nλ′′δnλ′ ,nλ′′ −1

)
.

Notice that here there is no need to renormalize since
〈nλ|B|nλ〉 = 0, i.e., the coupling operator does not connect
the same environment eigenstates, which means that B̃ = B.
In addition, we have

δnλ′ ,nλ′′ +1ei(εn
λ′ −ελ′′ )t = δnλ′ ,nλ′′ +1eiωλt ,

δnλ′ ,nλ′′ −1ei(ελ′ −ελ′′ )t = δnλ′ ,nλ′′ −1e−iωλt . (C2)

Considering, also, the Bose-Einstein statistics, i.e.,

N (ωλ) =
∑∞

nλ=0 nλe−βωλ(nλ+1/2)

Zλ

= 1

eβωλ − 1
, (C3)

and the detailed balance [N (ωλ) + 1]e−βωλ = N (ωλ), we find
the standard correlation function for harmonic environments,

CB̃(t ) =
∑

λ

g2
λ[(N (ωλ) + 1)e−iωλt + N (ωλ)eiωλt ]. (C4)

As it is well known, this function can be written in terms of the
one-particle spectral density J (ω) = g(ω)2|∂ (ωλ)/∂λ|−1

λ=λ(ω)
as

CB̃(t ) =
∫ ∞

0
dωJ (ω){[N (ω) + 1]e−iωt + N (ω)eiωt }. (C5)

As discussed in regard to Eq. (5) in the main text, as long
as J (ω) is a smooth function in frequencies [since N (ω) is
smooth], CB̃(t ) will decay to zero. This is the case in most
physical models, where J (ω) is a continuous differentiable
function.

APPENDIX D: ADDITIONAL NUMERICS ON THE OFFSET

We first compute the offset C0 using Eq. (4) in the main
text by diagonalizing HSM for a single-, two-, and three-mode
molecule. As seen in the main text, the offset does not show
any strong dependence on the number of modes L, and it is
a smooth function of the parameters of interest. The results
are shown in Fig. 2, where it can be noticed that the x and
y axes are in a logarithmic scale. The figure also illustrates
why the offset cancels towards the limit in which the envi-
ronment Hamiltonian becomes separable, for instance, as the
ratio r/� 	 1.

In addition, we compute the distribution of Bkk = σ x
kk =

〈εk|σ x|εk〉. The eigenenergies are rescaled as ε′
k = (εk −

ε0)/max({εk} − ε0), such that 0 � ε′
k � 1. From this figure,

it is easily noticed that whenever � = 0, then Bkk = 0 for all
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FIG. 2. Few-mode case: Offset. Offset as a function of the in-
verse of the temperature β and the environment interaction gλ ∝ r
for a single-, two-, and three-mode molecule, with � = ε = 1.

eigenstates, as expected, while for a very small value of �,
the distribution already gets spread around zero. The larger
the value of �, the broader the distribution, and, as seen in
Fig. 3, when �/r 	 1, two peaks are getting formed around
±1, especially in the low-energy regime that is the relevant
energy bandwidth for the computation of C0. Such relevant
bandwidth can be estimated by considering the thermal distri-
bution ηk (black dashed lines).

Furthermore, to visualize the energy range in which the
offset increases, we compute an effective participation-energy
range �Eβ = εN − ε0 (light blue region), defined as the val-
ues in which the cumulative sum Fβ (N ) = ∑N

k=0 ηk (Bkk )2

converges to their constant value Fβ (N ) ≈ limN→∞ Fβ (N ).
This quantity might be helpful to evaluate the offset for ther-
mal large systems, where only the first few eigenstates are
accessible. Nonetheless, as concluded before, a nonzero offset
implies the participation of at least two eigenstates.

To complete the analysis, in Fig. 4 we show the variation
of the SMCF as the interaction strength r is increased. We
can see that the larger the ratio r/�, the more relevant the
dephasing becomes and the faster the correlation function
decays. To contrast these results, we additionally include the
correlation function with parameters r = 0.25 and � = 2.5
for which the appearance of a very large T0 is observed.

FIG. 3. Few-mode case: Statistics. Distribution of the single-
eigenstate expectation of system-environment coupling operator B =
σ x as a function of (a) the tunneling strength � with r = 0.25,
and (b) r (∝ gλ) with � = 1. The black dashed lines represent the
thermal distribution for β = 0.5.

FIG. 4. Environment interaction. Single-molecule correlation
function for different values of the environment interaction strength
r, given � = 1 and β = 1.

APPENDIX E: MANY-MOLECULE SCENARIO

A standard case is that in which the environment is
composed of an ensemble of molecules. When they are
independent, the total correlation function is given by CB̃(t ) =∑M

j=1 C( j)
B̃

(t ). In a realistic setup, the molecules in the en-
semble are not identical, and the total correlation function
shall depend on how the molecular parameters, {� j, ε j}, are
distributed. Let us assume that they follow a normalized dis-
tribution, P ({� j, ε j}). In the continuous limit, the correlation
function can then be written as

CB̃(t ) = 1

M

∑
j

CB̃(t, {� j, ε j})

=
∫

〈�〉

∫
〈ε〉

P (�, ε)CB̃(t,�, ε) d� dε, (E1)

with C( j)
B̃

(t ) ≡ CB̃(t, {� j, ε j}), and P (�, ε) is the continuous
distribution. A precise knowledge of this distribution may not
be experimentally trivial to obtain.

Here, we consider a Gaussian probability distribution
where � and ε are treated as independent variables,

P (�, ε) = P (�)P (ε)

=
(

1√
2πσ 2

)2

e
−(�−� j )2

2σ2 e
−(ε−ε j )2

2σ2 , (E2)

where the distribution width σ is set as a tuning parame-
ter. Considering such a Gaussian distribution (which leads
to mean values {� j = 1, ε j = 1}), we randomly sample the
parameter set {� j, ε j} and compute the correlation function
for each pair by solving the eigenspectrum of H ( j)

E .
In Fig. 5, we present the numerical results of the correlation

function as a function of the total number of molecules M,
each with a single active bosonic mode. Therein, it can be
seen that the function exhibits a large offset in the presence
of many molecules and, interestingly, the expected finite-size
recurrence is washed out in the average. We shall emphasize
that our results are valid for a finite number of modes for
each molecule and limited to the timescale that is accessible
to us. The fluctuations around the final offset value (light-
yellow dashed line) are expected to disappear as the number
of molecules involved is larger while σ also is increased.
This calculation, for a higher number of modes, is not easily
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FIG. 5. Many-molecule offset. Many-molecule correlation func-
tion computed using the eigenstates and eigenvalues of H ( j)

E . The
parameters are r = 0.25, β = 1, and we randomly choose {� j, ε j}
around � j = ε j = 1, and a distribution width σ = 0.3.

accessible due to the exponential growth of the Hilbert space
of H ( j)

E .

APPENDIX F: THE 1/ f NOISE

Another important aspect of the presence of an offset for
some parameters is related to the bandwidth of the 1/f noise.
To show this, we compute the susceptibility function, which
is the Fourier transform of CB̃(t ). The 1/f is observed at low
frequencies, and therefore it will be dominated by the long-
time or slowly decaying term of the fitting correlation function
[see Eq. (9) in the main text], i.e.,

f lt(t ) = C̃0e−t/T0 . (F1)

In order to compute the susceptibility, one should take into
account a sum over an ensemble of molecules j, each with
different parameters and therefore with different decay rates
ν

( j)
0 = 1/T ( j)

0 ,

F lt(t ) =
∑

j

C̃( j)
0 e−ν

( j)
0 t . (F2)

Thus, the susceptibility at low frequencies will be given by the
Fourier transform of this function,

χ0(ω) =
∑

j

∫ ∞

−∞
e−ν

( j)
0 |t |e−iωtC̃( j)

0 dt

= c1

2π

∑
j

C̃( j)
0

ν
( j)
0

ω2 + (ν ( j)
0 )2

4π2

∝ c1

2π

∫ νmax

νmin

Q(ν0)C̃0(ν0)
ν0

ω2 + ν2
0

4π2

dν0, (F3)

with νmin = 1/Tmax and νmax = 1/Tmin very small. In the last
equality, we have considered the limit of a very dense molec-
ular ensemble and taken the sum as an integral with a certain
probability distribution for decay rates, which we take as
Q(ν0) = 1/ν0 [10,41]. Moreover, we assume a narrow band-
width at low frequencies, such that C̃0(ν0) ≈ C̃0, so that it can
be taken out of the integral. The resulting integral is analyt-
ically accessible and allows one to obtain the 1/f behavior
since

χ0(ω) ∝ C̃0

ω
if

1

Tmax
< ν0 <

1

Tmin
. (F4)

So far, we have carried the standard calculation of the 1/f
spectrum. The difference in our case is that due to the fi-
nite temperature, we find that νmin = 1/Tmax = 0 since there
are some molecules with internal parameters that have an
infinitely decaying correlation function. Previous models are
often based on a weak-coupling approximation that leads to
a correlation function (B25) that always decays with a finite
rate λ. This leads to a 1/f spectrum that is limited to the lower
frequency, 1

Tmax
= λmin. In contrast, our model shows a 1/f

behavior that extends to zero frequency, and it is therefore in
better agreement with experimental observations (see [41] and
references therein).
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