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The Dirac-Frenkel variational method with Davydov D, trial wavefunction is extended by introducing a
thermalization algorithm and applied to simulate dynamics of a general open quantum system. The algorithm
allows to control temperature variations of a harmonic finite-size bath when in contact with the quantum
system. Thermalization of the bath vibrational modes is realized via stochastic scatterings, implemented as
a discrete-time Bernoulli process with Poisson statistics. It controls bath temperature by steering vibrational
modes’ evolution towards their canonical thermal equilibrium. Numerical analysis of the exciton relaxation
dynamics in a small molecular cluster reveals that thermalization additionally provides significant calculation
speedup due to the reduced number of vibrational modes needed to obtain the convergence.
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I. INTRODUCTION

Obtaining dynamics of open quantum systems, i.e., quan-
tum systems that are identified as separate from their
environment yet remain in thermal contact with it, is one of
the most general non-equilibrium statistical physics problem.
Its applicability ranges from excited state relaxation in opti-
cal response [1,2], energy transport in molecular aggregates
[3-8], photosynthetic complexes [9-12], to others [13-17].
Prevalent theoretical description is given in terms of a system-
bath model in constant-temperature bath conditions [18,19],
where the system degrees of freedom are coupled to the bath-
induced thermal fluctuations representing the environment,
e.g., phonons or vibrational motion of surrounding molecules.
Fluctuations are modeled by an infinite number of quantum
harmonic oscillators constituting the quantum bath at thermal
equilibrium.

These conditions can be fulfilled using the reduced den-
sity matrix approach [2,7]. Second order perturbation theory,
with respect to the system-bath coupling, leads to the reduced
equations of motion of the system-only variables, while the
bath is averaged out. Then the system variables indirectly
depend on the bath degrees of freedom via fluctuation corre-
lation functions, which are well-behaved analytical functions.
At the second perturbation order [7,18], equations of motion
are reminiscent of the Pauli master equation with relaxation
coefficients calculated with respect to the thermal equilibrium.
However, now the resulting equations can lead to unphysical
results, e.g., negative probabilities [20]. The more compli-
cated fourth-order equations of motion include divergent
parameters and are often avoided [21]. A nonperturbative, nu-
merically exact approach of hierarchical equations of motion
for the exponential fluctuation correlation functions is avail-
able to obtain the exact dynamics [22—24], and chain-mapping
techniques together with the time-dependent density matrix
renormalization group are alternatively possible for struc-
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tured environments [25,26]. However, computational costs
limit these methods to models with just few degrees of
freedom. A well-known method of stochastic Schrédinger
equation requires averaging over many entangled trajectories
to obtain dynamics at finite temperature [27-32]. Its hier-
archical realization [33] improves convergence; meanwhile,
the thermofield dynamics approach tries to directly compute
thermally averaged dynamics by mapping the initial thermal
density matrix onto a fictitious bath vacuum state and then
coupling the system to it [34—-37]. Alternatively, dissipative
dynamics can be obtained by straightforward addition of a
linear friction coefficient to the model Hamiltonian [38]; how-
ever, it only applies at zero temperature. Yet, in all these
cases, the thermal state of the nearest surrounding is not under
control.

An important aspect of the bath, or more explicitly of the
finite number of bath oscillators, is its heat capacity. For a
single quantum harmonic oscillator the heat capacity in the
limit of weak system-bath coupling is given by

exp(Bfw)
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where throughout the paper i = 1, 8 = (kgT)~' is an inverse
temperature, and o is the oscillator frequency. When the sys-
tem exchanges energy with a bath made of such oscillators,
its temperature may be affected. If the system-bath energy
exchange is excessively large, the thermal energy can accumu-
late in the bath oscillators and this will effectively change the
thermostat temperature [39]. In most cases, the bath heating
effect is undesirable as, in the system-bath models, the bath is
generally supposed to represent a constant-temperature ther-
mostat.

On the other hand, the bath heating effect could be re-
lated to the natural phenomenon of molecular local heating
[40,41]; i.e., if a molecule quickly dissipates a large amount
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of thermal energy to its environment, e.g., due to exciton-
exciton annihilation [42-44] or ultrafast molecular internal
conversion [45,46], the local heating of the molecule nearest
the surrounding takes place and the further cooling process,
the quantum thermalization [47,48], becomes an important
ingredient to consider when describing the corresponding ex-
periments.

In this work, we introduce the thermalization algorithm
to the time-dependent variational theory that allows explicit
control over the bath temperature. By varying the bath size
and the thermalization rate, both the degree of bath heating
and the cooling time can be adjusted. These properties allow
to mimic realistic physical conditions, making the presented
approach superior to the density-operator-based approaches,
where the bath heating is excluded, and to the explicit bath
models, where the bath temperature is not controlled.

II. FLUCTUATING EXCITON MODEL

We consider a molecular aggregate made of N coupled
chromophores at specific sites. In the simplest case, the sites
represent distinct molecules that can be electronically excited
by, e.g., laser or sunlight irradiation in the visible spectral
region. Vibrational normal modes of molecules and of the
surrounding medium will be treated as the baths of harmonic
oscillators. Each chromophore is directly affected only by
its own intramolecular vibrations and of its closest environ-
ment; therefore, a separate and uncorrelated (local) manifold
of vibrational modes ¢ = 1, 2, ..., Q is associated with each
chromophore. Such a model is characterized by a Hamiltonian
H = Hs + Hg + Hgg, with system, bath, and system-bath-
coupling terms being

n#m
HS = Z Sn&;&n + ZJnm&nT&ma (2)
n n,m
ﬁB = anql;j,ql;nqa (3)
n.q
ﬁSB = - Z &Z&n Z a)nqgnq(i;;q + Bnq)- 4
n q

Here ¢, denotes the nth chromophore electronic excitation
energy, Ju, is the resonant coupling between nth and mth
chromophores, and &' and @, are the corresponding electronic
excitation creation and annihilation bosonic operators. The
frequency of the gth vibrational mode in the nth bath is w,,,
the electron-vibrational coupling is characterized by g,,4, and
b} . and by, are the creation and annihilation bosonic operators
of the gth mode in the nth bath.

In the following we consider only a single electronic
excitation in the aggregate. The time evolution of a nonequi-
librium state is described by the Davydov D, wavefunction
[49,50]

N N,Q
(Wp,) =D an(®)ajanl00er x [ ] 1Amg (), 5)
n m,q

where o, (¢) is the electronic excitation amplitude, and |0)¢ =
1,10}, is the global ground state, when all sites are in their
electronic ground states. |A,,(?)) is the coherent state of the

gth mode in the mth bath [51,52]. It is fully described by
the time-dependent complex displacements, A,,,(¢). The time-
dependent Dirac-Frenkel variational method allows to obtain
equations of motion for parameters o, and A4 [3,6,53,54]:

m#n
% = _ian(t)gn - iXm:am([)Jnm
+ian (t) Z a)nq (Zgnq - hq )Re()"nq (t))v (6)
q
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Here h,(t) = va g,-q|oz,-(t)|2 is the site population-weighted
electron-vibrational coupling strength. The first line in Eq. (6)
describes the dynamics of an isolated system. Accordingly,
the first term on the right-hand side of Eq. (7) describes
isolated oscillator. Other terms are due to the system-bath
interaction.

Description of the model at a given temperature T requires
creation of a statistical ensemble. This is achieved by Monte
Carlo sampling over a statistical thermal ensemble, i.e., over
initial bath oscillator displacements 2,,,(0), sampled from the
Glauber-Sudarshan probability distribution [55]

Pmg) = 27" exp(—|Amgl [P — 1]). (8)

The ensemble describes canonical statistics of quantum har-
monic oscillators, which applies to our model prior to external
perturbations. The ensemble-averaged quantities will be de-
noted by (- - - ). The ensemble of exciton trajectories allows
to describe irreversible excitation energy relaxation. While
the initial thermal state before excitation can be properly
defined, the bath accepts energy during exciton relaxation
and the state of the bath after relaxation steers away from
equilibrium. Equations of motion guarantee energy conser-
vation; hence the combined system-bath cannot thermalize.
In order to thermalize the bath, we extend the original model
by introducing the secondary bath (we will refer to the local
baths as the primary baths). The effective heat capacity of the
secondary bath is infinite; hence, the bath can be characterized
by a constant temperature T,. The secondary bath will not be
treated explicitly: modes of the primary baths interact with the
secondary bath via stochastic scattering events, or quantum
jumps [56,57], which affect the kinetic energy of primary bath
modes.

The scattering statistics follows the Poisson distribution
Poug(0,7) = 5:(Tvmg) e ™, which defines the probability of
observing @ scattering events per time interval t with individ-
ual event scattering rate v,,,. Poisson statistics is obtained by
simulating a discrete-time Bernoulli process [58,59] in a limit
of T — 0 and v,,,t < 1. This is realized in simulations by
dividing the total evolution time fo, into equidistant length
T intervals. At the end of each interval, for each mode in the
primary bath, we flip a biased coin with probability v,,,7 of
landing “heads.” If the coin lands heads, we shift the momen-
tum of the mode p,,(kt) = \/zlm)»mq (kt) to a value drawn
from the Glauber-Sudarshan distribution [see Eq. (8)], while
the coordinate remains unchanged. Otherwise, if coin lands
“tails,” no changes are done. To obtain converged statistics,
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FIG. 1. Phase-space trajectory of one specific bath mode w, =
100 cm™! for a single excited chromophore calculated with various
scattering rates v. The initial temperature of the primary bath is
71(0) = 300 K and the secondary bath is at a constant temperature
T, = 200 K. The scattering step size is T = 0.01 ps. Wiggles in dy-
namics are due to finite-size ensemble averaging (5000 trajectories).

we apply the thermalization algorithm to every trajectory of
the thermal ensemble.

III. SIMULATION RESULTS

We first demonstrate control of the primary bath tem-
perature of the simplest possible system, a single, N =1,
chromophore unit. For demonstration we set up artificial con-
ditions: the initial primary bath temperature is 77(0) = 300 K,
and the secondary bath is at T, = 200 K. The primary bath
consists of Q = 750 vibrational modes with frequencies w, =
wo + (¢ — 1)Aw. An offset by wy = 0.01 cm™! is introduced
for stability and a step size Aw =1 cm™!. The coupling
parameters g,, follow the super-Ohmic spectral density func-
tion C"(w) = w* exp (—w/w,.) with s = 2 and w, = 100 cm ™!
[3,60]. The number of modes and discretization parameters
are sufficient to obtain convergent model dynamics. For ther-
malization, we consider scattering rates of all modes to be
equal, v,,, — v, and the scattering step size is T = 0.01 ps~".
The thermal ensemble consists of 5000 trajectories.

In Fig. 1 the coordinate (x4), = (ﬁReAlq)th and mo-
mentum (pig),, = (\/flm)\mq)th phase-space trajectory of a
single 100 cm~! frequency vibrational mode, calculated with
various scattering rates v, is presented. The oscillator, in the
absence of thermalization, evolves along a closed trajectory
around xﬁ‘}}“ = «/iglq. Applying the thermalization proce-
dure, a dissipative-type trajectory is observed. The coordinate
(X14)y, €quilibrates to x{‘;“ (equilibrium is shifted from zero
due to coupling with the system), while momentum (p14),
approaches zero. The thermalization time can be adjusted
by changing the scattering rate, v. Both weakly damped and
overdamped regimes become available.

The transient temperature of the primary bath can be
estimated [39] by computing the average kinetic energy
(King(2, €)),, over the time interval €. The parameter € then
implies the resolution. For the whole primary bath the tran-
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FIG. 2. The primary bath temperature 7 (¢) calculated with vari-
ous scattering rates v. The initial temperature of the primary bath is
71(0) = 300 K and the secondary bath is at a constant temperature
T = 200 K. The scattering step size is T = 0.01 ps.

sient temperature is then given by

1 9 Wpg -
T,(t) = 0o ;wmq In (1 + ST €)>th> )

In Fig. 2 we present the primary bath temperature calculated
with € = 50 fs and various scattering rates, v. In the absence
of thermalization, the primary bath temperature remains at the
initial value of 77(0) = 300 K. Meanwhile, thermalization in-
troduces cooling of the primary bath down to the temperature
of the secondary bath. The scattering rate, v, allows to control
the thermalization time.

The temperature control and stability considerably af-
fect the electronic excitation dynamics. To demonstrate the
sensitivity of the excitation evolution to the thermaliza-
tion, we consider a linear N = 3 chromophore aggregate,
with chromophore transition energies 0, 250, and 500
cm~!, and nearest-neighbor coupling J = 100 cm~'. Ex-
cited states of such chromophore aggregate are excitons
[7,61]. They represent electronic excitations delocalized
over several sites with time-dependent delocalization length
[62]. Hence, we switch to the eigenstate basis (exciton
representation, defined by Hsy () = gy &) pEx) (1) =
> (SN (i ()t (1)), Y42, The initial electronic state
corresponds to the optically excited highest-energy exciton
eigenstate. The parameters of the primary baths of chro-
mophores are the same as above; however, now the initial
primary bath temperature and the secondary bath temperature
are the same: 7,,(0) = Tooc = 77 K. The thermal ensemble
consists of 240 trajectories. In Fig. 3 we present exciton
state populations pJ*°(¢) and the primary bath temperatures
T,,(¢) calculated in (i) the dense primary bath discretization
regime without thermalization (the bath discretization step
size is Aw =1 cm™', Q = 750 vibrational modes per site),
(ii) the sparse discretization regime without thermalization
(Aw = 50cm™!, Q = 15), and (iii) the sparse discretized bath
with thermalization (v = 2.5 ps™).

Consider the excitation dynamics without thermalization.
In models (i) and (ii) exciton populations sequentially relax
to lower-energy exciton states, eventually reaching the low-
est energy state [63—65]. The final population distribution in

032202-3



JAKUCIONIS AND ABRAMAVICIUS

PHYSICAL REVIEW A 103, 032202 (2021)

Model (i) (v=0ps~! Aw=1cm™)

10 84 F
2 (a) - |
0.8 [ =3
< ~
S o6r — pp g
3 e | B
204} p3 T
N £
0.2 | '9
00 . "'---‘ ....... T v e
10 Model (i) (v=0 ps~!, Aw=50cm™1)
PE© 0@ =
0.8 [-.- X R
- . ~ .t
S g 120~
8 3 -
S ©
Q o
$ g 100
§
~

80

Model (iii) (v=2.5 ps~, Aw =50 cm™)

1.0
2 (e) 120 ) .,
0.8 F. <
- : ~ 110F
S 06 ¢ — P g
r\g . pEXC % 100
S 04 ps*c 3
% Q
g 90
0.2t <
..... 80 .
oo 1 A : Mo
00 05 10 15 20 00 05 10 15 20

Time, t (ps) Time, t (ps)

FIG. 3. Multisite bath model exciton state populations p,;*(t)
and local bath temperatures 7,,(¢) calculated in model (i), the dense
primary bath discretization regime without thermalization, in model
(ii), the sparse discretization regime without thermalization, and in
model (iii), the sparsely discretized bath with thermalization (v =
2.5ps7h).

the sparse regime, model (ii), significantly differs from the
dense case. The origin of the discrepancy is twofold: the bath
recursion time t. = 27 /Aw for model (ii) is shorter than
the calculation time f.. < fia, and the sparse primary bath
shows significant growth of the bath temperature [compare
Figs. 3(b) and 3(d)]. Both of these drawbacks are addressed
by introducing the bath thermalization in model (iii). Looking
at Fig. 3(e), we see that the exciton population dynamics
and steady-state values for model (iii) become quantitatively
comparable to the case of model (i).

IV. DISCUSSION

A single quantum harmonic oscillator is characterized by
a specific heat ¢(8~') < kg, which depends on temperature
as given by Eq. (1). For a given set of bath oscillators the
specific heat at a given temperature can be estimated; however,
the harmonic oscillators of the bath as defined by Eq. (3) do
not exchange energy. Accordingly, as the system relaxes, only
a few in-resonant oscillators accept the energy and diverge

away from equilibrium [66]. Hence, the temperature at which
excitation dynamics occurs no longer matches the initial bath
temperature; local heating takes place.

A straightforward approach to avoid heating is to increase
the bath density of states until the dynamics of interest
converges (in our model, this is achieved by increasing
the number of bath oscillators). However, this is accept-
able only for small systems, since computation effort scales
quadratically with both number of sites and bath oscillators.
Thermalization can be utilized to steer the bath to the re-
quired temperature. An additional merit of thermalization is
the significant reduction of the number of vibrational modes
needed per bath. Our simulations show convergence with just
15 modes per bath while maintaining comparable exciton
relaxation dynamics (Fig. 3).

In an effort to reduce the computational effort, Wang et al.
[67] used a logarithmic bath discretization. However, high-
frequency representation of the continuous spectral density
becomes poor. Our model is in line with the explicit surrogate
Hamiltonian [68] and its stochastic realization [69-71]; while
our approach does not require the explicit modeling of the
secondary bath, it still maintains proper quantum dynamics
in the system.

The time-dependent variational approach with the Davy-
dov D, Ansatz can be improved by considering more complex
Davydov Ansdtze family members, e.g., multitude of D,
Ansatz (multi-Dy) and multi-D, [53,67,72,73] or its Born-
Oppenheimer approximated variant [74], sD,. Either way,
they all suffer from finite bath heating capacity, in most cases,
even stronger than the D, Ansatz, because of the significantly
increased computational effort needed to propagate numerous
bath oscillators. Work is in progress on adapting the presented
thermalization algorithm to these more intricate Ansdtze.

In conclusion, we present a system-bath model with
stochastic bath thermalization using the time-dependent vari-
ational approach with Davydov D, Ansarz. Thermalization
allows to steer the bath vibrational mode evolution towards
an equilibrium thermal state of selected temperature in a
controlled way, and at the same time for the bath to still
maintain an aspect of being coupled to the system. In addition,
by analyzing exciton relaxation dynamics of a chromophore
aggregate with thermalization, we found the exciton dynamics
to converge with a much smaller number of bath modes,
significantly speeding up numerical computation.
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