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This article aims to study the existence of stable Bloch oscillations and Landau-Zener tunneling in a non-
Hermitian system when exposed to external fields. We investigate a non-Hermitian PT -symmetric diamond
chain network and its transport dynamics in two different situations, namely in a flat-band case and a non-flat-
band case. The considered system does not support an unbroken-PT phase or completely real eigenspectra in
any of the parametric regions in both the flat- and non-flat-band cases. In the flat-band case, up to a critical
value of the gain-loss parameter, the bands are found to be gapless or inseparable, and for other values the bands
are isolated. Considering the non-flat-band case, all the bands are found to be complex dispersive and are also
isolated. In the case of a completely broken PT phase, we look at the possibility of having stable dynamics
or Bloch oscillations upon the application of external fields like a synthetic electric field. In particular, when
the complex bands are isolated, we point out that the Landau-Zener tunneling induced by the synthetic electric
field can enable Bloch oscillations. The amplitude of these Bloch oscillations is large and persists for a long
propagation distance, which reveals that super Bloch oscillations can be observed in the broken PT phase of
the system. We also report the amplified Bloch oscillations, which pave the way toward controlling transport
phenomena in non-Hermitian systems.
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I. INTRODUCTION

Understanding the dynamics of a quantum system in a
periodic potential has been an active research field for the
past few decades. To describe the dynamics of a particle
in the potential and to localize the transport in a periodic
structure, two underlying phenomena viz Bloch oscillations
and Landau-Zener tunneling are being investigated. When
the quantum particle in the periodic potential is driven by
an external field, it performs a localized oscillatory motion
that is termed Bloch oscillations [1,2]. If the applied exter-
nal field is sufficiently strong, tunneling between the bands
emerges, which is popularly known as Landau-Zener (LZ)
tunneling [3,4]. Initially, Bloch oscillations were observed in
semiconductor superlattices [5,6]. Later on, Bloch oscillations
were shown to occur in different periodic systems such as
ultracold atoms [7,8], Bose-Einstein condensates in optical
lattices [9,10], waveguide arrays [11–13], optically induced
lattices [14,15], acoustical waves [16], and plasmonic systems
[17]. Among the various physical settings, optical systems of-
fer direct visualization of Bloch oscillations [7,10,11,18] and
Landau-Zener tunneling [19–22] both theoretically and exper-
imentally. For example, Bloch oscillations with Landau-Zener
tunneling can be used to construct matter-wave beam splitters
and a Mach-Zehnder interferometer [23]. In this context, the
interplay of Bloch oscillations and Landau-Zener tunneling
has attracted wide research interest [14,24,25].

Further, differing from the symmetric Bloch oscillations
and Landau-Zener tunneling, asymmetric cases were also
reported in the one-dimensional tight-binding model and
Bose-Einstein condensates in an optical lattice with nonlinear
interactions [7,26–28]. More recently, in Ref. [29] the authors
have considered a Hermitian three-leg diamond network and
reported asymmetric Bloch oscillations with Landau-Zener
tunneling due to the presence of a flat band. Similarly, the
authors of Ref. [30] have considered optical lattices with
spin-orbit coupling, and they showed the suppression of
Bloch oscillations due to the flattening of bands. From the
non-Hermitian perspective, in Ref. [31] the authors have
shown the revival of localized oscillations (Aharanov-Bohm
cages) and unstable amplification of Bloch waves due to
the complex flat-band nature induced by non-Hermitian
coupling in the system. The earliest study of flat bands was
carried out in a PT -symmetric diamond chain network
[32] by Yulin and Konotop, and the works in Refs. [33,34]
also emphasize the beneficial impact of flat bands in the
localization mechanism of non-Hermitian systems. On the
other hand, Bloch oscillations and Landau-Zener tunneling
were well-identified in two layers or systems (both Hermitian
and non-Hermitian) with two dispersive bands [23,35–38].
More exploration of these studies was needed in the system
involving three bands, particularly flat bands. Attracted by
these studies, we are interested in exploring the non-Hermitian
version of asymmetric/stable Bloch oscillations with
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Landau-Zener tunneling in the trilayer flat-band lattices
under the effect of external fields.

Recently, several intriguing features of non-Hermitian
PT -symmetric systems, such as unidirectional invisibility
[39–41], simultaneous lasing-absorbing [42,43], and selec-
tive mode lasing [44,45], have triggered interest in the
study of Bloch oscillations and Landau-Zener tunneling
in PT -symmetric systems. The first theoretical investiga-
tion of Bloch oscillations in a PT -symmetric complex
crystal was addressed in [46], where it was shown that
amplified/attenuated oscillations can take place depending on
the nature of the force. Experimental realization of Bloch os-
cillations was also demonstrated in PT -symmetric global and
local mesh of lattices [47]. In particular, Bloch oscillations in a
PT -synthetic photonic lattice expand the applicability of on-
chip photonics [48]. Likewise, Landau-Zener transitions were
investigated in a PT -symmetric optical lattice [49], which
is useful to control the intensity of a light beam in complex
waveguide arrays. In [37], the authors have shown the possi-
bility of stable Bloch oscillations with Zener tunneling at the
exact PT phase of the photonic lattices. Also, the observed
oscillations experienced a wave-packet self-imaging and giant
recombinations of beams, which are useful for the realization
of beam splitters and image processing. Interestingly, in the
PT phase of the PT -symmetric system [50], one can observe
large-amplitude matter-wave oscillations, referred to as super
Bloch oscillations. Although the super Bloch oscillations have
been explored in the PT phase of the system, achieving this
type of large-amplitude Bloch oscillations in the broken PT
phase is a challenging problem and still remains to be investi-
gated. In the course of this present work, we also try to exploit
the large-amplitude Bloch oscillations in the broken regime of
the PT -symmetric system.

Focusing on the recent interest in Bloch oscillations with
Landau-Zener tunneling in non-Hermitian systems and the
systems supporting nondispersive flat bands, we consider here
the light transport in a non-Hermitian diamond chain lattice
where the system is found to support a flat band in a partic-
ular situation. By considering the flat-band and non-flat-band
cases, we study the dynamics and possibilities of localization
upon the application of external fields like synthetic electric
and magnetic fields. Apart from being non-Hermitian, the sys-
tem is also found to be PT -symmetric in particular situations
(that is, in the absence of a transverse component of the elec-
tric field). However, the system does not support complete real
eigenspectra in any of the parametric regions, and the PT -
symmetry is found to be spontaneously broken throughout the
parametric space. Thus, the question that we put forth here is
as follows: Is it possible to have stable dynamics in this system
(supporting only broken phase) through the application of
external fields? In particular, we study the impact of an exter-
nally applied field in situations with gapless and isolated band
structures and also in situations involving flat-band and non-
flat-band cases. In the case of complex isolated band structure,
we study whether the Landau-Zener transitions among the
gain and loss bands [bands with Im(λ) > 0 and Im(λ) < 0,
respectively, where λ is the eigenvalue] can make stable Bloch
oscillations possible.

To explore the above, this article is structured in the fol-
lowing manner. In Sec. II, we present the non-Hermitian

FIG. 1. The nth unit cell of an array of a non-Hermitian lattice
composed of an amplifying waveguide (at site a), a passive waveg-
uide with no loss or gain (at site b), and a dissipating waveguide (at
site c). Single-mode channel waveguides are placed at each site in
such a way that the modes overlap. Dashed lines indicate the sites
connected with the hopping of light. Solid arrows indicate the phase
of complex hopping constants φ for the specific synthetic magnetic
field B. E‖ and E⊥ define the synthetic electric fields along the
longitudinal and transversal directions, respectively.

model under consideration, and we investigate the situations
corresponding to flat-band and non-flat-band cases. Section III
explains the transport dynamics of the lattice in the flat-band
case, where we show the existence of compact localized
modes supported by the flat band in the absence of external
fields and the possibility of Bloch oscillations with respect
to the applied field. Similarly, the lattice dynamics in the
non-flat-band case is discussed in Sec. IV. Finally, a summary
of the obtained results is given in Sec. V.

II. MODEL

We consider a non-Hermitian diamond chain lattice that is
made up of an array of waveguides. The schematic diagram
of the lattice model under consideration is given in Fig. 1. The
system has three layers, namely a, b, and c layers. The sites of
the top and bottom layers (a and c layers) of the lattice have
a gain and loss nature, respectively, and thus they make the
system to be non-Hermitian and also PT -symmetric. To study
the transport dynamics of light in the presence of external
fields, the system is subject to synthetic electric and magnetic
fields. Originally, this type of PT -symmetric diamond chain
model was introduced in [32] in the absence of an electric
field, and in a later work, the Hermitian version of a similar
model was studied with the role of electric field components
[29] included.

The dynamics of the evolving electric field amplitude at
the nth unit cell, ψn(z) = (an(z), bn(z), cn(z))T , is given by
the following equations:

iȧn = (E‖n + E⊥)an + iγ an − e−iφbn − bn−1,

iḃn = E‖
(
n + 1

2

)
bn − eiφan − e−iφcn − cn+1 − an+1,

iċn = (E‖n − E⊥)cn − iγ cn − eiφbn − bn−1. (1)

In the above Eq. (1), an, bn, and cn are the complex field
amplitudes in the waveguides, and the overdot represents
differentiation with respect to z, where z represents the prop-
agation distance in dimensionless unit. The gain and loss
parameter (γ ) can be introduced through a proper choice of
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the complex refractive index profiles [51,52], particularly by
tuning the imaginary part of the refractive index. The waveg-
uides in layer a are chosen to be of amplifying type, and those
in layer c are chosen to be of dissipative type. E‖ and E⊥,
respectively, denote the components of the synthetic electric
field along the longitudinal and transverse directions to the
lattice plane. E‖ and E⊥ (simply termed here as longitudi-
nal and transverse electric fields, respectively, throughout the
manuscript) can be realized by modulating the refractive index
gradient [53,54], for example by applying a temperature gra-
dient across the thermo-optical waveguide material [18,55],
or by a circular bending of the waveguides [56–58], or by
a proper choice of the waveguide geometries [11,59]. In the
context of optical or photonic lattices, the synthetic magnetic
field B can be engineered by the direction-dependent phase
factor e±iφ introduced through optical path imbalance �x in
the tunneling between primary and auxiliary resonators (or
waveguides), resulting in the magnetic flux φ = 2π�x

λr
(λr is

the resonant wavelength) [60–62]. In the periodically driven
optical lattices, the value of φ is restricted to either 0 or π as
in Refs. [63–65]. Also, with suitable driving, the phase can
be tuned to any value φ ∈ [0, 2π ) in the optical lattices, as
mentioned in [66,67]. Alternate methods to generate the arti-
ficial magnetic field were suggested by Fang et al. in [68], and
it can be realized by sinusoidal modulation of the refractive
index of the waveguides [69], by proper longitudinal mod-
ulation of the propagation constant of the waveguides [70],
or by specially fabricated waveguides and its surrounding
media [71].

In the framework of atomic physics, one can construct the
equivalent non-Hermitian Hamiltonian of the present model
via annihilation and creation operators, leading to an equation
similar to (1) for the probability amplitudes. The considered
model may be realized in the theme of atomic settings by
defining the parameter γ as the gain-loss strength, which
determines the level of non-Hermiticity. The non-Hermitian
PT -symmetric nature for the N-site of the system can be
incorporated by combining an absorbing potential on one site
with an emitting potential on another site, as given in [72–75].
In the presence of γ , the system given in Eq. (1) can be consid-
ered as the non-Hermitian extension of the model considered
in [29]. E‖ and E⊥, respectively, denote the components of the
electric field along the longitudinal and transversal directions
to the lattice plane. In the presence of a magnetic field B, the
hopping terms between the neighboring pairs i and j acquire
additional phase factors eiφi j involving the vector potential
A: φi j = 2π

�0

∫ j
i A · dl, where �0 = hc

e is the flux quantum.
For the considered case, the whole spectrum depends only
on the reduced flux f = �

�0
, where � = Bq2

2 is the magnetic
flux through an elementary diamond (q is the unit-cell vector
length). The phase φ = 2π f (φ ∈ [0, 2π )) causes the tunnel-
ing amplitude to be complex, and it can be introduced through
a proper dc magnetic field B (generated by an artificial gauge
field) that is oriented perpendicular to the plane embedding
the diamond lattice chain [76–78].

The considered system as given in Eq. (1) is PT -
symmetric in the absence of a transverse electric field, where
the system is invariant under the combined operation of parity
and time-reversal symmetries defined by an → −cn, bn →
−bn, cn → −an, i → −i, and z → −z.

In the absence of a longitudinal electric field (i.e.,
E‖ = 0), the eigenmodes can be written as {an, bn, cn} =
(A, B,C)exp(iλz + ikn), where λ denotes the propagation
constant and k ∈ R denotes the Bloch wave vector. After the
substitution of the above form into Eq. (1), we obtain the
following characteristic equation:

λ3 − Pλ + Q = 0,

where

P = E2
⊥ + 2iγ E⊥ − γ 2 + 4(1 + cos φ cos k),

Q = 4E⊥ sin φ sin k + 4iγ sin φ sin k. (2)

From Eq. (2), it is clear that whenever Q = 0, one of
the propagation constants (eigenvalues) becomes zero, that
is, in the case of φ = lπ , l = 0, 1. The existence of zero
propagation constant for φ = lπ indicates the presence of the
flat band, and so we explore the dynamics in two different
situations, namely (i) in the flat-band case (φ = lπ , l = 0, 1)
and (ii) in the non-flat-band case (φ �= lπ ).

III. DYNAMICS IN THE FLAT BAND CASE

In this section, we present the transport dynamics of light
in the presence and absence of external fields.

A. In the absence of electric field components

First, we consider the situation in which the electric field
components are absent, and then we present the compact
localized modes supported by the flat band of the system. As
mentioned earlier, the flat band arises in the case of φ = lπ ,
l ∈ 0, 1 (that is, the situation in which there is no complex
hopping). We recall here that the criterion for the existence
of a flat band in the Hermitian case is the same as that of
the non-Hermitian case. However, in contrast to the Hermitian
case, here the flat band exists along with complex dispersive
bands rather than with real dispersive bands. For instance, we
present below the eigenspectra corresponding to two different
situations, namely φ = 0 and φ = π ,

φ = 0 : λ1 = 0, λ2,3 = ∓
√

−γ 2 + 4(1 + cos k), (3)

φ = π : λ1 = 0, λ2,3 = ∓
√

−γ 2 + 4(1 − cos k). (4)

From the above Eqs. (3) and (4), the eigenvalue λ1 implies
the nondispersive flat band (as it is independent of k) and
the other two eigenvalues λ2 and λ3 indicate the dispersive
bands. It is obvious from the eigenvalues that complete real
eigenspectra are not possible for any parametric value, and so
the PT -symmetry is spontaneously broken for all parametric
values. Secondly, considering the region γ � γc = 2

√
2, the

three bands meet together in both cases φ = 0 and φ = π .
Thus, the bands are found to be gapless or inseparable [79].
However, considering the regime γ > γc = 2

√
2, the complex

energy bands are found to be isolated (or gapped) [79] where
λn(k) �= λm(k′) for all k, k′ ∈ [−π, π ]. The band structure for
γ � γc is given in Figs. 2(a) and 2(b) for the case φ = π . The
figures show the existence of a pure real flat band between the
complex dispersive bands. One of the dispersive bands has
Im[λ] > 0 indicating an amplifying nature, and the other has
Im[λ] < 0 indicating a dissipative nature.
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FIG. 2. (a) and (b) Real and imaginary parts of the band structure
for a PT -symmetric system with phase φ = π and in the absence of
synthetic electric field components (E‖ = 0, E⊥ = 0). The gain-loss
parameter is chosen as γ = 0.05. The solid red line represents the
nondispersive (flat) band. Dashed black and dash-dotted blue curves
represent the complex dispersive nature of the bands. (c) Localization
of light for the CLS-type initial condition as given in Eq. (7).

The pure real flat band allows the lattice to support ex-
act eigenmodes in the form of compact localized eigenstates
(CLSs), which include nonzero amplitudes at a finite number
of sites and vanishing amplitudes at all other sites. The com-
pact localized eigenstates for a non-Hermitian PT -symmetric
diamond chain lattice were first obtained in [32], and they
are popularly known as compactons. For instance, in our
considered model in the case of φ = 0, the eigenmodes corre-
sponding to the flat band satisfy the relations An = −Cn and
Bn + Bn−1 = iγ A0, n = −N,−(N − 1), . . . , 0, . . . , N . Due
to this, the system can admit finite-site localization, and we
provide possible forms of compact localization modes below,

An = −Cn = A0δ0,n,

Bn = (−1)niγ A0δm,n, m = 0, 1, 2, 3 . . . . (5)

In the above, even though localization to a single site (here
localization at site zero is demonstrated but the localization
can be achieved at any site) has been achieved in the layers a
and c, such finite-site localization is not achieved in layer b.
Instead, if we consider two-site localization in layers a and c,
finite-site localization can be seen in the layer b also, where
the CLS mode can take the form

An = −Cn = A0δs,n, where s = 0 and 1,

Bn = iγ A0δ0,n. (6)

Similarly, in the case of φ = π , the CLS takes the form

An = −Cn = (−1)nA0δs,n, where s = 0 and 1,

Bn = −iγ A0δ0,n. (7)

Thus for the CLS-type initial configuration, the system
enables localization into finite sites of the lattice. For in-
stance, by considering the initial condition in the form of
CLS [as given in Eq. (7)] and choosing A0 = 1, we have
plotted the intensity evolution, ρn = (|An|2 + |Bn|2 + |Cn|2),
in the case of φ = π . Actually, we have considered n =
−150,−149, . . . , 0, . . . , 150 unit cells, and for the clear vi-
sualization of localization, we have shown Fig. 2(c) only
for n = −10,−9, . . . , 0, . . . , 10 unit cells. The figure clearly
demonstrates the localization into a finite number of sites.
Due to this fact, the finite-site localization can be achieved

FIG. 3. Numerical simulations showing asymmetric Bloch os-
cillations for the CLS initial excitation (top row) and broad initial
Gaussian excitation (bottom row) in the presence of magnetic field
with phase φ = π . The figures are plotted for different values of
longitudinal field, namely E‖ = 0.05 in (a),(b) and E‖ = 0.1 in
(c),(d) with the gain-loss strength γ = 0.05.

for any value of γ for a CLS initial condition in the absence
of external fields E‖ and E⊥.

The question that arises next involves the behavior of the
flat-band lattice in the presence of electric fields, and it will be
seen in the following.

B. Asymmetric Bloch oscillations in the presence of E‖

Before considering both the longitudinal and transverse
electric fields (E‖ and E⊥ together), we first study the role
of E‖. As discussed in Sec. II, adding a longitudinal electric
field still preserves the PT -symmetric nature of the system.
We also recall here that in the absence of E‖ alone, the band
structure of the system has zero band gap in the region of
γ � γc, and the bands are isolated in the region of γ > γc.

To elucidate the transport dynamics in the presence of a
longitudinal electric field, we consider the flat-band case φ =
π in the region γ � γc, and we obtain the evolution patterns
for two different initial excitations, namely (i) a CLS-type
initial condition as given in Eq. (7), and (ii) a broad Gaussian-

type excitation given by An(0) = −Cn(0) = e− n2

2σ2 , where σ =
70 and Bn(0) = 0. A very small value of longitudinal electric
field, say E‖ = 0.05, is enough to simulate asymmetric Bloch
oscillations in the system corresponding to both types of initial
excitations, as shown in Figs. 3(a) and 3(b). From Figs. 3(c)
and 3(d), well-localized asymmetric Bloch oscillations at the
nearest sites are observed for the value of E‖ = 0.1. This
shows that strong localization to a few sites in the form of
Bloch oscillations requires a higher longitudinal electric field.

The results observed in Figs. 3(a)–3(d) also show that the
observed Bloch oscillations are asymmetric with respect to
the n = 0 site. Also, the pattern is not periodic with respect
to z and it depicts asymmetric evolution. We also recall here
that even in the Hermitian lattices, these types of asymmetric
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Bloch oscillations are not usual, and they are observed only in
the lattices supporting flat bands [29].

As discussed in Sec. III A, in the absence of E‖, the real
flat and complex dispersive bands are found to be inseparable
in the region of γ � γc, and the complex nature of these
dispersive bands leads to the PT -symmetric broken nature of
the system. Likewise, in the presence of E‖ also, the dispersive
bands are found to be complex, which retains the broken
PT -symmetric nature of the system. On the other hand, as
soon as the longitudinal electric field is introduced to the
system, the existence of a real flat band between the complex
dispersive bands (one band has Im[λ] < 0 and the other band
has Im[λ] > 0) in the gapless situation leads to the interaction
of CLS sites with its neighboring sites. As a result, a compact
localized initial state starts to evolve in an asymmetric manner
in the form of stable Bloch oscillations. From the results,
we conclude that even though the PT -symmetry is broken
here, the observed Bloch oscillations neither get amplified
nor attenuated with respect to propagation distance z in the
presence of longitudinal electric field. However, these stable
Bloch oscillations are not observed in the region of γ > γc,
where the bands are isolated. In the latter region, we observe
blow-up type responses only.

C. Amplifying Bloch oscillations: In the presence of both
E‖ and E⊥

In the previous section, we have shown the existence of sta-
ble Bloch oscillations (in the region γ � γc) in the absence of
transverse electric field. Now, the introduction of E⊥ destroys
the PT -symmetric nature of the system (PT -symmetry is ex-
plicitly broken). So, the real eigenspectra may not be possible
in any of the parametric regions. For instance, the eigenspectra
of the flat-band case in the presence of E⊥ (in the absence of
E‖) can be given as follows:

(i) φ = 0,

λ1 = 0, λ2,3 = ∓
√

E2
⊥ + 2iγ E⊥ − γ 2 + 4(1 + cos k). (8)

(ii) φ = π ,

λ1 = 0, λ2,3 = ∓
√

E2
⊥ + 2iγ E⊥ − γ 2 + 4(1 − cos k). (9)

It is obvious from the above equations that the eigenvalues λ2,3

are complex in all the parametric regions. The band structure
in the case of φ = π is presented for two different values
of E⊥ in Figs. 4(a)–4(d). It is also obvious from Figs. 4(a)–
4(d) that in both cases of E⊥ = 0.01 and 0.05, the bands are
isolated and the band gap is widened with the increase of E⊥.

Even in this case with E⊥, the flat bands support compact
localized modes, which can be given by the following:

For φ = 0,

An = −Cn = A0δs,n, where s = 0 and 1,

Bn = (E⊥ + iγ )A0δ0,n. (10)

For φ = π ,

An = −Cn = (−1)nA0δs,n, where s = 0 and 1,

Bn = (−E⊥ − iγ )A0δ0,n. (11)

FIG. 4. (a),(b) Real parts and (c),(d) imaginary parts of the band
structures in the presence of transverse electric fields (E⊥). (a),(c) For
E⊥ = 0.01, and (b),(d) for E⊥ = 0.05. The upper insets show the
emergence of band gaps at the center of the band structures. Other
parameters are γ = 0.05, φ = π , and E‖ = 0.

Now, the inclusion of the longitudinal electric field E‖
may induce Landau-Zener transition among the complex
dispersive bands and the real flat band. As a result, Bloch os-
cillations emerge in the system. To find the transport dynamics
with the application of E‖, we first consider the CLS-type
initial condition given in Eq. (11), and we find how the CLS
evolution is perturbed by E‖. As we have considered a CLS-
type initial condition in these cases, the sites 0 and 1 alone
are excited initially, as shown in Fig. 5(a). As z increases,
compact localized states occupy more sites than the CLS
sites, and amplification occurs because of the Landau-Zener
tunneling as figured in the schematic diagram of Fig. 5(b).
To clearly illustrate the above, here we consider the same
parameter values as discussed in Fig. 4 with E‖ = 0.1, and the
corresponding beam evolution is depicted in Figs. 5(c)–5(f).

As the dispersive bands are complex valued, we observe
amplification of light as shown in Fig. 5(c) for E⊥ = 0.01
as z → ∞. Figure 5(d) shows the variation of intensity of
sites with respect to propagation distance z for E⊥ = 0.01
[and other parameters as shown in Fig. 5(c)], where we find
that the intensity of initially excited sites 0 and 1 (violet
curves) first decreases up to some propagation distance z1

and then increases slowly at the asymptotic limit. The value
of z1 depends on the system parameters, so it may become
difficult to find where the asymptotic limit of site-0 and site-1
is located. However, in Fig. 5(d) the value of z1 is identified as
z1 ≈ 9000. On the other hand, due to the Landau-Zener tun-
neling, the given initial excitation is not confined to site-0 and
site-1, whereas the intensity at these sites in Fig. 5(d) deviates
from zero and it increases slowly through oscillation with its
neighboring sites. Increasing E⊥ to 0.05, the dispersive bands
become more complex, which results in the rapid amplifica-
tion of Bloch oscillations as observed in Figs. 5(e) and 5(f).
The results illustrate that due to the explicit broken nature
of the PT -symmetric system in the presence of E⊥, ampli-
fication arises during oscillations for any parametric region.
These types of amplified Bloch oscillations in non-Hermitian
frequency lattices were very recently reported in [80], and
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FIG. 5. (a) CLS modes initially excited at site-0 and site-1 as given in Eq. (11) at z = z0 (z0 = 0). Part (b) depicts the change of CLS modes,
which gives rise to the oscillation pattern in z > z0 due to Landau-Zener tunneling when E‖ is turned on to be nonzero. Filled circles denote
the sites with nonzero amplitude, and empty circles represent the sites with zero amplitude. Parts (c) and (e) show amplified Bloch oscillations
for two different values of transverse electric field after long transients. (d) and (f) Evolution of intensity (ρn) with respect to propagation
distance z. The solid violet curve represents the intensity in the initially excited CLS sites (A0, B0, C0, A1, and C1) and the solid green curve
represents the intensity in the remaining sites (i.e., initially unexcited sites). The parameter values in (c),(d) are E⊥ = 0.01, and those in (e),(f)
are E⊥ = 0.05 with E‖ = 0.1, φ = π , and γ = 0.05.

they have potential applications in spectrum reshaping and
filtering.

With these understandings on the transport dynamics of
the non-Hermitian flat-band lattice (1), we turn our attention

toward the non-flat-band case of the non-Hermitian lattice in
the following section, and we study the associated evolution
with the possibility of stable Bloch oscillations and Landau-
Zener tunneling.
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FIG. 6. (a)–(c) Real parts of the band structures, and (d)–(f) imaginary parts of the band structures for different phase values of the magnetic
field. The imaginary parts of two of the bands exactly match with each other, and they are represented by a black (dotted) curve on top of the
red (continuous) curves, while the third band is represented by blue dash-dotted curves. (a) and (d) φ = π

2 , (b) and (e) φ = π

3 , and (c) and (f)
φ = π

4 . Other parameters are γ = 0.05, E‖ = 0.0, and E⊥ = 0.0.

IV. DYNAMICS IN THE NON-FLAT-BAND CASE

A. In the absence of electric field components

As discussed earlier, the considered non-Hermitian lattice
model supports flat band only when φ = lπ , l = 0, 1. In
other situations, all three bands corresponding to the system
are complex and dispersive. For instance, Fig. 6 shows the
band structure in the cases φ = π

2 , π
3 , and π

4 with γ = 0.05,
E‖ = E⊥ = 0. From Figs. 6(a) and 6(d) corresponding to
the case φ = π

2 , it is clear that the eigenspectra are complex
(where all the eigenvalues are complex), and even though the
real part of the eigenvalues shows no dependence on k, their
imaginary parts depend on k. In Fig. 6(d), the imaginary part
of the band represented by the red (continuous) curve matches
exactly with the one represented by the black (dotted) curve,
where these two bands show an amplifying nature for the
wave vectors −π < k < 0 and they show a lossy nature for
the wave vectors 0 < k < π . Im[λ] corresponding to the band
represented by the blue (dashed) curve shows the opposite
behavior, i.e., it shows a lossy nature for −π < k < 0 and a
gain nature for 0 < k < π . Considering the cases of φ = π

3
and π

4 , Figs. 6(b), 6(c), 6(e), and 6(f) denote the complex
eigenspectra, where two of the bands show a dependence on k
in both Re[λ] and Im[λ] values, while the Re[λ] of the other
band does not show any dependence on k, where its imaginary
part does show a k dependence. Considering all the cases
presented in Fig. 6, it is obvious that all the bands are isolated,
and their complex forms indicate the spontaneously broken
PT -symmetric nature.

B. Super Bloch oscillations through Landau-Zener tunneling

The above discussion shows the existence of isolated bands
with complex eigenspectra, and we now turn our attention
to studying the possibility of Landau-Zener tunneling and
the associated transport dynamics in this non-flat-band case.
In the flat-band case, even though the dispersive bands are
complex, the nondispersive flat band is real so that it can
support stable localized transport for the CLS initial condition
in the absence of fields, but this is not the case here. As all

the bands are found to be complex and are isolated, there is no
stable dynamics in the absence of external fields. The question
of stable Bloch oscillations or stable transport dynamics in
the presence of electric fields is of interest here. First, we
consider the evolution of the system in the presence of E‖
alone (that is, in the absence of E⊥). In Figs. 7(a) and 7(b), we
have captured the intensity evolution for the case φ = π

2 and
E‖ = 0.05 and 0.1. To obtain the above, we have considered

a Gaussian-type initial condition An(0) = −Cn(0) = e− n2

2σ2 ,
where σ = 70 and Bn(0) = 0 (as considered in Sec. III B), as
a typical example. Figures 7(a) and 7(b) interestingly show the
existence of localized stable Bloch oscillations. Landau-Zener
tunneling induced by E‖ makes it possible to have stable
dynamics in the broken phase (showing unstable dynamics),
whereas two of the eigenvalues are complex (i.e., Re[λ82,83],

FIG. 7. (a) and (b) Numerical simulation using Gaussian ex-
citation for the longitudinal electric fields E‖ = 0.05 and 0.1,
respectively, with phase of the magnetic field (φ = π

2 ). Parts (c) and
(d) indicate the real and imaginary parts of the eigenvalues vs the
eigenvalue index by considering 903 lattice sites (i.e., 301 unit cells)
corresponding to (a). Other parameters are γ = 0.05 and E⊥ = 0.
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Im[λ82,83] �= 0) in the presence of E‖ as depicted in Figs. 7(c)
and 7(d). Importantly, the observed Bloch oscillations are
found to be symmetric in space as well as with respect to the
propagation distance z. Comparing Fig. 7(a) with Fig. 7(b), we
observe that for weak E‖, the intensity of Bloch oscillations
is quite high, and super Bloch oscillations can be observed.
This type of super Bloch oscillation is realized earlier in the
PT phase of the non-Hermitian tight-binding lattice with pe-
riodic forcing [50]. However, such oscillations have not been
found to exist even for single-site excitation in the PT broken
phase of the system. Interestingly, here we have observed
super Bloch oscillations that persist for a long propagation
distance z with broad-site Gaussian initial excitations in the
PT broken phase of the system. Strengthening E‖ leads to a
decrease in the intensity of Bloch oscillations and an increase
in the frequency of Bloch oscillations. In the presence of E‖,
adding an additional weak transverse electric field (E⊥) gives
rise to amplified Bloch oscillations, and an additional strong
transverse field leads to blow-up regimes.

V. SUMMARY

In this paper, we have concentrated on the possibility of
achieving stable Bloch oscillations in a non-Hermitian lattice
model that does not support complete real eigenspectra in
any of its parametric regions. Our model supports a flat band
in a particular situation, and we have studied the transport
dynamics of the model in two different cases.

In the flat-band case, we have established the following:
(i) In the absence of an external electric field, the flat-band

case is found to have a gapless complex band structure in the
region γ � γc, and it has isolated bands in the region γ > γc.

(ii) The application of electric field component E‖ induces
neither amplified nor attenuated Bloch oscillations for finite
values of γ in the region of γ � γc, and unstable dynamics
was observed in the region γ > γc with isolated bands. Our
results emphasize the existence of Bloch oscillations in the
particular parametric region of the considered system.

(iii) With the introduction of E⊥, the system is no longer
PT -symmetric, and in all the parametric regions we have
complex band structures with isolated bands. As a re-
sult, we observe only amplifying Bloch oscillations through
Landau-Zener tunneling, which can be applicable in opti-
cal communications to enhance the optical signals during
propagation.

In the non-flat-band case, we have highlighted the
following:

(i) Considering the non-flat-band case, complex dispersive
bands are isolated, and stable dynamics is not possible in the
absence of external fields.

(ii) However, upon the application of E‖, the Landau-Zener
tunneling among the complex bands makes super Bloch oscil-
lations possible in the broken phase of the system.

(iii) While applying E⊥ in this case, the PT -symmetry
of the system is explicitly broken, and we observe either
amplified Bloch oscillations or blow-up regimes depending on
the strength of E⊥.

The other important aspect that we have identified in the
present model is the asymmetric nature of the Bloch oscil-
lations observed in the flat-band case, while those observed
in the non-flat-band case are found to be symmetric. This
result may be compared with the observation made in the
Hermitian flat-band case [29], where asymmetric Bloch os-
cillations with Landau-Zener tunneling are reported (while the
usual non-flat-band Hermitian systems show symmetric Bloch
oscillations).

We do believe that the observed results may open up a
promising way to control light or electron transport using
non-Hermitian lattices. In particular, in contrast to Bloch
oscillations observed in the gapless situation, the Bloch os-
cillations induced by Landau-Zener tunneling in the gapped
situations are found to be of high importance, and so they
may be useful in the applications of optical amplification or
in achieving localized transport of a high-intensity beam. In
the future, it would be interesting to study the Bloch oscilla-
tions and Landau-Zener tunneling in non-Hermitian flat-band
systems along with nonlinearity [81–84].
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[66] K. Sacha, K. Targońska, and J. Zakrzewski, Phys. Rev. A 85,
053613 (2012).

[67] J. Struck, C. Ölschläger, M. Weinberg, P. Hauke, J. Simonet, A.
Eckardt, M. Lewenstein, K. Sengstock, and P. Windpassinger,
Phys. Rev. Lett. 108, 225304 (2012).

[68] K. Fang, Z. Yu, and S. Fan, Nat. Photon. 6, 782 (2012).
[69] S. Mukherjee, M. Di Liberto, P. Öhberg, R. R. Thomson, and

N. Goldman, Phys. Rev. Lett. 121, 075502 (2018).
[70] S. Longhi, Opt. Lett. 38, 3570 (2013).
[71] M. Golshani, S. Weimann, Kh. Jafari, M. K. Nezhad, A.

Langari, A. R. Bahrampour, T. Eichelkraut, S. M. Mahdavi, and
A. Szameit, Phys. Rev. Lett. 113, 123903 (2014).

[72] O. Bendix, R. Fleischmann, T. Kottos, and B. Shapiro, Phys.
Rev. Lett. 103, 030402 (2009).

[73] L. Jin and Z. Song, Phys. Rev. A 80, 052107 (2009).
[74] L. Jin and Z. Song, Phys. Rev. A 81, 032109 (2010).
[75] P. C. Burke, J. Wiersig, and M. Haque, Phys. Rev. A 102,

012212 (2020).
[76] J. Vidal, B. Doucot, R. Mosseri, and P. Butaud, Phys. Rev. Lett.

85, 3906 (2000).
[77] J. Vidal, R. Mosseri, and B. Douçot, Phys. Rev. Lett. 81, 5888

(1998).
[78] S. Longhi, Opt. Lett. 39, 5892 (2014).

023721-9

https://doi.org/10.1103/PhysRevLett.96.053903
https://doi.org/10.1103/PhysRevLett.121.033904
https://doi.org/10.1103/PhysRevLett.98.134301
https://doi.org/10.1038/ncomms4843
https://doi.org/10.1103/PhysRevLett.83.4752
https://doi.org/10.1103/PhysRevLett.96.023901
https://doi.org/10.1364/OE.14.002021
https://doi.org/10.1103/PhysRevA.82.013839
https://doi.org/10.1088/0953-4075/46/14/145301
https://doi.org/10.1088/1367-2630/8/7/110
https://doi.org/10.1103/PhysRevA.65.063612
https://doi.org/10.1103/PhysRevLett.102.076802
https://doi.org/10.1088/1367-2630/6/1/002
https://doi.org/10.1103/PhysRevA.72.023611
https://doi.org/10.1007/s003400050334
https://doi.org/10.1103/PhysRevLett.116.245301
https://doi.org/10.1103/PhysRevLett.117.215301
https://doi.org/10.1103/PhysRevB.96.064305
https://doi.org/10.1364/OL.38.004880
https://doi.org/10.1103/PhysRevA.96.011802
https://doi.org/10.1103/PhysRevA.99.033810
https://doi.org/10.1103/PhysRevA.61.023402
https://doi.org/10.1103/PhysRevLett.94.113904
https://doi.org/10.1103/PhysRevA.92.041803
https://doi.org/10.1103/PhysRevA.100.062514
https://doi.org/10.1103/PhysRevLett.106.213901
https://doi.org/10.1088/1751-8113/44/48/485302
https://doi.org/10.1038/nmat3495
https://doi.org/10.1103/PhysRevA.82.031801
https://doi.org/10.1103/PhysRevLett.106.093902
https://doi.org/10.1364/OL.37.000764
https://doi.org/10.1126/science.1258479
https://doi.org/10.1103/PhysRevLett.103.123601
https://doi.org/10.1038/srep17760
https://doi.org/10.1038/ncomms11319
https://doi.org/10.1088/0953-4075/44/20/205403
https://doi.org/10.1016/j.physleta.2016.05.008
https://doi.org/10.1038/nphys1515
https://doi.org/10.1103/PhysRevLett.100.103904
https://doi.org/10.1103/PhysRevLett.91.263902
https://doi.org/10.1103/PhysRevB.63.035108
https://doi.org/10.1063/1.1476720
https://doi.org/10.1103/PhysRevLett.83.963
https://doi.org/10.1364/OL.31.001651
https://doi.org/10.1103/PhysRevLett.96.243901
https://doi.org/10.1364/OL.32.002647
https://doi.org/10.1103/PhysRevLett.112.210405
https://doi.org/10.1088/1367-2630/aa57ba
https://doi.org/10.1103/PhysRevLett.121.073901
https://doi.org/10.1103/PhysRevLett.95.260404
https://doi.org/10.1103/PhysRevLett.99.220403
https://doi.org/10.1103/PhysRevLett.102.100403
https://doi.org/10.1103/PhysRevA.85.053613
https://doi.org/10.1103/PhysRevLett.108.225304
https://doi.org/10.1038/nphoton.2012.236
https://doi.org/10.1103/PhysRevLett.121.075502
https://doi.org/10.1364/OL.38.003570
https://doi.org/10.1103/PhysRevLett.113.123903
https://doi.org/10.1103/PhysRevLett.103.030402
https://doi.org/10.1103/PhysRevA.80.052107
https://doi.org/10.1103/PhysRevA.81.032109
https://doi.org/10.1103/PhysRevA.102.012212
https://doi.org/10.1103/PhysRevLett.85.3906
https://doi.org/10.1103/PhysRevLett.81.5888
https://doi.org/10.1364/OL.39.005892


J. RAMYA PARKAVI et al. PHYSICAL REVIEW A 103, 023721 (2021)

[79] H. Shen, B. Zhen, and L. Fu, Phys. Rev. Lett. 120, 146402
(2018).

[80] C. Qin, B. Wang, Z. J. Wong, S. Longhi, and P. Lu, Phys. Rev.
B 101, 064303 (2020).

[81] D. Leykam, S. Flach, O. Bahat-Treidel, and A. S. Desyatnikov,
Phys. Rev. B 88, 224203 (2013).

[82] R. Driben, V. V. Konotop, T. Meier, and A. V. Yulin, Sci. Rep.
7, 3194 (2017).

[83] K. Zegadlo, N. Dror, N. Viet Hung, M. Trippenbach, and B. A.
Malomed, Phys. Rev. E 96, 012204 (2017).
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