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Shaping the g(2) autocorrelation and photon statistics
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We propose a method of arbitrarily shaping and scaling the temporal intensity correlations of an optical signal
locally, avoiding periodic correlations. We demonstrate our approach experimentally using stochastic intensity
modulation. We also analyze and simulate shaping both temporal correlations and photon statistics that are fully
specified by the user. We show that within the confines of monotony and convexity, the temporal correlations are
independent of photon statistics and can take any shape.
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I. INTRODUCTION

This article focuses on the temporal correlations of optical
intensity I (t ), conventionally described by the second-order
coherence function

g(2)(τ ) := 〈I (t )I (t + τ )〉
〈I (t )〉2

, (1)

which we refer to as intensity autocorrelation. In the quantum
realm, it is defined by the means of normally ordered photon-
number operators [1]

g(2)(τ ) := 〈:n̂(t )n̂(t + τ ):〉
〈n̂(t )〉2

. (2)

This article proposes methods of shaping the autocorrela-
tion g(2)(τ ) in an arbitrary way. A straightforward approach
would be modulating a pulse train coming from a laser, how-
ever, pulsed signals have periodic autocorrelation. Our goal
is to emulate fluctuating signals exhibiting g(2)(0) > 1 that
approaches unity in the limit of τ → ∞. Any significant
deviation from unity is therefore local.

The modulation of optical intensity in time can be used to
generate pseudothermal light. A common technique is collect-
ing speckles from light diffused by a rotating ground glass
plate [2]. Chaotic light can be also generated by amplified
spontaneous emission [3] or direct laser modulation [4]. The
resulting photon bunching of g(2)(0) � 2 can be exploited
in classical ghost imaging [5–7], two-photon-excited fluores-
cence [8], optical time-domain reflectometry [9], and laser
ranging [10].

Shaping the autocorrelation—and thus the spectrum—of
a signal is a problem that has been addressed in other fields
of signal processing and simulation using various methods
[11,12]. A prominent case is transforming an electronic Gaus-
sian noise by a linear filter and a nonlinear function to obtain
a given spectrum and marginal distribution [13]. An alter-
nate solution was proposed in terms of reshuffling of signal
samples [14].

*straka@optics.upol.cz

In the first part of this article, we present a method of
shaping the autocorrelation that exploits stochastic pulse su-
perposition. The spectral properties of such random pulses
have been studied in communication theory [15]; we make use
of these properties from the perspective of signal generation.

In the second part, we utilize another method of stochastic
modulation—random switching of intensity levels that was
proposed in Ref. [16]—to shape both temporal correlations
and photon statistics. We combine this approach with the
photon-statistics-generation algorithm proposed in Ref. [17].
Using numerical simulations, we demonstrate the generation
of arbitrarily specified g(2)(τ ) and photon-number distribu-
tion. We also analyze the properties and limitations of the
method.

II. ARBITRARY AUTOCORRELATION

A. Method

The basic premise is that the intensity signal I (t ) consists
of a random Poissonian sequence of non-negative integrable
hill functions h(t ). Mathematically, the signal is expressed as
a sum

I (t ) =
∑

i

h(t − ti ). (3)

The sequence of positions in time {ti} follows a homogeneous
Poisson point process with a mean rate λ. This means that ev-
ery delay �ti = ti+1 − ti is a realization of a random variable
with a probability density

p(�t ) = λ exp(−λ�t ). (4)

The hill function is chosen so that it has a specific cross-
correlation Cnorm(τ ), while its L1 norm ‖h‖ may be arbitrary.
The terms are defined as

‖h‖ :=
∫ ∞

−∞
h(t )dt, (5)

Cnorm(τ ) := 1

‖h‖2

∫ ∞

−∞
h(t + τ )h(t )dt, (6)
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where the cross-correlation observes
∫ ∞
−∞ Cnorm(τ )dτ = 1.

Then, the intensity autocorrelation of I (t ) becomes

g(2)(τ ) = 1 + 1

λ
Cnorm(τ ). (7)

The proof is given in Appendix A. The autocorrelation shape
is therefore given solely by the shape of h(t ), the amplitude of
which may be arbitrary. The g(2)(0) and the scale of the whole
autocorrelation can be set by the rate λ.

Given a specific g(2)(τ ), one can obtain the hill function
using Fourier transforms F (see Appendix B),

Ĉ(ν) = F[g(2)(τ ) − 1], (8)

h(t ) = F−1
[
sgn(ν)

√
Ĉ(ν)

]
. (9)

For any g(2)(τ ) consistent with (1), the function Ĉ(ν) is real
and non-negative by virtue of the Wiener-Khinchin theorem.
The sign function in (9) is any piecewise function yielding
±1. The constraint of this method is that the g(2)(τ ) needs to
be given so that there exists a sign function that results in a
non-negative h(t ).

a. Superposition. A generalization of this approach allows
generating a superposition of multiple shapes by randomly
alternating between hill functions. Suppose a set of hill
functions {hn(t )} with respective cross-correlations C(n)

norm(τ )
appearing with probabilities pn, but sharing the same mean
frequency λ. The calculation of g(2)(τ ) is a straightforward
extension, yielding

g(2)
mul(τ ) = 1 + 1

λ

∑
n pnC(n)

norm(τ )( ∑
n pn‖h‖n

)2 . (10)

b. Background. If we consider a background offset Ibg so
that I (t ) = ∑

i h(t − ti ) + Ibg, the mean value of the signal
is 〈I (t )〉 = λ‖h‖ + Ibg and the signal-to-noise ratio between
‖h‖ and Ibg becomes a factor that scales down the intensity
autocorrelation:

g(2)
bg (τ ) = 1 + Cnorm(τ )

λ
(
1 + Ibg

λ‖h‖
)2 . (11)

The maximum bunching g(2)(0) possible is achieved for
λ = Ibg/‖h‖.

c. Nonoverlapping hills. In a particular experimental
realization—such as presented here—it may not be possible
to generate a mathematical superposition of the hill functions.
For example, a function generator can only produce one pulse
at a time and so the hills cannot overlap. In such cases, the
hill function is defined on a finite support t ∈ (−t0/2, t0/2)
and the minimum distance between the hills’ peaks is t0.
Consequently, the cross-correlation Cnorm(τ ) is only nonzero
for τ ∈ (−t0, t0), and the unity term in (7) becomes locally
distorted. The expression changes to (see Appendix C)

g(2)
n-ol(τ ) =

(
1

λ
+ t0

)
Cnorm(τ ) + (1 + λt0)

×
�|τ |/t0	∑

k=0

∫ |τ |−kt0

t=0

[
Cnorm(τ + t + (k + 1)t0)

+ Cnorm(τ − t − (k + 1)t0)
]
λk t k

k!
e−λt dt . (12)

FIG. 1. Monte Carlo simulations of signals with various pre-
scribed autocorrelation shapes and values of g(2)(0); the source code
is available online [18]. The shapes and parameters are listed in
Table I.

B. Results

The method of stochastic signal generation is simulated
in Fig. 1. For illustrative purposes, the signals are shown for
both high and low intensities λ, respectively corresponding
to low and high values of g(2)(0). A mixture of three shapes
corresponding to (10) is given in the last row.

Experimental evidence was obtained using the measure-
ment setup depicted in Fig. 2. The source was a single-mode-
fiber-coupled (SMF) continuous-wave laser diode at 814 nm.
The optical signal was coupled into a polarization-maintaining
fiber (PMF) using a manual polarization controller and a
polarizing beam splitter (PBS). The intensity of the signal
was modulated by an integrated electro-optical Mach-Zehnder
modulator (EOM; EOSpace). The modulator was driven by
an arbitrary signal generator (Tektronix) programed to emit a
voltage pulse upon each triggering event, which was fed into
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TABLE I. Table of autocorrelation shapes used in Fig. 1. Figure 2 uses the same shapes and the nonmonotone shape, which is defined at
the bottom. The functions rect() and tri() are rectangular and triangular functions of unit height and given edges.

Shape Cnorm(τ ) h(t ) g(2)(0) λ

Gauss 1√
2π

e−τ2/2 1√
π

e−t2
2 1√

2π

Cauchy–Lorentz 1
π (1+τ2 )

2
π (1+4t2 )

3 1
2π

Hyperb. secant 1
2 sech πτ

2 F−1[
√

sech(2πν )] 1.1 5

Gauss 1
3

1√
2π

e−τ2/2 h1(t ) = 1√
π

e−t2

+ Lorentz + 1
3

1
π (1+τ2 )

h2(t ) = 2
π (1+4t2 )

3 1
6

(
1 + 1

π
+ 1√

2π

)
+ triangle + 1

3 tri(−1, 1) h3(t ) = rect
( − 1

2 , 1
2

)
Nonmonotone 3−|τ |

18 [2 + cos(2πτ )] 1
2 − 1

2 cos(2πt )

+ 1
12π

sin(2π |τ |) for |τ | < 3 for 0 < t < 3

the fast radio-frequency input of the EOM, having the shape

V (t ) = Vπ

π
arccos [1 − 2h(t )], (13)

where the hill is scaled so that h(t ) ∈ [0, 1], and Vπ is the
EOM half-wave voltage. The induced transmission modula-
tion is equal to h(t ) due to the cosine response of the EOM.
We assume that the constant bias voltage of the EOM is set
precisely to the zero-level transmission. The triggering came
from a single-photon avalanche diode (SPAD) illuminated by
a constant intensity that was set to a mean count rate λ. This
served as the source of Poissonian events. The output was split
between a p-i-n diode and a single-photon Hanbury Brown–
Twiss (HBT) measurement [1]. The p-i-n diode served for live
monitoring of the output and the HBT configuration measured
the g(2)(τ ). For all measurements, the minimum pulse-to-pulse
delay was t0 � 3 μs. It means that the triggering SPAD dead
time of 29 ns could be safely neglected. The data from the
SPADs were acquired by a 81-ps time-tagging unit (qutools),
the coincidence window for the HBT autocorrelation mea-
surement was 10 ns, and the measurement time was 100 s for
each set.

The results of the HBT measurement are shown in Fig. 3.
The Gaussian autocorrelation was set to the highest possible
amplitude achievable for the Gaussian, g(2)(0) = 214, which
corresponds to a modulation dynamic range 30.8 dB; the
others were set to round values 50, 100, and 150. The mod-

FIG. 2. The measurement scheme with the data given in Fig. 3.

ulation scheme corresponds to the nonoverlapping scenario
with the expected autocorrelation given by (12), where the
effect of nonunity background is small compared to the overall
amplitude [18].

The limiting factor for autocorrelation speed is the
225-MHz bandwidth of the arbitrary signal generator. The
limiting factor for the amplitude is the dynamic range of the
modulation. It is reduced by thermally induced phase drifts in
the EOM, by the polarization extinction ratio, by the EOM
interferometric visibility, and by the detectors’ dark count
rate. Consequently, the dynamic range determines the max-
imum bunching g(2)(0) achievable for each autocorrelation
shape (Gaussian, Lorentz, etc.), as given by the optimal rate
λ = Ibg/‖h‖ in (11). For a more detailed discussion of the
shapes and maximum bunching, see Appendix A.

III. PHOTON STATISTICS AND AUTOCORRELATION

There is a possibility of tailoring both temporal auto-
correlation and photon (intensity) statistics simultaneously
and independently. The technique relies on random switch-
ing between intensity levels. This approach was proposed
by Pandey et al. [16] who demonstrated the generation of
gamma-distributed intensity and exponential autocorrelation
shapes. In order to reach arbitrary classical photon statistics,
we employ an inversion algorithm proposed in our earlier
work [17]. We present an analysis of the limitations and pos-
sibilities of the resulting approach and we perform numerical
simulations [18].

The optical signal consists of a sequence of intensity levels
{Ii}, each being held for a respective time period {�ti}. Each
Ii and �ti is an independent realization of the corresponding
random variable, following the probability density functions
p(I ) and p(�t ).

The autocorrelation is then given as [16] (see Appendix D)

g(2)(τ ) = 1 + g(2)(0) − 1

〈�t〉
∫ ∞

τ

p(�t )(�t − τ )d�t, (14)

g(2)(0) = 〈I2〉
〈I〉2

. (15)

The averaging terms 〈·〉 are always taken over the correspond-
ing distributions—p(I ) or p(�t ). The bunching factor (15) is
solely given by intensity statistics—as it needs to be—while
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FIG. 3. The autocorrelation functions measured with the HBT
configuration. The good match between the prescribed orange curves
and the data was achieved by generating the voltage pulses of the
appropriate shape, by tuning the Poissonian trigger rate λ, and by
setting the EOM bias voltage as precisely as possible. All data and
code are available online [18].

the temporal shape is given by p(�t ). To establish the set of
possible g(2) shapes, let us look at the derivatives

dg(2)(τ )

dτ
= −g(2)(0) − 1

〈�t〉
∫ ∞

τ

p(�t )d�t � 0, (16)

d2g(2)(τ )

dτ 2
= g(2) (0)−1

〈�t〉 p(τ ) � 0. (17)

The above inequalities follow from g(2)(0) > 1 and the non-
negativity of p(�t ). Both inequalities mean that the class of
practicable autocorrelation functions is restricted to monoton-
ically nonincreasing convex functions for which g(2)(0) > 1
and the limit limτ→∞ g(2)(τ ) = 1. As is proven in Appendix E,
any such autocorrelation can be generated by this method.

These conditions are more restrictive than the hill-
superposition approach above, as for example all functions
in Figs. 1 and 3 are nonconvex and therefore inaccessible.
However, we gain the possibility to shape the photon statistics
independently.

Photon statistics is given by the integrated intensity

W (t ) :=
∫ t+T

t
I (t ′)dt ′, (18)

taken over a time interval T [19]. Let us consider the units of
I (t ) to be the average number of photons per time, meaning
that W is dimensionless. The number of photons n detected
inside a time interval follows the probability distribution given
by Mandel’s formula [19]

p(n) =
∫ ∞

0
p(W )

W n

n!
e−W dW. (19)

In order to have control over the photon statistics, the distri-
bution p(W ) needs to follow p(I ), ideally when W (t ) = T ×
I (t ), implying p(W ) = p(I )/T . This can be achieved either in
the limit of a short time window T → 0, or if the intensity
switching is synchronized with the time windows. The latter
implies that the window length T becomes an elementary time
unit of the modulation, and the autocorrelation is restricted to
a piecewise linear function with the resolution T . This case
corresponds to our discrete numerical simulations.

Following the approach presented in Ref. [17], we take a
finite set {Wk} and construct a matrix Ank = exp(−Wk )W n

k /n!.
Each Wk has a corresponding probability Pk . The Mandel
formula (19) then becomes

p(n) =
∑

k

AnkPk, (20)

where the vector Pk needs to be solved for a given pho-
ton statistics p(n). Suitable sampling and non-negative least
squares were shown to work for classical photon statistics
[17,18]. The solution for p(I ) is discrete: Pr[I = Wk/T ] = Pk .

Let us now explicitly outline the problem inversion and
generation of the random samples of I and �t . We are given
the target g(2)(τ ) and p(n). If p(n) is a classical photon statis-
tics, then by definition it is achievable by sampling a certain
p(W ). If the technical limitations of the experiment only allow
discrete intensities {Wk}, we perform a non-negative least-
squares inversion of (20) to obtain Pk . In each modulation
step, we can randomly choose the intensity Ik = Wk/T using a
uniformly distributed random floating-point number r ∈ [0, 1)
by finding the smallest k such that

∑
i�k Pi > r [18]. This way,

Ik follows the distribution Pk .
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FIG. 4. Numerical simulations of signals having prescribed au-
tocorrelations and photon statistics. Signal excerpts are shown in the
top row; autocorrelations in the middle row; photon statistics per
window T = 0.05 are shown at the bottom. The code is available
online [18].

To shape the autocorrelation, we establish a survival func-
tion using the first derivative g′(τ ) := dg(2)(τ )/dτ ,

S(τ ) = g′(τ )

g′(0)
. (21)

In each step, we obtain the hold-off time �t from a uniformly
distributed number r′ ∈ (0, 1] using the inverse function that
always exists,

�t ← S−1(r′). (22)

Consequently, �t follows the probability density p(�t ). The
proof of existence and derivations are given in Appendix E.

Figure 4 shows two numerically simulated signals that
follow certain prescribed autocorrelations and photon statis-
tics. Both signals observe their corresponding p(�t ), but have
different approaches to p(I ). Signal 1 takes samples from a
continuous exponential distribution, whereas signal 2 follows
a discrete solution of (20) for a partially uniform photon
statistics p(n) = 0.1 ∀n � 5. The corresponding prescriptions
are given in Table II.

IV. CONCLUSION

We demonstrated two methods of shaping the autocorrela-
tion of optical intensity. The first allows for more arbitrary
shapes; the second is limited to nonincreasing convex

TABLE II. Table of autocorrelation shapes and photon-number
distributions used in Fig. 4.

g(2)(τ ) pn

Simulation 1 1 + e−|τ | 0.5n+1

Simulation 2 1 + 0.287 1
2|τ |+1 p0,1,...,5 = 0.1

functions, but allows tailoring the intensity and photon statis-
tics as well.

Primarily, we consider our contribution to address a fun-
damental problem in optical signal generation. However,
possible practical uses involve exciting or probing systems
sensitive to photon correlations [20,21]. The modulation
techniques may also serve to simulate optical fading chan-
nels and atmospheric scintillation [22], especially if certain
power spectra are required [23–25]. Atmospheric turbulence
has a critical impact on both satellite-based [26,27] and
ground-to-ground [28–31] quantum communications. Espe-
cially, single-mode coupling of atmospheric channels results
in significant transmission and phase fluctuations. The pro-
posed methods allow simulation of the channel transmission.
The specific properties that can be reproduced are the fading
distribution and temporal correlations.
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APPENDIX A: DERIVATION OF AUTOCORRELATION
OF STOCHASTIC HILL SUPERPOSITION

Let the “hill” function be h(t ) and its unnormalized cross-
correlation function

C(τ ) := (h � h)(τ ) =
∫ ∞

−∞
h(t )h(t + τ )dt . (A1)

We are going to consider the intensity of light as a sum of hills
randomly distributed in time,

I (t ) =
∑

i

h(t − ti ), (A2)

where the peaks ti follow a homogeneous Poisson
point process in time with a mean frequency λ. This
means that peak-to-peak distances �ti = ti+1 − ti follow
a negative-exponential probability density distribution
p(�ti ) = λ exp(−λ �ti ). The normalized intensity
autocorrelation function is

g(2)(τ ) := 〈I (t )I (t + τ )〉
〈I (t )〉〈I (t + τ )〉 . (A3)

Let us consider that the intensity signal was generated in a
time span T and assume the limit of long T in our calculations.
Then, the number of hills is N � λ T . We can also denote the
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integral

‖h‖ :=
∫ ∞

−∞
h(t )dt, (A4)

which also means
∫ ∞
−∞ C(τ )dτ = ‖h‖2. The averaging terms

can be calculated simply using the linearity of integration,

〈I (t )〉 = 〈I (t + τ )〉

= 1

T

∫
T

I (t )dt � N‖h‖
T

, (A5)

〈I (t )I (t + τ )〉 = 1

T

∫
T

(
N∑

i=1

h(t − ti )

)

×
(

N∑
j=1

h(t − t j + τ )

)
(A6)

� 1

T

∑
i, j

C(�ti j + τ ),

where �ti j = t j − ti are distances between any two peaks. The
sum has N2 terms that can be reduced by considering �ti= j =
0 and �ti j = −�t ji:

1

T

∑
i, j

C(�ti j + τ ) = 1

T

∑
i< j

[C(τ + �ti j )

+C(τ − �ti j )] + N

T
C(τ ). (A7)

The peak locations ti are determined by sampling a random
Poisson process and we sum over a large set of samples �ti j .
We can therefore approximate the above sum by

N∑
j=2

j−1∑
i=1

C(τ ± �ti j ) � N2 − N

2
〈C(τ ± �t )〉�t , (A8)

where the averaging follows a certain probability distribution
of distances �t between any two different peaks. Let us
now calculate this distribution. By virtue of the homogeneous
Poisson process, we may consider any two different points
in time independent with respect to the random occurrence
of samples. This allows us to define the average density of
peaks per time, which is constant: ρ(0 < t < T ) = λ. Then,
the density of peak pairs per distance �t is

ρ2(�t ) =
∫ T −�t

0
ρ(t )ρ(t + �t )dt = λ2(T − �t ), (A9)

while the corresponding probability density distribution fol-
lows by normalizing

p(�t ) = ρ2(�t )∫ T
0 ρ2(�t )d�t

= 2

T
− 2

T 2
�t . (A10)

Now we can make use of this distribution to calculate (A8).
Because we assume that time T is much longer than both the
width of C and delay τ , we can either neglect the linear term
in (A10) or integrate by parts and approximate the primitive
function of C by a step function. In any way, we get

〈C(τ + �t ) + C(τ − �t )〉�t � 2 ‖h‖2

T
. (A11)

TABLE III. Autocorrelation shapes and the corresponding max-
imum bunching values.

Gauss g(2)
max(0) = 1 + RD/(4

√
2)

Cauchy-Lorentz g(2)
max(0) = 1 + RD/8

Hyperb. secant g(2)
max(0) = 1 + RD/(2π )

Triangle g(2)
max(0) = 1 + RD/4

Now we can consecutively substitute (A11), (A8), (A7),
use N2 � N , and get

〈I (t )I (t + τ )〉 � λC(τ ) + N2‖h‖2

T 2
. (A12)

Finally, after substituting the rest, we get the final result
for the normalized autocorrelation of the randomly generated
signal

g(2)(τ ) = 1 + 1

λ
Cnorm(τ ), (A13)

where Cnorm(τ ) = C(τ )/‖h‖2 is the normalized cross-
correlation of h(t ). We can see that the shape of g(2)(τ ) does
not depend on the amplitude of h(t ), only on its shape. The
scaling of the g(2)(τ ) is determined solely by the mean fre-
quency λ.

Factoring in the background Ibg is a straightforward
extension to the calculations above, yielding (11). After max-
imizing with respect to λ, we get the maximum bunching

g(2)
max(0) = 1 + ‖h‖

4Ibg
Cnorm(0). (A14)

Let us formulate the dynamic range of the modulation as

RD = hmax/Ibg, (A15)

which makes sense in the limit of high extinction RD � 1 and
λ � 1, where the hills are far apart and peak value hmax of the
hill function effectively represents the maximum intensity that
needs to be generated. Then, we can rewrite (A14) as

g(2)
max(0) = 1 + RD

‖h‖
4hmax

Cnorm(0). (A16)

The shape of the autocorrelation is given by Cnorm(τ ),
which is given by h(t ). Let us define that two autocorrelations
g1 and g2 have the same shape if and only if they are identical
up to scaling factors a and b,

g1(τ ) − 1 = a(g2(bτ ) − 1). (A17)

When considering the maximum vertical scale (A16), it can
be shown that it is invariant under horizontal scaling while
keeping the dynamic range constant. One can easily check
this by substituting h(t ) → h(bt ) into (5), (6), and (A16).
Thus we can conclude that the maximum bunching is limited
by the modulation dynamic range and by the shape of the
autocorrelation. Some examples are given in Table III.

APPENDIX B: OBTAINING THE HILL SHAPE
FROM AUTOCORRELATION

Let us have a given autocorrelation function by specifying
(A13) numerically or analytically. Our task is to determine
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h(t ) and λ, which together define the desired signal. We use
the property of the Fourier transform of a cross-correlation,
F (C) = |F (h)|2. Therefore, we can obtain

h(t ) = F−1
[
sgn(ν)

√
F[C(t )]

]
, (B1)

where the sign function is a piecewise ±1. Because the
hill scale ‖h‖ is arbitrary, we can simply assign C(t ) ←
(g(2)(t ) − 1) and scale the resulting h(t ).

The existence of a precise solution depends on two condi-
tions. The Fourier transform of the cross-correlation C and the
result h(t ) must both be non-negative. The non-negativity of
F[C] is not a restrictive condition, because any legal g(2)(τ )
that can arise from (1) automatically complies due to the
Wiener-Khinchin theorem. The positivity of the resulting h(t )
can sometimes be ensured using a suitable sign function—a
good example is a triangular C resulting in a rectangular h(t ).

If the autocorrelation is given numerically, we can employ
discrete Fourier transform (DFT) defined by relations

DFT: Xk =
N−1∑
n=0

xne−i2πnk/N , (B2)

DFT−1 : xn = 1

N

N−1∑
k=0

Xkei2πnk/N . (B3)

Let us consider a given discrete series {cn} =
c0, c1, . . . , cN−1 that defines the autocorrelation symmet-
rically around zero with a sampling interval δt ,

cn := C

[(
n − N − 1

2

)
δt

]
. (B4)

Then, we can approximate the Fourier transform

Ĉ(ν) =
∫

C(t ) exp(−i2πtν)dt

�
∑

n

C(tn) exp(−i2πtnν)δt, (B5)

ĉk = Ĉ

(
k

Nδt

)
1

δt

= DFT(cn) exp

(
−iπ

N − 1

N
k

)
. (B6)

This way, we obtain the discrete Fourier transform with a
sampling period δν = 1/(Nδt ). We proceed and get a discrete
version of (B1),

hm = DFT−1
[
(±1)k

√
ĉk

] 1√
δt

. (B7)

If we consider the periodicity of DFT, we know that hm =
hm−N and we can map the implicit range [0, N − 1] to [−(N −
1)/2, (N − 1)/2] and obtain the hill function

h(m × δt ) =
{

hm 0 � m � N−1
2 ,

hm+N −N−1
2 � m < 0,

m ∈ Z. (B8)

APPENDIX C: DERIVATION
OF NONOVERLAPPING HILLS

For high bunching, when the mean delay 〈�t〉 = 1/λ is
much greater than the width of the autocorrelation, the signal

approaches a sequence of randomly distributed, but disjoint
pulses h(t ). If a pulse generator is used, it cannot typically
generate overlapping signals, which creates a distortion in the
g(2)(τ ). If h(t ) is defined for t ∈ (−t0/2, t0/2), the minimum
delay �t can be t0. This means that the peaks no longer
follow a Poisson process, but a self-excited point process. The
limitation of t0 is akin to nonparalyzable dead time of particle
detectors.

The distribution of peak pairs becomes more complicated.
The term in (A7) that sums all the pairs needs to be evaluated
separately for immediate neighbors, next-but-one neighbors,
and so on. This is because the distribution pk (�t ) of �ti,i+k

must be calculated for each k = 1, 2, 3, . . . ,∑
i< j

C(τ ± �ti j ) =
N−1∑
k=1

N−k∑
i=1

C(τ ± �ti,i+k )

�
N−1∑
k=1

(N − k)〈C(τ ± �t )〉�t∼pk . (C1)

The first step is to consider the sequential delays �ti,i+1.
By definition, these are independent realizations of a random
Poisson process with an addition of t0. Therefore the proba-
bility density function is a shifted negative exponential

p1(�t ) =
{

0, �t < t0,
λe−λ(�t−t0 ), �t � t0.

(C2)

Now, considering that �ti,i+2 = �ti,i+1 + �ti+1,i+2, the con-
stituent delays are mutually independent with known distribu-
tions. That means that the result has a known distribution. By
further induction, as more independent terms are added, we
can average over them in each step,

pk (�t ) =
∫ �t

t ′=0
pk−1(t ′)p1(�t − t ′)dt ′

=
{

0, �t < kt0,

λk (�t−kt0 )k−1

(k−1)! e−λ(�t−kt0 ), �t � kt0,
(C3)

where �t in pk means �ti,i+k , describing its distribution over
all i for N → ∞.

As we assume the limit of long signals, but are interested
in finite delays, let us fix τ and calculate the limit N → ∞.
After substitution of pk into (C1), the averaged terms become

〈C(τ ± �t )〉pk =
∫ ∞

t=0
C(τ ± t ± kt0)

× λk t k−1

(k − 1)!
e−λt dt . (C4)

Now let us recall that C(t ) has a finite support and so for
indices k > |τ |/t0 + 1, the first term C(τ ± t ± kt0) ≡ 0 dur-
ing the whole integration for both plus and minus signs. This
means that for each finite τ , the number of nonzero terms in
(C1) is finite. As a result, k/N → 0 for each k. Also note that
T/N → (1/λ + t0). The result then is

g(2)(τ ) =
(

1

λ
+ t0

) �|τ |/t0+1	∑
k=1

∫ −(k−1)t0+|τ |

t=0

× [Cnorm(τ + t + kt0) + Cnorm(τ − t − kt0)]
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× λk t k−1

(k − 1)!
e−λt dt

+
(

1

λ
+ t0

)
Cnorm(τ ). (C5)

This result also trivially holds for the case when the minimum
delay is t0, but the support of h(t ) is narrower. Moreover, the
formula can also be adopted for the case of infinite support of
h(t ) and C(t ) with a minimum delay t0. In that case, both the
sum and the integral would go to infinity; otherwise, the for-
mula would be the same. The only difference in the derivation
would be in proving the limit in (C1),

lim
N→∞

N−1∑
k=1

k

N
〈C(τ ± �t )〉k = 0. (C6)

As C(t ) must be integrable, its tail scales faster than 1/t . From
(C4) and the integrability of the gammalike kernel, it follows
that from a certain k > k0, the term 〈C(τ ± �t )〉k decreases
faster than 1/k, which means that the limit of the series is
zero.

APPENDIX D: DERIVATION OF RANDOM SWITCHING
OF INTENSITY LEVELS

The signal I (t ) is now defined as a step function, where
each intensity level Ii is held for a time period �ti. Each of
these variables is independently governed by its probability
density p(I ), p(�t ). Let us denote averaging over these distri-
butions by unmarked angle brackets 〈·〉, where the distribution
is determined by the random variable inside. Averaging over
time will be marked by 〈·〉t . If we denote the overall number of
steps as N and the overall time as T , we get the mean intensity,

〈I (t )〉t = 1

T

N∑
i=1

�tiIi = N

T
〈�t I〉t

= 1

〈�t〉 〈�t〉〈I〉 = 〈I〉. (D1)

This result easily follows from the uncorrelation of �t and
I . However, more discussion is needed for the autocorrelation
term.

We express the integral as a sum over the steps again, but
the term depends on the delay τ being greater or smaller than
the step width �ti,∫ T

0
I (t )I (t + τ )dt

=
∑

i

{
(�ti − τ )I2

i + τ IiIeff
i , �ti > τ,

�tiIiIeff
i , �ti � τ.

(D2)

The case of �ti > τ is illustrated in Fig. 5. The 〈I2〉 area on
the left corresponds to the overlap where both signals have the
intensity Ii. The 〈I〉2 area on the right is a product of I (t ) = Ii

and the random intensity levels in I (t + τ ) that follow the ith
level. We can express this integral overlap as τ IiIeff

i , where Ieff
i

is the average intensity of I (t + τ ) in the area of width τ . If
�ti � τ , the ith step has zero overlap with itself and only one
term remains.

FIG. 5. The illustration of the integral overlap. The highlighted
area marks the integration over the ith step. After averaging, the two
integral parts are revealed to correspond to the terms 〈I2〉 and 〈I〉2.

Now, if we consider the summation over i, we may again
replace it with averaging over �t and I independently. What
is more, the variable Ieff

i gets averaged independently of Ii,
because the intensity levels are mutually uncorrelated as well.
Therefore Ieff

i → 〈I〉, Ii → 〈I〉, and I2
i → 〈I2〉. However, the

averaging over �t needs to be split due to the piecewise
definition in (D2). We obtain∫ T

0
I (t )I (t + τ )dt

= N
∫ ∞

τ

p(�t )[(�t − τ )〈I2〉 + τ 〈I〉2]d�t

+N
∫ τ

0
p(�t )�t〈I〉2d�t . (D3)

After extending the second integral to infinity to obtain the
term N〈�t〉〈I〉2 and subtracting this extension from the inte-
gral on the left, we get

g(2)(τ ) = 1

T 〈I〉2

∫ T

0
I (t )I (t + τ )dt

= 1 + 〈I2〉 − 〈I〉2

〈�t〉〈I〉2

∫ ∞

τ

p(�t )(�t − τ )d�t . (D4)

APPENDIX E: EXISTENCE OF A SOLUTION
FOR RANDOM INTENSITY LEVELS

The necessary conditions are that the given autocorrelation
is continuous, bounded [g(2)(0) > 1 and limτ→∞ g(2)(τ ) = 1],
monotone, and convex. We claim that these conditions are
also sufficient for the existence of a solution. We are going to
simplify the notation of the autocorrelation and its derivatives
to g, g′, g′′.

First, we propose that

lim
τ→∞ g′(τ ) = 0. (E1)

Because we know that g′ is monotone (convexity of g) and
upper bounded [g′(τ ) � 0], there must be a limit due to the
monotone convergence theorem. We can prove by contradic-
tion that the limit is zero.
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FIG. 6. The integral can be computed by summing horizontal or
vertical slices.

Let us assume that limτ→∞ g′(τ ) = L, where L < 0. Then
there exists τ0 such that ∀τ � τ0 : g′(τ ) � L/2. We can for-
mulate the inequality∫ ∞

0
g′(τ )dτ =

∫ τ0

0
g′(τ )dτ +

∫ ∞

τ0

g′(τ )dτ (E2)

�
∫ τ0

0
g′(τ )dτ +

∫ ∞

τ0

L

2
dτ = −∞. (E3)

This divergence is in conflict with the existence of a converg-
ing primitive function g, where

∫ ∞
0 g′(τ ) = 1 − g(0). Because

L obviously cannot be positive [g′(τ ) � 0], L = 0 and the
limit (E1) is proven.

Using Eqs. (16) and (17), we see that the probability den-
sity can be expressed as

p(�t ) = −g′′(�t )

g′(0)
. (E4)

The initial conditions (g′ � 0, g′′ � 0) mean that p(�t ) is
non-negative and owing to (E1), it is also normalized,∫ ∞

0
p(�t )d�t = 1. (E5)

The only assumption that is left to prove is that the mean
value 〈�t〉 is finite. To this end, we need to establish a survival

function as an alternative to the probability density,

S(t ) := Pr[�t > t] =
∫ ∞

t
p(�t )d�t = g′(t )

g′(0)
. (E6)

A fundamental property of the survival function is

dS(t )

dt
= −p(t ), (E7)

as well as its image S(t ) ∈ (0, 1]. The image is satisfied for all
t � 0 owing to (E6) and (E1).

The standard formula for the mean value is

〈�t〉 :=
∫ ∞

0
�t × p(�t )d�t . (E8)

However, the survival function offers an alternative [32],

〈�t〉 =
∫ ∞

0
S(t )dt . (E9)

The equivalence of these formulas is illustrated in Fig. 6
and proven by the following:∫ ∞

0
S(t )dt = lim

S0→0

∫ 1

S0

t (S)dS = lim
t0→∞

∫ 0

t0

t
dS

dt
dt (E10)

= lim
t0→∞

∫ t0

0
t × p(t )dt . (E11)

In the first step, we switch to integration of horizontal slices
t × dS. Then, we change the integration variable S → t ,
substitute (E7), and arrive at (E8). The integrability of S(t )
follows from (E6) and the properties of g(t ). We therefore
obtain a finite mean value

〈�t〉 = 1 − g(0)

g′(0)
. (E12)

In conclusion, we have proved the existence of a solution—
a valid finite-mean probability distribution of �t—for every
monotone, convex, and appropriately bounded g(2)(τ ).
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