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Interaction of two-dimensional atomic lattices with a single surface plasmon polariton
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We study the polaritonic bandstructure of a two-dimensional (2D) atomic lattice coupled to a surface plasmon
polariton mode in the single excitation regime. We adopt a Dirichlet-to-Neumann map based computational
technique which can accurately model non-Markovian dynamics as well as narrow-bandwidth features associated
with any periodic atom-photon system in general. Using this technique, we design a 2D atomic lattice using only
two-level atoms, which has an isolated flat polaritonic band where the magnitude of the group velocity for the
modes in the band approach zero across the whole Brillouin zone. Such a system could be employed to slow,
store, and manipulate single photons in a 2D geometry.
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I. INTRODUCTION

The ability to manipulate atom-photon interactions has
seen an unprecedented growth in recent decades enabling
many technologies including but not limited to high precision
metrology, quantum information processing and computing,
and quantum memory. Starting from the initial demonstrations
of using nanophotonic environment to control the radiative
decay of an atom in the 1980s [1–3], we have come a long
way and realized platforms allowing for design of new quan-
tum selection rules for atomic transitions and even enabling
conventionally forbidden multipolar and multiphoton pro-
cesses [4–7]. Similar to the use of nanophotonic environment
to control atomic states, atomic ensembles have also been em-
ployed to tailor light-matter interaction in processes such as
photon blockade, sub- and super-radiance, nonlinear photon-
photon interaction, photon bound states, electromagnetically
induced transparency (EIT) etc. [8–17]. In recent years,
ordered array of atoms interacting with few photons has gar-
nered increasing attention and there have been several works
showing effects arising from collective modes of atomic ar-
rays. In particular, two-dimensional (2D) periodic arrays of
atoms have been shown to exhibit subradiance [18–20], near
perfect reflection of radiation [21,22], and long-lived topolog-
ical excitations [23,24]. Experimentally, this could be realized
on several platforms such as optical lattices formed by atoms,
or artificial atoms (e.g., nitrogen-vacancy centers in diamond,
superconducting qubits, or quantum dots) coupled with pho-
tonic structures [25–29].

However, the theoretical model associated with the pe-
riodic atomic lattice is typically obtained by tracing out
the photon degrees of freedom in the Hamiltonian and
applying the Markov approximation [19,30]. This approxi-
mation is not valid when the electromagnetic environment
has narrow bandwidth features and is highly dispersive. The
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Markov approximation is also violated when the atom spac-
ing becomes comparable to the wavelength of light in the
structure, resulting in significant retardation effect due to
photon propagation. Another almost universal assumption
in these models is the electric dipole approximation for
atomic transitions. In this work, we study the polaritonic
band structure of 2D atomic lattice coupled to a surface
plasmon polariton (SPP) mode [Fig. 1(a)] in the single ex-
citation regime by applying a Dirichlet-to-Neumann (DtN)
map based technique [31–33] (Here, we refer to both real
atoms and atom-like objects as atoms.) The proposed frame-
work is general and efficient for computing the properties
of any 2D periodic system and does not suffer from the
aforementioned approximations. We note that our treatment
here is closely related to the treatment of an array of electro-
magnetic resonators interacting with an environment [34–36],
where going beyond the Markov approximation is also im-
portant. This is particularly useful for studying resonant
interaction with the SPP mode which is highly dispersive
and has extremely small wavelengths near the surface plas-
mon frequency. Due to strong spatial confinement and large
density of states near the surface plasmon frequency, the
atom-SPP interaction strength is significantly enhanced which
leads to a larger bandgap for the atomic lattice. We fur-
ther exemplify the usefulness of this model by designing
specific 2D atomic lattices with an isolated flat polaritonic
band which can be possibly applied for slowing and storing
single photons. This is achieved using arrays of two-level
atoms and is different from the usual light slowing exhib-
ited by EIT in an ensemble of three-level atoms [17,37–40].
The light-matter interaction which is already enhanced by the
spatial confinement of the SPP modes is further substantially
enhanced by the flat polaritonic band. This could provide an
opportunity to tailor light-matter interactions such as allowing
forbidden transitions, multiphoton processes and nonlinear
optical effects. Similar photonic band structure may also be
realized by employing arrays of optical resonators as illus-
trated by Yanik and Fan for a 1D system consisting of a
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waveguide side coupled to a periodic array of tunable optical
resonators [41]. The atomic system however has several ad-
vantages as compared to the optical resonator system. Atoms
outperform macroscopic optical resonators in terms of quality
factor by several orders of magnitude, they are highly tunable,
and are identical; a quality that is missing in fabricated optical
resonators and severely impeding actual use of large resonator
arrays. The intrinsic selection rules for atomic transitions
can be further designed by employing artificial atoms (e.g.,
quantum dots) that provide an additional degree of freedom
of control over light-matter interaction. Furthermore, the use
of atomic arrays is a crucial step for quantum circuitry which
engages between stationary (atoms) and flying qubits.

We note that throughout the paper we compute the
properties of a single photon (or more precisely, a single
plasmon-polariton) Fock state. As far as scattering proper-
ties are concerned, there are strong similarities between the
scattering of a single photon against an atom, and a clas-
sical electromagnetic wave against a resonator, as can be
deduced from many papers in waveguide quantum electro-
dynamics [42–45]. However, a single-photon Fock state is
inherently a quantum object. Therefore, in the paper we use a
full quantum treatment of photon-atom interaction to describe
the properties of such a state.

The rest of the paper is organized as follows. In Sec. II,
we describe the mathematical framework and derive an eigen-
value equation for bandstructure computation using the DtN
technique. In Sec. III after a brief discussion of the band
structure for a square lattice of atoms, we propose a periodic
atomic structure with EIT-like unit cells [46], each containing
two atoms, to get a gapped flat band. Subsequently, we design
a unit cell structure exhibiting a Fano-like scattering spectrum
that further substantially reduces the slope (group velocity) of
the flat band. Finally, we illustrate a rich variety of phenomena
resulting from a single SPP plane wave photon interacting
with a finite lattice of Fano-like atomic unit cells at different
frequencies. We conclude in Sec. IV.

II. MATHEMATICAL FORMULATION

Here, we develop the DtN map based formalism for com-
puting the Bloch wave functions of a system composed of
periodic lattice of identical two-level atom assembly coupled
to a single photon in a 2D SPP mode. The DtN map is an
operator which maps the field values at the unit cell boundary
to its normal derivative [31–33]. A square lattice of atoms and
its unit cell are shown schematically in Figs. 1(a) and 1(b),
respectively. The infinite 2D surface that supports the SPP
mode (shown in green) is taken to be the z = 0 plane and
the atom (represented by a red cylinder) indexed by (u, v), is
placed at the coordinates (ruv ≡ (uD, vD), h), where D is the
period of the square lattice and h is the atom-surface distance.
We assume that the atoms are separated from the surface
by vacuum, and the SPP mode is ideal without propagation
losses. As we will see later in Sec. III C, a few lattice periods
are enough to exhibit all the phenomena arising from the
periodic structure and thus the lossless SPP model is a good
approximation as long as the SPP propagation length is larger
than few lattice periods. In the Coulomb gauge, the SPP vector
potential operator A(r, z) in the upper half space (z > 0) is
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FIG. 1. (a) A square lattice of two-level atoms with period D,
coupled to an SPP mode supported by the green surface, (b) Unit
cell of the square lattice, (c) Scattering spectrum of an isolated atom.
The solid blue and dashed red curves correspond to the scattered
field amplitude squared |b0|2 and excited state population |ek,0|2,
respectively.

given by [47–50]:

A(r, z) =
∫∫

dkx dky
1

2π

√
h̄

2Lkε0ωk

(
ik̂ − k

κ
ẑ
)

e−κzeik·r

︸ ︷︷ ︸
Ak(r, z)

ak

+ H.c., (1)

where, ak, a†
k are the bosonic annihilation and creation op-

erators for the SPP mode photon satisfying the commutation
[ak, a†

k′ ] = δ2(k − k′), h̄ is the reduced Planck’s constant, ε0

is the vacuum permittivity, κ = √
k2 − ω2

k/c2 is the spatial
decay rate of the mode along z, Lk is the characteristic modal
dimension given by Lk = (κ2 + k2)/κ3 and is derived by nor-
malization consideration, H.c stands for Hermitian conjugate.
ωk is the SPP mode (angular) frequency for in-plane wave
vector k ≡ (kx, ky ), and could be well approximated for fre-
quency close to the surface plasmon frequency ωsp by

ωk =
√

1 + εm

εm
ck ≈ ωp√

2

(
1 − k2

p

8k2

)
= ωsp − β

k2
, (2)

where, εm is the real dielectric constant of the metal given by
the Drude model, ωp is its plasma frequency, kp is the free
space wave-vector magnitude at frequency ωp(= ckp), and c
is the speed of light in vacuum [51–53].

A. System Hamiltonian model

We assume that the atoms couple only to the SPP mode and
ignore coupling to the free-space electromagnetic modes as
the near field coupling to the SPP modes is much stronger than
coupling to the free-space modes. This assumption is further
validated by the results presented later, where the linewidth
associated with single SPP scattering by an atom is several
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orders of magnitude larger than that for photon scattering
in free space implying that the spontaneous emission into
the SPP mode is much faster and probable. It is also as-
sumed that the atoms do not directly (electronically) interact
with each other. Starting with the standard minimal coupling
Hamiltonian, for resonant coupling near the surface plasmon
frequency, we can show that the light-matter interaction in the
atom-SPP system can be described by the following spatial
domain Hamiltonian [46,54]:

H = h̄ωsp

∫∫
dx dyc†(r)c(r) + h̄β

∫∫
dx dy

×
∫∫

dx′ dy′ ln |r − r′|
2π

c†(r)c(r′)

+
∑

u

∑
v

(
Eg f †

guv fguv + Ee f †
euv feuv

+
∫∫

dx dy(Vuv (r)c†(r) f †
guv feuv + H.c)

)
, (3)

where, Eg and Ee are the atomic ground and excited state
energies, and fguv , f †

guv , feuv , f †
euv are the respective fermionic

annihilation and creation operators for the electron in the
atom (u, v). c(r), c†(r) are the spatial bosonic annihilation
and creation operators, respectively, as defined by Eq. (4) and
satisfy the commutation [c(r), c†(r′)] = δ2(r − r′). Vuv (r) is
the Fourier transform of the atom-field coupling strength V uv

k
given by Eq. (5):

c(r) = 1

2π

∫∫
dkx dky eik·rak;

c†(r) = 1

2π

∫∫
dkx dky e−ik·ra†

k, (4)

V uv∗
k = − e

m
〈euv|Ak · puv|guv〉;

Vuv (r) = 1

2π

∫∫
dkx dky eik·rV uv

k , (5)

where, e and m are, respectively, the charge and the rest mass
of the electron, puv = −ih̄ 	∇uv is the canonical momentum
operator for the electron in the atom (u, v). In the Hamiltonian
of Eq. (3), we have ignored the terms related to intrinsic spin
angular momentum and the A2 term. We have also made the
usual rotating wave approximation in the interaction Hamilto-
nian [55–57]. These approximations are justified in the weak
coupling regime (small Vk) [54], which is the case here as we
have a single photon interacting with a low density atomic
lattice such that the period is significantly larger than the size
of the atoms. The logarithmic form in the second term of the
Hamiltonian of Eq. (3) arises from the SPP dispersion relation
in the short wavelength limit [Eq. (2)]. Since all the atoms are
identical, from Eq. (5), V uv

k = e−ik·ruvV 00
k which arises from

the periodicity condition Vuv (r) = V00(r − ruv ). To compute
the band structure, we look for Bloch eigenstates of the form:

|ψq〉 =
∫∫

dx dy φq(r)c†(r) |g, g, . . . , 0〉

+
∑

u

∑
v

euv
q f †

euv fguv |g, g, . . . , 0〉, (6)

where, |g, g, . . . , 0〉 is the state with all atoms in the ground
state and zero photons in the SPP mode, q is the Bloch wave
vector, φq(r) is the photon field amplitude, and euv

q is the
excited state amplitude for the atom (u, v). Equation (6)
represents a complete basis for the system [42,58]. Following
from the Bloch condition:

φq(r + ruv ) = eiq·ruvφq(r), (7a)

and

euv
q = eiq·ruv e00

q . (7b)

We assume that the atom-field interaction is local, i.e.,
Vuv (r) = 0 for |r − ruv| > D/2. Thus, it is possible to com-
pute the Bloch state and the band structure from the
knowledge of scattering properties of an isolated unit cell
coupled to a SPP mode of an infinite 2D surface.

The isolated atom scattering is computed by the procedure
outlined in a previous work [54] and is shortly described here.
We model the two-level atom as an infinite potential well
confining the electron in a cylinder of radius a and height L
as shown in Fig. 1(b) with the following wave functions for
the ground (lg = 1) and excited (le = 2) states of atom (0, 0):

ψg,e(r, z) =
√

2

L
sin

lg,eπ (z − h)

L

× 1√
πaJ1( j0)

J0( j0r/a)
(r, z), (8)

where, Jn is the nth order Bessel function, jn is the nth zero
of the 0th order Bessel function, 
(r, z) is a scalar function
which is unity inside the cylinder (r < a, h < z < h + L) and
zero outside [59]. In this case, V00(r) has azimuthal symmetry
[Eq. (5)], making it convenient to work using cylindrical coor-
dinates (r, θ, z). Now, the scattering eigenstates of an isolated
atom at SPP wave-vector magnitude k (frequency ωk) and
angular momentum mh̄ is given by

|ψk,m〉 =
∫∫

dx dy φk,m(r)c†(r) |g, 0〉 + e00
k,m f †

e00 fg00 |g, 0〉.
(9)

Away from the atom, in the far field the photon field φk,m(r)
could be represented as a sum of incident and scattered waves
as given by Eq. (10a), where H (1)

m is the Hankel function of
the first kind of order m and bm is the corresponding scatter-
ing coefficient. The excited state amplitude ek,m is given by
Eq. (10b). Following from the azimuthal symmetry of V00(r),
ek,m = 0 for m �= 0. Thus, the atom only scatters the m = 0
angular momentum mode, i.e., bm = 0 for m �= 0, which is
also expected from the conservation of angular momentum.
The only nonzero scattering coefficient b0 is computed us-
ing appropriate boundary conditions as done in the previous
work [54]:

φk,m(r) = Jm(kr)eimθ + bmH (1)
m (kr)eimθ ,

−∞ � m � ∞, (10a)

(h̄ωk + Eg − Ee)ek,m =
∫∫

dx dy V ∗
00(r)φk,m(r). (10b)
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Having computed the scattering eigenstates of an isolated
unit cell, we use the DtN map based technique to compute the
band structure of the infinite periodic lattice. The procedure is
general and applicable for other types of 2D lattices as well as
more complicated unit cells containing more than one atom.
Here we assume a simplified model for the atomic potential
in order to obtain an easy-to-use analytic expression for the
electronic wave functions. In general, the formalism can be
used to treat more realistic atomic models by incorporating
the actual electronic wave functions of the atoms.

In the following, we first illustrate in Sec. II B an efficient
way to compute the DtN map by expanding the field in terms
of the cylindrical waves. Then using the computed DtN map,
in Sec. II C we formulate an eigenvalue equation in terms of
Bloch wave vector to compute the band structure.

B. Computing DtN map

Since, the atoms do not interact directly with each other,
the photon field φq(r) [Eq. (6)] inside each unit cell can be
expressed in terms of the local cylindrical wave solutions
φk,m(r), obtained for an isolated atom [Eq. (10)]. Note that,
the Bloch wave vector magnitude q is in general different from
the SPP wave vector magnitude k.

φq(x, y) =
∞∑

m=−∞
cmφk,m(r, θ ), −D/2 � x, y � D/2

(11)

The DtN map, �, of the unit cell is defined through:

�(u0, v0, u1, v1)T = (∂yu0, ∂xv0, ∂yu1, ∂xv1)T , (12)

where, u0, v0, u1, and v1 are the values of the photon field
φq(x, y) on the four edges of the square unit cell:

u0 = φq(x,−D/2), v0 = φq(−D/2, y),

u1 = φq(x, D/2), v1 = φq(D/2, y),

∂yu0 = ∂yφq|y=−D/2, ∂xv0 = ∂xφq|x=−D/2,

∂yu1 = ∂yφq|y=D/2, ∂xv1 = ∂xφq|x=D/2.

As a discrete approximation, we select N points on each edge
of the unit cell:

x j = y j = ( j − N/2 + 0.5) × L/N, j = 0, 1, . . . , N − 1,

and replace u0, v0, u1, v1 by column vectors of length N . The
DtN map � can now be represented by a 4N×4N matrix
obtained by truncating the infinite cylindrical wave basis to
a finite set of size 4N and approximating Eq. (11) as

φq(x, y) ≈
2N−1∑

m=−2N

cmφk,m(r, θ ). (13)

We follow a two step strategy to compute the approxi-
mate matrix operator corresponding to the DtN map �.
First, we compute a 4N×4N matrix �1 which maps the
4N cylindrical wave coefficients to the field values at
the 4N points on the unit cell boundary. This can be
easily done by evaluating the known cylindrical waves
φk,m(r, θ ),−2N � m � 2N − 1 at the points on the unit cell
boundary {(x j,±D/2), (±D/2, y j )}, j = 0, 1, . . . , N − 1. In
the next step, we similarly compute another operator �2 to
map the cylindrical wave coefficients to the normal derivative
of the field at the points on the unit cell boundary. The DtN
map � can then be expressed as

� = �2�
−1
1 . (14)

C. Eigenvalue problem

Having computed the DtN map � at a given SPP wave-
vector magnitude k (or, frequency ωk), we need to compute
the unknown Bloch wave vector q ≡ (qx, qy) satisfying the
Bloch conditions given by Eqs. (7a) and (7b). Equation (7b)
follows from Eq. (7a) as evident from Eq. (10b) and thus we
only need to enforce the Bloch criterion for the photon field.
Expressing the Bloch condition in Eq. (7a) in terms of the field
values at the unit cell boundary:

φq(x, D/2) = ρyφq(x,−D/2),
(15a)

∂yφq|y=D/2 = ρy∂yφq|y=−D/2,

φq(D/2, y) = ρxφq(−D/2, y),
(15b)

∂xφq|x=D/2 = ρx∂xφq|x=−D/2,

where, ρx = eiqxD and ρy = eiqyD. Rewriting Eq. (12) by parti-
tioning the DtN matrix � in 4×4 blocks, we get⎡

⎢⎣
�11 �12 �13 �14

�21 �22 �23 �24

�31 �32 �33 �34

�41 �42 �43 �44

⎤
⎥⎦

⎡
⎢⎣

u0

v0

u1

v1

⎤
⎥⎦ =

⎡
⎢⎣

∂yu0

∂xv0

∂yu1

∂xv1

⎤
⎥⎦. (16)

Now, from Eqs. (15) and (16), we obtain

[
�31 �32

�41 �42

][
u0

v0

]
=

[
ρ2

y �13 + ρy(�11 − �33) ρyρx�14 − ρx�34 + ρy�12

ρyρx�23 + ρx�21 − ρy�43 ρ2
x �24 + ρx(�22 − �44)

][
u0

v0

]
. (17)

Eq. (17) could be cast as an eigenvalue problem with eigen-
value λ. We illustrate this for Bloch wave vector lying
along the �M direction (qx = qy) in the irreducible Bril-
louin zone with corners at �(qx = qy = 0), X (qx = π/D,

qy = 0), and M(qx = qy = π/D). Substituting ρx = ρy = λ,
and (u0, v0)T = U in Eq. (17), we get the following eigen-
value equation:

(λ2A + λB + C)U = 0, (18)

where, A = −[�13 �14
�23 �24

], B = [�33 − �11 �34 − �12
�43 − �21 �44 − �22

], and C =
[�31 �32
�41 �42

].
For any direction in the Brillouin zone, we always

get an eigenvalue equation of the form given in
Eq. (18) but with different expressions for A, B,C,
and λ. The eigenvalue equation is quadratic in λ

and can be linearized by introducing an auxiliary
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vector V = λU:

λ

[
A 0
0 I

][
V
U

]
+

[
B C
−I 0

][
V
U

]
= 0. (19)

Since propagating Bloch waves have real q, the eigenvalue
λ = eiqxD has unit amplitude inside a band and is different
from unity in a band gap.

The procedure outlined above is different from the usual
band-structure computation where the eigenvalue problem is
formulated for a given Bloch vector and yields ω2 (ω is the
frequency) as the eigenvalue. Here, the DtN map is computed
for a given SPP frequency ωk and solving the eigenvalue
problem gives the Bloch vector q and the corresponding
eigenmode. This also allows for an efficient computation of
isofrequency contours and density of states at any desired
frequency without the need to compute the complete band
structure which is commonly done in other computational
methods [33].

III. RESULTS

We first discuss the band structure of a square lattice of
two-level atoms as shown in Fig. 1(a). For the SPP mode, we
choose as an example the surface plasmon frequency lying in
the infrared region h̄ωsp = 0.1 eV. There have been many re-
alizations of highly confined SPP mode with low propagation
loss in conventional noble metals and in 2D materials such as
graphene and hBN in the infrared spectrum [53,60–63]. We
use the following parameters for the quantum dots (Here, we
interchangeably use atoms and quantum dots.) with ground
and excited state wave functions described by Eq. (8): Radius
a = 10 nm, length L = 3.35 nm, such that the atomic transi-
tion energy h̄� = (Ee − Eg) lies close to the surface plasmon
energy h̄ωsp with a small detuning h̄�ω = h̄(� − ωsp) =
−0.15 meV. The detuning value can be adjusted by applying
a small static field. The quantum dots are placed at a height
h = 200 nm. The spectrum for a single SPP photon scattering
by an isolated atom is shown in Fig. 1(c), which plots the
scattering coefficient squared |b0|2 and excited state amplitude
squared |ek,0|2 as a function of frequency ω. Here, k is the
in-plane wave vector of the incident photon corresponding to a
SPP 2D plane wave of the form eik·r. As discussed previously,
because of the azimuthal symmetry of the electron wave func-
tions, only the m = 0 angular momentum component of the
incident wave is scattered [Eqs. (10a) and (10b)]. Thus, the
scattering coefficient is independent of the angle of incidence
and only depends on the SPP wave-vector magnitude k. This
enables us to plot the scattering coefficients as a function of
frequency as there is a one-to-one correspondence between
k and ω [Eq. (2)]. The scattering spectrum in Fig. 1(c) has
a single-peaked Lorentzian line shape which is the expected
behavior in the Markovian regime at relatively large distances
h between the atom and the surface supporting the SPP mode.
We also observe a small Lamb shift which is the difference
between the bare atomic transition frequency and the resonant
frequency in the spectrum.

Figure 2 shows the band structure for a square lattice
of two-level atoms with a period D = 200 nm. Figure 2(a)
plots the dispersion relation along the boundary of the ir-
reducible Brillouin zone �XM. We see a bandgap between

(a) (b)

7 11 12.5 12.74

12.77

12.81

FIG. 2. (a) Band structure, and (b) Isofrequency contours of a
square lattice of single atoms with period D = 200 nm. The numbers
labeling the isofrequency contours represent the SPP wave-vector
magnitude ck/ωsp.

the first two bands. The bandgap is in agreement with the
frequency range where an isolated atom shows significant
scattering as shown in Fig. 1(c). In general, the width of
the bandgap depends on the periodicity of the lattice and the
scattering linewidth of an isolated atom. Figure 2(b) shows
isofrequency contours in the first Brillouin zone for frequen-
cies corresponding to the lower band. Close to the � point,
we observe circular contours which is a consequence of the
underlying isotropic SPP dispersion. The deviation of the
contours from a circle close to the Brillouin zone boundary is
reminiscent of similar isofrequency contours in 2D photonic
crystals [33,64,65].

A. Slow light and EIT-like unit cell

Having discussed the case of a square lattice of two-level
atoms, we now propose a scheme to slow light by obtaining
an isolated band with a very small slope across the Brillouin
zone. Towards this end, we first design an isolated unit cell
such that it exhibits EIT-like spectrum with a “zero scatter-
ing frequency”. This could be achieved using two similar
vertically stacked quantum dots in a unit cell, henceforth
referred to as an EIT-like cell, as discussed in our previous
work [46]. By making the quantum dots aligned horizontally
but displaced vertically as shown in Fig. 3(a), it is possible
by destructive interference of their scattered fields, to com-
pletely cancel the net scattering at a desired frequency which
results in an EIT-like behavior. The two atoms have identical
wave functions as described by Eq. (8) and slightly different

-2 -1.5 -1
0

0.5

11(a) (b)

FIG. 3. (a) EIT-like unit cell of a square lattice with period D,
comprised of two vertically stacked quantum dots/atoms coupled
to SPP mode, (b) Scattering spectrum of an isolated unit cell with
two atoms. The solid blue and the two dashed black curves plot
the scattered field amplitude squared |b0|2 for the EIT-like cell and
isolated atoms, respectively.
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FIG. 4. Band structure of a square lattice of EIT-like cells with
period D = 200 nm.

detuning values h̄�ω1 =−0.15 meV, h̄�ω2 =−0.145 meV.
The atoms are placed at heights h1 = 200 nm and h2 =
250 nm. Note that the EIT-like cell with these parameters is
identical to the single atom unit cell discussed above but with
an extra second atom. The height and the detuning value for
the second atom are chosen to get a slightly frequency-shifted
scattering spectrum so as to make the EIT-like frequency (zero
scattering frequency) lie inside the bandgap obtained for the
lattice of single atoms [Fig. 2(a)]. Since the scattering is negli-
gible at frequencies near the EIT-like point, one expects to ob-
serve propagating Bloch states in this narrow frequency range
inside the bandgap. The following discussion clarifies this
point.

Figure 3(b) shows the scattering spectrum for an isolated
EIT-like cell. Similar to the previous case for plane wave
scattering by a single atom, as a consequence of azimuthal
symmetry, only the m = 0 angular momentum component is
scattered. Thus, the scattering behavior is completely speci-
fied by the only nonzero scattering coefficient b0. The solid
blue curve in Fig. 3(b) plots |b0|2 as a function of frequency
of the incident SPP photon. We observe an EIT-like spectrum
with two resonant peaks and zero scattering at a frequency in
between. The dotted black curves correspond to the scattering
spectrum for the individual atoms which is similar to the
Lorentzian spectrum observed in Fig. 1(c).

Having obtained the scattering coefficients for an isolated
EIT-like cell, we can now obtain the band structure for a
square lattice of EIT-like cells using the DtN technique.
Figure 4 shows the band structure for a lattice period D =
200 nm. As before, we only show the dispersion relation along
the boundary of the irreducible Brillouin zone. In the same
frequency range as Fig. 2, we observe an extra band with a
small slope throughout the Brillouin zone and separated from
the other two bands by a finite gap. The other two bands
are similar to those observed for the lattice of single atoms
in Fig. 2(a). The position of the flat band is centered around
the EIT-like frequency for the isolated EIT-like cell shown in
Fig. 3(b). The slope of the flat band depends on the slope of
the scattering spectrum near the EIT-like frequency [Fig. 3(b)]

and we achieve here, on average, a group velocity magnitude
of 165 m/s which is smaller than the bare SPP mode group
velocity by almost a factor of 400. A sharper transition in the
scattering spectrum near the EIT-like frequency will result in a
smaller slope for the flat band. This can be achieved by having
a narrower linewidth scattering response for one of the atoms
in the EIT-like cell.

Besides having a small slope for the flat band to exhibit a
small group velocity, it is also equally important to have the
flat band well isolated from the other bands through a large
bandgap to prevent interband scattering/coupling. We define
the following metric to quantify the performance of the flat
band:

F = min{�ωgap}
�ωFB

, (20)

where, �ωFB is the width of the flat band and min{�ωgap}
is the frequency separation between the flat band and the
nearest band. Having a large F allows for an efficient adiabatic
bandwidth compression of a photon pulse through dynamic
time modulation of the slope of the flat band [41,66]. For the
bands shown in Fig. 4, F = 2.16, which we would like to
improve. As discussed earlier, one way to reduce the slope
and thus enhance F is to make the scattering spectrum of
one of the atoms in the EIT-like cell narrower by weakening
the atom-SPP coupling strength Vk. A trivial way to do this
is to move the second atom further away from the surface
supporting the SPP mode, i.e., increasing h2. Unfortunately,
this approach is limited because even though the atom-SPP
coupling strength decreases exponentially with h2, the cou-
pling to the free-space modes does not change appreciably. At
sufficiently large h2, the coupling of the atom to the free-space
modes becomes comparable to the coupling to the SPP mode
leading to considerable loss due to emission into free space
modes. Thus, F cannot be improved significantly using this
approach.

B. Even slower light and Fano-like unit cell

To improve F , we focus on other degrees of freedom avail-
able to us for optimization, namely tailoring the electron wave
functions of the quantum dots. The goal is to obtain a much
narrower spectrum for the second atom. Here, we propose to
achieve it via proper design of the ground (ψ (2)

g (r, z)) and ex-
cited (ψ (2)

e (r, z)) state wave functions of the second quantum
dot as

ψ (2)
g (r, z) =

√
2

L2
sin

π (z − h2)

L2

× 1√
πa2J1( j0)

J0( j0r/a2)
(r, z), (21a)

ψ (2)
e (r, z) =

√
2

L2
sin

2π (z − h2)

L2

× 1√
πa2J1( j1)

J0( j1r/a2)
(r, z). (21b)

The transition dipole moment 〈ψ (2)
e | − er|ψ (2)

g 〉 for these
wave functions is zero making the free-space electric
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FIG. 5. Scattering spectrum of an isolated (a) second atom,
(b) Fano-like cell with two atoms. The solid blue and the two dashed
black curves plot the scattered field amplitude squared |b0|2 for
the Fano-like cell and the isolated atoms, respectively. The inset in
(b) shows a zoomed-in view of the scattering spectrum near the zero
scattering frequency.

dipole transition forbidden. The excited state to the ground
state transition rate due to electric quadrupole or magnetic
dipole transitions in free space is very low. However, due
to the stronger coupling with the SPP mode, one can make
these higher order multipole transitions much faster. Thus,
one can obtain a narrow linewidth for the single SPP scat-
tering while keeping the photon loss to the free-space modes
negligible. Figure 5(a) shows the scattering spectrum for such
an isolated single quantum dot with wave functions given by
Eq. (21). The quantum dot has radius a2 = 10.5 nm, length
L2 = 3.5 nm, detuning h̄�ω2 = −0.148 meV, and is placed
at height h2 = 50 nm above the surface. The scattering co-
efficient squared |b0|2 has a Lorentzian line shape with a
linewidth which is almost five orders of magnitude narrower
as compared to the previous case [Fig. 3(b)], even at a much
closer distance h2.

Figure 5(b) plots the scattering coefficient for the new
isolated cell with two atoms [Fig. 3(a)]. We refer this struc-
ture as a Fano-like cell because we are coupling here two
resonances with extremely different linewidths, which yields
the well-known asymmetric Fano resonance line shape as
discussed below. The solid blue curve in Fig. 5(b) shows |b0|2
of the isolated Fano-like cell as a function of frequency of
the incident SPP photon. The dashed black curves correspond
to the scattering coefficients for the individual atoms. As
compared to the previous EIT-like cell, the first atom still
has the same wave functions [Eq. (8)], identical dimensions
(a1 = 10 nm, L1 = 3.35 nm), but has zero detuning (h̄�ω1 =
0) and is placed closer to the surface (h1 = 60 nm). These pa-
rameters were chosen to obtain a broader linewidth for the first
atom which, as we will see later, results in a larger bandgap
for the same lattice period. The spectrum corresponding to
the first atom is much broader and substantially deviates from
a symmetric Lorentzian, which is attributed to the frequency
dependence of atom-field coupling strength Vk, which changes
appreciably over the linewidth resulting in non-Markovian
behavior [54]. The second atom is identical to the one dis-
cussed in the previous paragraph. On this scale the scattering
spectrum corresponding to the second atom appears to have
almost zero width. This makes the transition near the zero
scattering frequency much sharper as compared to the one
shown in Fig. 3(b). The inset shows a zoomed-in view of the
spectrum near the zero scattering frequency and clearly shows
an asymmetric Fano resonance line shape. The zero in the

(a)

7 11 11.9

11.94

11.98

12.02

(b)

b
c

d
e

(c)

FIG. 6. (a) Band structure, and (b), (c) Isofrequency contours
of a square lattice of Fano-like cells with period D = 200 nm. The
numbers labeling the isofrequency contours in (b) represent the SPP
wave-vector magnitude ck/ωsp. The isofrequency contours in (c) are
spaced at equal frequency intervals of 7×10−8ωsp except for the
spacing between the contours labeled d and e being 3×10−8ωsp.
Contour labeled e has frequency ω − ωsp = −1.48×10−3ωsp.

net scattering cross section results from Fano interference be-
tween a background scattering (broader resonance in the first
atom) and a resonant scattering pathway (narrow resonance in
the second atom) [67–69].

Figure 6 shows the band structure for a square lattice of
such Fano-like cells with period D = 200 nm. The dispersion
relation plotted in Fig. 6(a) is similar to the one shown in
Fig. 4, but the flat band has a much smaller slope and is
optimally positioned at the middle of the bandgap. Here, the
average group velocity magnitude is around 4 m/s which is
more than four orders of magnitude smaller than the bare
SPP velocity. As a result, we obtain F = 430, more than
two orders of magnitude larger than the previous case. The
optimal positioning of the flat band is achieved by choosing
an appropriate detuning value for the second atom (h̄�ω2),
which ensures that the zero scattering frequency and thus
consequently the flat band lies in the middle of the bandgap.
Figures 6(b) and 6(c) plot a few isofrequency contours in the
first Brillouin zone for frequencies corresponding to the first
(lowest) and the flat bands, respectively.

C. Single photon scattering from finite size lattices

So far, we have based our discussion on band struc-
tures, which is valid for an infinite lattice and can only
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FIG. 7. Total field plots for scattering of a y-propagating SPP
plane wave from a finite square lattice of Fano-like cells for fre-
quency lying (a) within the band gap k = 13.5 ksp, (b), (c), (d) on
the flat band as marked on Fig. 6(c), with Fabry-Perot resonance in
(b), cloaking (transparency) from zero scattering in (c), and 100%
reflection in (d). The field distribution is normalized such that the
incident plane wave has unit amplitude.

approximately be realized in practice. Here, we briefly discuss
the case of finite lattices realized with hundreds of unit cells.
For the finite system, the DtN technique is no longer applica-
ble, and the computational technique used for the following
results was proposed in our recent work [46]. It involves first
computing the scattering from an isolated atom/cell and then
expressing the scattered field from the finite lattice in terms
of the scattered field modes from each unit cell. The lattice
consists of a 40×20 array of the Fano-like cells discussed
previously in Figs. 5 and 6. Figure 7 shows the total field
plots for an incident photon in the SPP 2D plane wave mode
for different frequencies. The black arrow indicates the di-
rection of incidence and the white dots mark the position of
the atoms in the lattice. Figure 7(a) is plotted at a frequency
ω − ωsp = −1.37×10−3ωsp which lies inside the bandgap of
the infinite lattice (Fig. 6). As expected, the finite lattice is an
ideal single photon mirror for frequencies within the bandgap.
Figures 7(b), 7(c), and 7(d) are plotted at almost the same
frequency ω − ωsp = −1.48×10−3ωsp lying on the flat band
and marked as b, c and d, respectively, on the isofrequency
plot in Fig. 6(c). Despite this negligible frequency difference
and the same direction of incidence, the three field plots are
very different. This large contrast arises from the almost zero
slope of the dispersion relation in the flat band which leads to
the excitation of Bloch waves with very different wave vectors
inside the lattice even for a small frequency difference of the
incident photon as seen from the isofrequency plot [Fig. 6(c)].
Ignoring the obvious diffraction effects at the edges, the in-
cident wave with kx = 0 couples efficiently with the lattice
Bloch mode with qx = 0 in Fig. 7(b) and exhibits a significant
transmission due to Fabry-Perot-like resonance, whereas the

absence of such a Bloch mode with qx = 0 leads to negligible
coupling and almost complete reflection in Fig. 7(d). The high
reflection in Fig. 7(d) is qualitatively different from that in
Fig. 7(a) which is due to a lack of propagating Bloch states
inside the bandgap. Here, it may be possible to get significant
transmission at the same frequency by changing the angle of
incidence. In Fig. 7(c), the lattice can be seen to be completely
cloaked (transparent) as the frequency of the incident photon
is equal to the zero scattering frequency [Fig. 5(b)]. Thus, in
a small frequency range we observe Fabry-Perot resonance,
transparency, and complete reflection.

One could also manipulate the slow surface plasmons to
exhibit interesting phenomena such as superprism effect, su-
percollimation and negative refraction through appropriately
designed isofrequency contours [65,70–76]. For instance, in
Fig. 6(c), the contour labeled d and centered at M point
has fairly sharp corners and flat edges. By coupling the
incident wave to lattice Bloch modes near these corners,
one can quickly switch from one side of the corner to the
other. This results in a large change in group velocity and
thus angle of refraction inside the lattice for a very small
change in frequency or angle of incidence, and is termed as
superprism effect [70,71]. Similarly, by coupling light into
the flat edge of the contour, one could negate the effect of
diffraction since the group velocity for all the points on the
flat contour point in the same direction. Thus such a beam
inside the lattice would spread out very slowly, which results
in a supercollimation effect [72–74]. Finally, at frequency
ω − ωsp = −1.48×10−3ωsp, the contour near M labeled e in
Fig. 6(c), assumes a circular shape, but the radius of the circle
decreases as the frequency increases. This contour can be used
to demonstrate negative refraction and flat lens [75,76].

IV. CONCLUSION

We have proposed a DtN map based technique to com-
pute the properties of a 2D atomic lattice coupled to an
electromagnetic bath with 2D continuum of photonic states.
The proposed model is general and can efficiently capture
the non-Markovian dynamics as well as narrow bandwidth
features associated with the electromagnetic environment.
Subsequently, we designed an atomic lattice with an isolated
flat band which could be employed to slow light and further
enhance light-matter interaction. This is a realization of group
velocity reduction by several orders of magnitudes in a 2D
system, using only two-level atoms. We also optimized the
performance of the proposed lattice of quantum dots through
proper design of the electron wave functions. Finally, we
pointed out the possibility of manipulating single photons
using a finite lattice of atoms, to exhibit interesting effects
associated with perfect mirror, superprism, supercollimation,
and negative refraction.
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cal Processes using Electromagnetically Induced Transparency,
Phys. Rev. Lett. 64, 1107 (1990).
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