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Probing the spectrum of the Jaynes-Cummings-Rabi model by its isomorphism
to an atom inside a parametric amplifier cavity
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We show how the Jaynes-Cummings-Rabi model of cavity quantum electrodynamics can be realized via an
isomorphism to the Hamiltonian of a qubit inside a parametric amplifier cavity. This realization clears the way
to observe the full spectrum of the Rabi model via a probe applied to a parametric amplifier cavity containing
a qubit and a parametric oscillator operating below threshold. An important outcome of the isomorphism is that
the actual frequencies are replaced by detunings which make it feasible to reach the ultrastrong coupling regime.
We find that inside this regime the probed spectrum displays a narrow resonance peak that is traced back to the
transition between ground and first excited states. The exact form of these states is given at an energy crossing
and then extended numerically. At the crossing, the eigenstates are entangled states of field and atom where the
field is found inside squeezed cat states.
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I. INTRODUCTION

It is well known that a weak harmonic field is particularly
efficient to induce a transition between two states of an atom
when it oscillates at a frequency close to the Bohr frequency
separating the states. The field can be used in this way to
probe the atomic energy spectrum and provide a window
into the underlying processes that rule the atomic dynamics.
As the intensity of the field is ramped up, it perturbs the
atomic response in a way that signals that field and atom
have coupled into a single system. The energy diagram of this
composite system displays a rich structure with crossings and
avoided crossings whose locations are given by an interplay
of atomic transition frequency, field frequency, and coupling
strength [1]. This diagram carries information of an idealized
light-matter coupling and has been the subject of extensive
research ranging from the many-photon [2–6] down to the
single-photon limit [7–10].

Recent advances have made it possible to increase the
single-photon coupling to about 10% of the atomic tran-
sition frequency [11–18]. Due to this strong coupling,
models used to describe these systems need to move beyond
common simplifications, such as the rotating wave approx-
imation. And, in the idealized case of a two-state atom
coupled to a single mode of the field under the dipole app-
roximation, the system is accurately described by the
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Hamiltonian (h̄ = 1)

Ĥη = ωcâ†â + ωaσ̂+σ̂− + λ′(âσ̂+ + â†σ̂−)

+ ηλ′(âσ̂− + â†σ̂+) (1)

with η = 1. Here, â and â† are annihilation and creation
operators for the field mode; σ̂+ and σ̂− raising and low-
ering operators for the atomic levels; and ωc (ωa), λ are
parameters that denote the mode (atomic transition) frequency
and coupling strength. The inclusion of η makes it possible
to create a bridge between the Jaynes-Cummings limit with
η = 0 (suitable for ωc � λ) and the Rabi limit with η = 1.
This parameter can then be varied to study the effects of an
increasing coupling strength.

The energy spectrum of this model—referred to as the
Jaynes-Cummings-Rabi (JC-Rabi) model—was recently ob-
tained by Tomka and collaborators [19,20] whose analytic
results extend on the seminal work by Braak [21] for the Rabi
limit. The theoretical advances raise the natural question on
how to design systems where this spectrum can be probed.
Current approaches have moved to a driven-dissipative setting
where atomic and mode frequencies are changed into detun-
ings to a driving field [22] and coupling terms are generated
from interactions between additional levels [23] or degrees
of freedom [24]. Here, we propose a different method to
study the JC-Rabi model where we present a realizable system
whose model Hamiltonian is isomorphic to Eq. (1). In this
way, the system can be used to probe the energy spectrum of
the JC-Rabi model over a large range of parameters.

In Fig. 1 we sketch two possible realizations of the JC-
Rabi model that are relevant to this work. On the left panel
the model is generated from two metastable states coupled
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FIG. 1. Sketch of two optical amplification processes that gen-
erate the JC-Rabi model from the JC model. (a) Coupled lambda
transitions introduced in Ref. [23]. (b) Qubit inside a parametric
amplifier discussed in Sec. II.

through a pair of lambda transitions as originally proposed in
Ref. [23]. This proposal has found great success on atomic
gases where the necessary level structure is encountered
[24–26]. In the right panel an isomorphic Hamiltonian is
generated from a two-state system coupled to a parametric
oscillator; the basic ingredients being available in supercon-
ducting circuits architectures [27,28]. The isomorphism is
presented below where it is shown that the conditions on the
level structure are relaxed in exchange of independent control
of the parameters.

The advantage of using a cavity with a parametric amplifier
was recognized in the context of optomechanics [29] where it
was shown how the parametric coupling can result in normal
mode splitting and the squeezing of the mechanical oscillator
[30]. More recently the use of a parametric amplifier has been
advocated in enhancing collective effects [31] and in quantum
phase transitions [32]. The idea to reach the strong-coupling
regime using a two-photon drive was also presented recently
in Ref. [33] where the authors consider an adiabatic switch on
the drive to reach the ground state of an ultrastrong coupled
system.

The outline of the paper is as follows. In Sec. II we intro-
duce a model to describe a qubit inside a parametric amplifier
operating below threshold and show its equivalence to the JC-
Rabi model. The eigenvalues and eigenstates of the parametric
model are calculated. In Sec. III we simulate the absorption
spectrum of this system as probed by a weak coherent field.
The spectrum displays several peaks that are connected to
the eigenstates obtained before. We find a sharp peak whose
breath decreases as we delve deeper into the strong-coupling
regime. Section IV is used to describe the eigenstates that lead
to this peak. The states are shown to form a long-living pair
described by two-photon cat states conditioned to the state
of the qubit. Sections V and VI are left for discussion and
concluding remarks.

II. JC-RABI MODEL AND THE QUBIT INSIDE A
PARAMETRIC AMPLIFIER

In the proposed realization a qubit is placed inside a para-
metric cavity as sketched in Fig. 1(b). The cavity supports

two modes, labeled pump and subharmonic, that couple to
one another through a nonlinear material of second-order
susceptibility χ (2). We consider the pump mode to be highly
populated and treat it as a classical field of constant amplitude
G/2 and frequency ωp that drives the subharmonic mode via a
two-photon process [34]. In addition, the subharmonic mode
is coupled to a qubit with coupling strength λ under conditions
that allow for the dipole and rotating-wave approximations.

The master equation for the density operator of the qubit-
mode system ρ is

ρ̇ = −i[ĤG, ρ] + κL[â]ρ, (2)

where the parametric Hamiltonian reads

ĤG =ωcâ†â + ωaσ̂+σ̂− + λ(âσ̂+ + â†σ̂−)

+ 1
2 G(e2iωpt â2 + e−2iωpt â†2) , (3)

and the Lindblad superoperator L[ξ ]· = 2ξ · ξ † − ·ξ †ξ −
ξ †ξ · accounts for losses in the form of photons leaving the
subharmonic mode at a rate κ . The explicit time dependence
of Eq. (3) is removed inside an interaction picture where the
Hamiltonian becomes

ĤG = 
Gâ†â + 
aσ̂+σ̂− + λ(âσ̂+ + â†σ̂−)

+ 1
2 G(â2 + â†2), (4)

with detunings


G = ωc − ωp, (5)


a = ωa − ωp. (6)

A. Isomorphism between the JC-Rabi model and the qubit
inside a parametric amplifier

The two-photon pump is responsible for a process of opti-
cal amplification that has been studied in detail in the absence
of the qubit [35–37]. Its effect on the subharmonic mode is to
generate the squeezing transformation

Ŝ(z) = exp 1
2 (z∗â2 − zâ†2)

with parameter

z = 1

4
ln

[

G − G


G + G

]
. (7)

When a qubit is placed inside the parametric oscillator, it
couples to the now squeezed mode. The qubit then probes
the amplified quadratures of the field through rotating and
counter-rotating terms equivalent to those found inside the
JC-Rabi model. This allows the amplification process to con-
nect the model Hamiltonians (1) and (4) through the unitary
transformation

S (z)ĤGS†(z) = Ĥη + 1
2 (
c − ωG), (8)

with hyperbolic relations for the coupling strengths

cosh z = λ′/λ, (9a)

sinh z = ηλ′/λ, (9b)

and mode frequencies

ωc =
√


2
G − G2. (10)
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Equations (7)–(10) establish the isomorphism between the
JC-Rabi model and a qubit inside a parametric cavity. They
bring the ultrastrong-coupling regime within reach, as mode
and qubit frequencies are replaced by detunings to an external
field [33]. Equation (7), in particular, also sets up a limiting
pump amplitude Gthr = 
G where this isomorphism breaks
down. The eigenstates of the squeezing operator are discrete
and normalizable below this threshold and continuous and
non-normalizable above it [38–41]. While we have shown
the isomorphism below threshold, the non-normalizable states
represent an infinitely squeezed subharmonic mode whose
photon intensity grows without bounds. Depletion of the
pump is required to counteract this unphysical gain [34].
This term breaks the connection between the parametric and
the JC-Rabi models. Throughout this work we remain below
threshold where both models are isomorphic and we are able
to explore the JC-Rabi spectrum with η �= 1.

B. General properties of the eigenvalues and eigenstates
of ĤG and Ĥη

The eigenvalue problem according to Eq. (8) is

ĤG|ψβ〉 = Eβ |ψβ〉, (11)

Ĥη|φβ〉 = Ẽβ |φβ〉, (12)

where solutions to both models connect by

Eβ = Ẽβ + 1
2 (ωc − 
G), (13)

|ψβ〉 = S†(z)|φβ〉. (14)

Since the parametric Hamiltonian commutes with the par-
ity operator

�̂ = exp[iπ (â†â + σ̂+σ̂−)], (15)

its eigenstates are classified into branches of even and odd
parities according to the ±1 eigenvalues of �̂. All the bare
states within each branch are coupled to different orders in
the interaction due to the coexistence of coupling λ and two-
photon pump G in the Hamiltonian. This leads to eigenstates
of the form

∣∣ψeven
β

〉 =
∞∑

n=0

cβ;g,2n|g, 2n〉 + cβ;e,2n+1|e, 2n + 1〉, (16a)

∣∣ψodd
β

〉 =
∞∑

n=0

cβ;g,2n+1|g, 2n + 1〉 + cβ;e,2n|e, 2n〉, (16b)

with |g〉 and |e〉 the ground and excited states of the qubit, and
|n〉 (with n = 0, 1, . . . ) the photon number inside the mode.

The coupling among bare states of equal parities is re-
flected on the eigenvalue spectrum, which displays avoided
crossings between states of the same parity and crossings
between states of different parities. In Fig. 2 we plot the lowest
eigenvalues of ĤG as a function of the pump amplitude. The
results are obtained from numerical diagonalization using a
truncated photon number basis for the parameters 
a = 
G

and λ = 0.95
G. This places us deep into the strong-coupling
regime where crossings and avoided crossings of the spectrum
are readily observed for small pump amplitudes. The first

FIG. 2. Lowest eigenvalues of ĤG for λ = 0.95
G and 
a =

G. Red solid (blue dashed) lines denote states of even (odd) parity.

crossing is found at [19]

G = 1


a

√

2

G
2
a − λ4, (17)

where the two lowest energy states meet.
Changes in the spectrum with an increasing pump ampli-

tude are attributed to a redistribution of the photon number
population within each eigenstate. In Fig. 3 we plot the
populations |cβ;g,n|2 of the lowest-energy eigenstates for

FIG. 3. Photon number population |cβ;g,n|2 for the eigenstates of
lowest energy of ĤG using the parameters of Fig. 2 with pump:
G/
G = 0.2 (a), 0.4 (b), 0.6 (c), and 0.8 (d).
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different pump amplitudes with Eβ < Eβ+1. For the weak
two-photon pump (G � λ) the distributions tend to local-
ize around a given photon number. This is shown in panel
(a) where the populations resemble those of the Jaynes-
Cummings dressed states (|n,±〉 = |g, n〉 ± |e, n − 1〉). For
example, states with β = 2 and β = 5 form the first JC dou-
blet while β = 3 and β = 8 the second. As the pump is
increased in panel (b), the distributions broaden while keeping
the same parity. Ultimately, the populations distribute among
more and more photon numbers as shown in panels (c) and
(d).

C. Dressed states at the first energy crossing

It is remarkable that the photon distribution can be ob-
tained analytically at the first energy crossing [19–21]. In the
following we examine the eigenstates at this point using the
isomorphism between the JC-Rabi and parametric models.

Energy crossings signal a degeneracy in the system and
have been shown to occur in the JC-Rabi model at the regular
values [20]

Ẽcross(m) = mωc − (1 + η2)λ′2

2ωc
(18)

(m = 0, 1, . . . ) under specific conditions for the parameters
discussed in detail in Ref. [19]. The first crossing (m = 0) is
found under the condition

ωa = (1 − η2)λ′2/ωc, (19)

where the JC-Rabi Hamiltonian takes the simplified form

Ĥη = ωcÂ†Â − (1 + η2)λ′2

2ωc
. (20)

Here, Â† and Â are creation and annihilation operators repre-
sented by the matrices

Â = (Â†)† = 1

ωc

(
λ′ ωcâ

ωcâ ηλ′

)
, (21)

that obey the commutation relation [Â, Â†] = 12×2 and ac-
count for the correlations that rise between subharmonic mode
and qubit.

The degenerate ground states of Ĥη are readily obtained
from the eigenvalue equation

Â|φ〉 = 0

whose solutions lead to the dressed states

|φeven〉 = −|g〉|C+
α 〉 − √

η|e〉|C−
α 〉√

N+
, (22a)

|φodd〉 = −|g〉|C−
α 〉 − √

η|e〉|C+
α 〉√

N−
, (22b)

when diagonalized within the parity basis. States (22a) and
(22b) describe a field in a positive or negative cat state corre-
lated to the qubit state. Cat states can be written as

|C±
α 〉 = [D̂(α) ± D̂(−α)]|0〉, (23)

where D̂(α) = exp(−αâ† + α∗â) is the displacement operator
with amplitude

α = √
ηλ′/ωc, (24)

and the normalization N± reflects the overlap between the
coherent states forming each cat

N± = 2[(1 + η) ± e−2|α|2 (1 − η)]. (25)

It can already be seen that these dressed states play a
central role in the optical response of a system satisfying the
JC-Rabi model (see Sec. III below). The dressed states couple
exclusively to one another under one-photon transitions

â|φeven〉 = α

√
N−
N+

|φodd〉, (26a)

â|φodd〉 = α

√
N+
N−

|φeven〉, (26b)

thus forming a long-lived pair when we move into a dissipa-
tive setting.

The eigenstates of ĤG can also be obtained at the crossing
using Eqs. (13) and (22). The eigenstates take the form

|ψeven〉 = −|g〉|C̃+
α,z〉 − √

η|e〉|C̃−
α,z〉√

N+
, (27a)

|ψodd〉 = −|g〉|C̃−
α,z〉 − √

η|e〉|C̃+
α,z〉√

N−
, (27b)

where the field is described by a superposition of two-photon
coherent states [42,43]

|C̃±
α,z〉 = [S†(z)D̂(α) ± S†(z)D̂(−α)]|0〉. (28)

Due to the effect of the squeezing operator, these states couple
to states outside the pair under one-photon transitions. The
probability amplitude to remain inside the pair after is given
by

〈ψodd|â|ψeven〉√
〈ψeven|â†â|ψeven〉

= N−α cosh z − N+α∗ sinh z√
N−O+

, (29a)

〈ψeven|â|ψodd〉√
〈ψodd|â†â|ψodd〉

= N+α cosh z − N−α∗ sinh z√
N+O−

, (29b)

where

O± = N± sinh2 z + 1
2 (N+ + N−)|α cosh z − α∗ sinh z|2

∓ 1
2 (N+ − N−)|α cosh z + α∗ sinh z|2

is proportional to the photon number expectation within each
state.

III. PROBED SPECTRUM OF THE JC-RABI MODEL VIA
THE PARAMETRIC HAMILTONIAN

We now move on to simulate the energy spectrum of Fig. 2
as probed by a coherent beam with tunable frequency exciting
the subharmonic mode. The probe has an amplitude ε and is
detuned a frequency δ from the pump beam. Its effect over the
system dynamics is given through an additional term

Ĥprobe = ε(âeiδt + â†e−iδt ), (30)

inside the master equation (2).
For weak amplitudes (ε � G, λ) the probe creates one-

photon channels that couple two eigenstates |ψβ〉 and |ψβ ′ 〉
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FIG. 4. Resonance spectrum for 
a = 
G, λ = 0.95
G, and
κ = 0.1
G probed by a field of amplitude ε = 0.03
G. The lines
correspond to the same pump amplitudes as Fig. 3. Results are
displaced vertically to account for the background photon number
and allow for clarity of presentation.

of opposite parities separated by an energy difference 
E =
Eβ − Eβ ′ . The maximum transition probability is reached
when the resonance condition

δ = 
E

is met and is weighted by the transition matrix element
〈ψβ ′ |â|ψβ〉 between the states. Figures 2 and 3 provide a
reference for the energy separation and the matrix element,
respectively.

In Fig. 4 we plot the steady-state photon number expec-
tation obtained from a numerical evolution of the master
equation (2) with initial state |g, 0〉. The results are shown for
the (a)–(d) lines of Fig. 2 as probed by a weak coherent field
(ε � 0.03λ) inside the strong-coupling regime (κ � λ/10).
For each line we find several peaks that are traced back to
transitions between eigenstates β and β ′ of ĤG. We begin with
line (a) where the β = 1 to β ′ = 2 and β = 1 to β ′ = 5 tran-
sitions are resolved by two peaks separated a distance �2λ.
These transitions correspond to the JC doublet made available
by the weak pump amplitude G. We consider next line (b)
where an additional peak at δ � 0.7
G is resolved. The peak
corresponds to the β = 2 to β ′ = 3 transition and its appear-
ance is attributed to a broadening of the photon distributions
within these two eigenstates. The matrix element connecting
two states increases when the distributions broaden. In line
(c) the pump is further ramped up, leading to a peak around
δ � −0.5
G and a broadened line around δ � 0.5
G. The
peak at negative frequency corresponds to the β = 3 to β ′ = 1
transition and its sign follows from the large overlap between
|ψβ=3〉 and the initial state |g, 0〉. The broadened peak appears
as several transitions merge, e.g., the β = 2 to β = 4 (δ �
0.7
G) and β = 3 to β = 4 (δ � 0.25
G). Finally, in line (d)
we can see a combination of all these effects.

For stronger probe amplitudes ε it is possible to con-
nect states of the same parity through 2m-photon transitions
[44–46]. The mth photon transition probability is maximized
for the resonance condition

mδ = 
E .

In Fig. 5 we plot the absorption spectrum probed by a driving
field of ampliude ε � 0.12λ for the same parameters as Fig. 4.

FIG. 5. Resonance spectrum for the same system parameters as
Fig. 4 with probing field ε = 0.125
G. The maximum photon ex-
pectation reached in (d) is �2.165.

We begin with line (a) again, where additional peaks near
frequencies δ/
G � 0.3, 1.7 are resolved. These peaks cor-
respond to two-photon transitions between states of the same
parity (β = 1 to β ′ = 3 and β = 1 to β ′ = 8). Notice also a
peak at δ � 0.7
G corresponding to the one-photon transition
β = 2 to β ′ = 3. Two-photon transitions in line (b) can still
be resolved, as the peak around δ � 1.7
G corresponds to
the transition β = 1 to β ′ = 9. Since one-photon transitions
are power broadened by the intense probe, we are unable to
resolve other peaks. This is exemplified in lines (c) and (d)
where one-photon transitions dominate and lines resembling
those of Fig. 4 are found, albeit with increased amplitude due
to a stronger probe beam.

IV. GROUND STATES OUTSIDE THE ENERGY CROSSING:
ROLE OF DISSIPATIVE PROCESSES

We have shown that the JC-Rabi model is isomorphic to a
model Hamiltonian describing a qubit inside a parametric cav-
ity, a system that can be realized under current experimental
constraints. We have also simulated the absorption spectra of
this realizable system and connected the different resonance
peaks to transitions between eigenstates of the model Hamil-
tonian. In doing so we have shown how to probe the spectrum
of the JC-Rabi model. The next section is concerned with the
narrow peak found around δ = 0 in the absorption spectra of
Figs. 4 and 5. In particular, we are interested in the eigenstates
that lead to this peak. Over the next section we show that these
low-energy states resemble the dressed states of Eqs. (22)
and (27), even though the system is far away from the first
crossing. For this, we construct an ansatz |φans〉 based on the
dressed states and find that the system overlaps significantly
with this ansatz as it evolves in time.

The evolution is taken using quantum trajectories equiv-
alent to the master equation (2). In quantum trajectory
theory the density matrix ρ is replaced by an ensemble of
stochastic wave functions |ψc(t )〉 conditioned to a particular
measurement record. The wave functions evolve under the
Schrödinger equation

ih̄|ψ̇c(t )〉 = (ĤG − iκ â†â)|ψc(t )〉 (31)

and are interrupted by the action of the jump operator â when
a photoelectron is detected at times determined in a Monte
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Carlo fashion [34]. This allows us to see the changes in the
parity of the system each time a photoelectron is detected.

The results for the parametric model are to be compared
to those of the JC-Rabi model. This procedure brings to light
an important aspect of the current approach: the surrounding
environment is coupled to a particular set of modes. In the
parametric model the environment is coupled to the subhar-
monic mode of the cavity and the evolution is described by

ρ̇ = −i[ĤG, ρ] + κL[â]ρ. (32)

By comparison, in the JC-Rabi Hamiltonian generated
through coupled lambda transitions the master equation reads

ρ̇ = −i[Ĥη, ρ] + κL[â]ρ, (33)

and the environment is coupled to the cavity mode. While ĤG

and Ĥη are isomorphic, the master equations (32) and (33) are
not; there is a two-photon decay missing.

A. Ground states of the coupled lambda transitions

We begin with the JC-Rabi model where the system
evolves under Eq. (33) and propose the ansatz

|φeven〉 = −|g〉∣∣C+
αans

〉 − √
η|e〉∣∣C−

αans

〉
√
N+

, (34a)

|φodd〉 = −|g〉∣∣C−
αans

〉 − √
η|e〉∣∣C+

αans

〉
√
N−

. (34b)

These states have the same form as Eq. (22), but with cor-
rected field amplitudes

αans = √
ηλ′/(ωc + iκ ) (35)

to account for the decay rate and displacements from the
crossing. The ansatz is built from the stationary value of a
driven-damped harmonic oscillator and our observations of
different quantum trajectories. For convenience we define the
projector

P̂a = |φeven〉〈φeven| + |φodd〉〈φodd|, (36)

such that Pa = Tr[P̂a|φc〉〈φc|] gives the probability to find the
system inside the ansatz.

The probability Pa is plotted in Fig. 6(a) for a sample
quantum trajectory with initial state |φc(to)〉 = |g, 0〉 using
the parameters that lead to line (d) above. The probability
is decomposed into red squares and blue triangles that de-
note, respectively, the terms |〈φeven|φc〉|2 and |〈φodd|φc〉|2 of
Eq. (36). Notice that the conditioned wave function settles
near the ansatz states and changes its parity each time a
photoelectron is detected. The wave function also oscillates
between two detection events with a larger amplitude on the
even branch. This oscillation is caused by overlap between the
wave function and excited states outside the low-energy pair.
Excited states of even and odd parity overlap significantly
with |g, 0〉 (|e, 1〉) and |e, 0〉 (|g, 1〉) for this set of parameters
due to the low photon number expectation (〈â†â〉ss � 1.42),
such that the wave function is sent into a superposition of
ansatz and excited states after the detection of a photoelectron
that explains the oscillations seen in the figure.

FIG. 6. Validity of the state ansatz (34) for λ = 0.95
G, 
G =

a, κ = 0.1
G, and G = 0.8
G (equivalent to η � 0.5). (a) Prob-
abilities |〈φeven|φc〉|2 (red squares), |〈φodd|φc〉|2 (blue triangles), and
|〈e|φc〉|2 (yellow circles). (b),(c) Wigner distributions conditioned to
the ground and excited states of the qubit following a jump to a state
of odd parity. (d) Wigner distribution obtained from the steady state
of master equation (33).

These effects are reflected on the state of the qubit and
mode. The probability to find the qubit on the excited state is
displayed by yellow circles in Fig. 6 where it is seen to fluctu-
ate around two separate values. The large fluctuations denote a
change in the qubit as the wave function jumps between even
and odd subspaces, and signal the overlap between the two
coherent states forming each cat state [see N± in Eq. (34)].
This overlap can be visualized using the Wigner distribution
of the field

Wl (α, α∗) = 1

π2
Tr

[
ρl

∫
d2ξ eξ∗(α−â)−ξ (α∗−â† )

]
,

with l = {g, e} and ρl = Trq[|φc〉〈φc|l〉〈l|] the density matrix
of the field conditioned to the excited or ground states of the
qubit. The Wigner distributions are plotted in Figs. 6(b) and
6(c) after the system is driven to the odd subspace by the de-
tection of a photoelectron. In this example Wg is found inside
a negative cat state while We inside a positive cat state. Each
time the system changes parity the conditioned distributions
switch. By performing a time average over many of these
changes the interference fringes disappear and give way to the
statistical mixture shown in Fig. 6(d).

The ansatz remains valid as we move further away from the
energy crossing. In Fig. 7 we illustrate the case of η � 0.72
where the steady state displays a higher photon-number ex-
pectation. The amplitude of the oscillations outside the ansatz
is reduced in this case, as well as the fluctuations of the qubit
state. Since the probability of finding the systems in either
dressed state is not unity, fluctuations can still drive the system
outside the pair for relatively short times.
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FIG. 7. Validity of the state ansatz (34) for λ = 0.95
G, 
G =

a, κ = 0.1
G, and G = 0.95
G (equivalent to η � 0.72). (a) Prob-
abilities |〈φeven|φc〉|2 (red squares), |〈φodd|φc〉|2 (blue triangles), and
|〈e|φc〉|2 (yellow circles). (b),(c) Wigner distributions following a
jump to a state of even parity conditioned to the ground and excited
state of the qubit. (d) Wigner distribution obtained from the steady
state of master equation (33).

B. Qubit inside a parametric amplifier

The previous results explain the narrow resonance found
in Figs. 4 and 5. The conditioned wave function of the system
is composed predominantly of two dressed states that couple
to one another under one-photon transitions. This creates a
long-lived pair that displays a high degree of coherence and
manifests as a narrow resonance. We now extend the analysis
for the qubit inside a parametric amplifier using Eq. (32). In
this case the conditioned wave function is composed predom-
inantly of the states

|ψeven〉 = −|g〉|C̃+
α,z〉 − √

η|e〉|C̃−
α,z〉√

N+
, (37a)

|ψodd〉 = −|g〉|C̃−
α,z〉 − √

η|e〉|C̃+
α,z〉√

N−
. (37b)

We consider a qualitative description of the conditioned
wave function in the following, as two-photon coherent states
|C̃±

α,z〉 display changes in both squeezing factor z and ampli-
tude α when evolving under a quadratic Hamiltonian [42].
With an interplay between these two free parameters and the
uncertainty relation

〈0|D̂†(α)S(z)(
â)2S†(z)D̂(α)|0〉 = − cosh z sinh z (38)

it is challenging to determine the parameters for the corrected
field equivalent to Eq. (35).

In Fig. 8 we show the conditioned Wigner distributions
of the field after it is driven to a state of even parity by
detection of a photoelectron. The distributions are conditioned
to the ground and excited states of the qubit and show two-

FIG. 8. (a),(b) Wigner distributions following a jump to a state of
even parity conditioned to the ground and excited states of the qubit.
(c) Wigner distribution obtained from the steady state of master
equation (32).

photon coherent states. While the parameters z and α are not
characterized—they fluctuate as the wave function evolves—
the two distributions remain correlated at all times. The fact
that both distributions evolve as a correlated pair of two-
photon states means that they couple predominantly to one
another under Eq. (29) and explain the narrow peak.

V. DISCUSSION

By probing the spectrum of the qubit inside a parametric
amplifier—and by consequence that of the JC–Rabi model—
we have opened a window into the competing processes that
rule the dynamics for each model. This competition occurs
between (i) coupling strength λ and two-photon pump G for
the parametric model; and (ii) rotating terms λ′ and counter-
rotating terms ηλ′ for the JC-Rabi model. The competition is
apparent under a dissipative setting where the system settles
into a steady state that minimizes fluctuations related to the
dominating process and, for this system, manifests as a narrow
resonance line.

Take the parametric model as an example. In the absence
of a pump (G = 0) the eigenstates of ĤG are the Jaynes-
Cummings dressed states |n,±〉 = |g, n〉 ± |e, n − 1〉. These
eigenstates are organized into manifolds with a given excita-
tion number N̂ = â†â + σ̂+σ̂− such that, when dissipation is
considered, the system settles into the absolute ground state
at long times. By comparison, in the absence of the qubit
(λ = 0) the eigenstates of ĤG are squeezed states. It has
been discussed by Carmichael [47] that when dissipation is
taken into account the steady state of a parametric cavity with
adiabatic elimination of the pump takes the approximate form

ρss = 1
2 [peven|C+

α 〉〈C+
α | + podd|C−

α 〉〈C−
α |] (39)

in the limit of small system size when two-photon decay
dominates over single-photon decay. Cat states |C±

α 〉 are ubiq-
uitous in systems driven by two-photon processes, as they
are eigenstates of the parity ein̂ and two-photon annihilation
â2 operators [48–52]. By settling into this pair, the system
minimizes fluctuations of the two-photon operator. When both
pump and qubit are considered, the steady state settles into
a dressed state pair displaying a combination of these two
effects [see Eqs. (27a) and (27b)]. The combination was al-
ready apparent in Fig. 3 where the states transitioned from
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having a well-defined excitation number to having a broad
photon-number distribution as the pump was ramped up. It
is worth noticing that these general features appear in the
parametrically driven Kerr oscillator [50] where the effect of
the qubit is replaced by a nonlinear material.

The role of fluctuations in defining the steady state helps
to explain the structure of the lowest-energy states of both
the Jaynes-Cummings-Rabi model and the parametric model.
In particular, it helps to explain why the analytical structure
found at the energy crossing is mantained far away from
this point. Dressed states where the field is inside a cat state
conditioned to the state of the qubit are the natural way to
combine the two-excitation processes introduced by an exter-
nal drive and coupling between qubit and field. In addition,
the simplicity of the ansatz for the JC-Rabi model (and the
large overlap it displays with the ground state) suggest that an
analytical result can be obtained using a variational approach
with the amplitude α as a variational parameter. This is left for
future work.

VI. CONCLUSION

We have presented an isomorphism between a qubit in-
side a parametric amplifier and the Jaynes-Cummings-Rabi
model. The isomorphism brings the ultrastrong-coupling

regime within reach, as mode and qubit frequencies are
replaced by detunings to an external field and coupling
rates are managed by the amplitude of this field. We sim-
ulated a spectrum of this system as probed by a coherent
beam with a varying frequency. The peaks of the absorp-
tion spectrum were then connected to different transitions
among eigenstates of the model, thus showing how the JC-
Rabi spectrum can be probed under current experimental
settings.

Deep into the strong-coupling regime the spectrum dis-
plays a narrow peak whose breadth decreases as more photons
are injected into the subharmonic mode. The peak is attributed
to a transition between two low-energy states of the system. In
particular, we have shown that these states form a long-lived
pair under one-photon transitions such as those induced by
the probe and environment. The structure of this pair is kept
across the parameter space and provides a window into the
underlying processes that rule the JC-Rabi model.
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