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After propagating through a random amplifying medium, a squeezed state commonly shows excess noise
above the shot-noise level. Since large noise can significantly reduce the signal-to-noise ratio, it is detrimental
for precision measurement. To circumvent this problem, we propose a noise-reduction scheme using wave-front
shaping. It is demonstrated that the average output quantum noise can be effectively suppressed even beyond
the shot-noise limit. Both the decrease of amplification strength and the increase of input squeezing strength can
give rise to a decrease in the suppressed average quantum noise. Our results not only show the feasibility of
manipulating the output quantum noise of random amplifying media but also indicate potential applications in
quantum information processing in complex environments, such as quantum imaging, quantum communication,
and quantum key distribution.
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I. INTRODUCTION

The random medium exhibits unusual transmission prop-
erties which couples light into different channels randomly
by multiple scattering. Previously, light scattering was con-
sidered harmful, since it may distort the incident wave front
and result in a speckle pattern. Later, it is shown that light
scattering could also play a positive role in many applications.
For instance, (1) in imaging, it can improve the resolution by
overcoming the traditional diffraction limit, owing to the in-
creased effective aperture number by multiple scattering [1,2],
and (2) in optical communication, it provides the possibility
to increase the capacity by the raising number of scattered
modes that carry the information [3,4]. In addition, light
scattering can also be applied in other fields, such as secure
authentication [5,6], high-speed random number generators
[7,8], and programmable optical circuits [9,10]. Therefore,
light transport through random media has become an active
subject from both theoretical and experimental perspectives.

In particular, the random amplifying media (RAMs) have
attracted considerable attention because nonlinearity or ampli-
fication provides an additional degree of freedom for coherent
control of mesoscopic transport [11,12]. By adjusting the
amplification strength, one could conveniently manipulate the
transmission properties of light, which could benefit many
potential applications, such as random lasers [13–15].

Recently, coherent-state light propagation through a RAM
has been explored from different aspects. For example, Liew
et al. [12] investigated the effect of amplification on the
reflection properties. It was revealed that the amplifica-
tion could minimize the reflectance of the random medium
by destructive interference. Burkov et al. [16] studied the
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correlation of scattered light. It was demonstrated that the
angular correlation has a power-law decay and exhibits os-
cillations. Patra et al. [17] analyzed the quantum noise of
the scattered light. It was found that the output shows excess
noise related to the transmission and reflection matrices of the
medium for a coherent-state input.

As a typical nonclassical state, the squeezed state is of
importance since it possesses lower quantum noise in one
quadrature component than that of the coherent state (or
equivalently the shot noise) [18–21]. Therefore, the squeezed
state can enhance signal-to-noise ratio [22–24] and has been
utilized in different applications ranging from quantum imag-
ing [25,26] to gravitational wave detection [27–29].

However, the squeezed state suffers from an increase in
output quantum noise after propagating through a RAM [30]
[see Fig. 1(a)], which is induced by spontaneous emission
and multiple scattering. It is worth pointing out that for a
squeezed-state input, the input quantum noise is below the
shot-noise level (SNL), whereas the output noise is always
increased, even above the SNL. More interestingly, compared
with the coherent state, the squeezed state initially possessing
lower noise will have larger noise in the output [30]. As
is well known, the large noise leads to a decrease in the
signal-to-noise ratio, which is detrimental for precision de-
tection (e.g., high-resolution imaging). Therefore, we wonder
whether there exists a method to reduce the average output
noise for the squeezed-state input.

Wave-front shaping (WFS) is a promising technology for
optical focusing and imaging through random media [31–38],
which paves the way in manipulating the speckle pattern in an
expected manner. Experimentally, the WFS can be performed
by a spatial light modulator (SLM), as shown in Fig. 1(b).
The SLM acts as a reconfigurable matrix of pixels to imprint
desired phases on the incident wave front. In recent decades, it
has been extensively used in various optical applications, for
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FIG. 1. Quadrature fluctuation detection of beams transmitted through a random amplifying medium (a) in the absence of WFS and (b) in
the presence of WFS. âin

a′ (âin
b′ ) represent the annihilation operators of the input modes and âa (âb) the output modes. ĉin†

c′ denote the creation
operators of the spontaneous emission modes symbolized by the wavy dotted lines inside the media. The random amplifying medium, with the
transport mean free path l , thickness L, amplification length La, and number of transmission channels N , is composed of randomly distributed
small active particles for light scattering and amplification. In panel (a), when the beams are injected, the medium amplifies and separates
the light into different optical channels randomly. As a consequence, the output is in a speckle pattern. In panel (b), the medium amplifies
and couples the beams into the desired optical paths. Hence, the output presents an ordered pattern. The WFS, performed by a spatial light
modulator (SLM) in panel (b), controls the incident phase of light. In our scheme, the focus is on the quadrature of the scattered mode,
monitored by homodyne detection.

instance, quantum simulators [39], quantum data locking [40],
and high-resolution imaging [41,42]. In particular, WFS is
also a common technique in the optical authentication scheme
based on scattering medium [5,6].

In this work, we propose a noise-reduction scheme using
WFS for the case of squeezed-state light propagating through
RAMs. Comparing with Ref. [30], we exploit the technique of
WFS to reduce the output noise. In addition, the comparison
between the linear and amplifying cases is performed. It is
found that the amplifying media always have larger average
quantum noise than that of the linear ones regardless of WFS.
Besides, unlike the linear case where the suppressed quan-
tum fluctuation always reaches below the SNL, the reduced
quantum fluctuation can be either below or above the SNL
for the amplifying case. Moreover, we provide the condition
for the reduced average quantum fluctuation to reach below
the SNL.

This paper is organized as follows: In Sec. II, we briefly
describe the model of propagation of quantized light through
a RAM. Section III elucidates how the WFS suppresses the
average quantum fluctuation of output modes. In Sec. IV, we
compare the cases of amplifying and linear media. Section V
is devoted to the conclusion and summary of the main results.

II. THEORETICAL MODEL

Figure 1(a) illustrates the propagation of quantized light
through a RAM. Generally, a RAM consists of randomly
distributed scattering particles with amplification either in the
background medium or in the particles themselves. When
light propagates through a RAM, it would be multiply scat-
tered and amplified.

To quantitatively characterize the property of a RAM, three
kernel factors are introduced: the transport mean free path l ,
the thickness L, and the amplification length La [17]. Note
that, unlike the the linear media which have only two pri-
mary parameters (L and l) [43–46], RAMs require an extra
amplification length La = √

Dτa to account the nonlinearity
[17], where 1/τa is the amplification rate and D = cl/3 is the
diffusion constant (c the velocity of light in the medium).

A. Propagation of quantized light through a
random amplifying medium

After propagating through a RAM, the scattered mode b
can be expressed as [47]

âb =
N∑

a′=1

ta′bâin
a′ +

2N∑
b′=N+1

rb′bâin
b′ +

∑
c′

v∗
c′bĉin†

c′ , (1)

where âb indicates the annihilation operator of scattered mode
b, âin

a′ (âin
b′ ) are the annihilation operators of input modes on the

left-hand (right-hand) side of the RAM, ĉin†
c′ are the creation

operators of spontaneous emission modes inside the RAM,
ta′b (rb′b) are the transmission (reflection) coefficients from
the input modes a′ (b′) to the output mode b, v∗

c′b is the
connection between the spontaneous emission modes and the
output mode b, and N is the number of transmission channels.
Noticeably, the last term on the right-hand side in Eq. (1)
quantifies the spontaneous emission inside the RAM, with c′
running over “objects” (e.g., atoms or molecules) and the op-
erator ĉin†

c′ fulfilling the commutation relation [ĉin
i , ĉin†

j ] = δi j .
Unlike the random linear medium with only transmission

and reflection coefficients (ta′b, rb′b), the RAM involves an
additional spontaneous emission coefficient (v∗

c′b), which is
subject to a constraint

∑
a′ |ta′b|2 + ∑

b′ |rb′b|2 − ∑
c′ |v∗

c′b|2 =
1 (see Appendix A). The ensemble-averaged transmission,
reflection, and spontaneous-emission coefficients are given
by [47]

Ta′b = 1

N

sin(l/La)

sin(L/La)
, (2)

Rb′b = 1

N

sin[(L − l )/La]

sin(L/La)
, (3)

Vb = sin(l/La) + sin[(L − l )/La]

sin(L/La)
− 1, (4)

where Ta′b = |ta′b|2, Rb′b = |rb′b|2, Vb = ∑
c′ Vc′b =∑

c′ |vc′b|2, and the overline stands for the average over
the ensemble of disorder realizations. Note that Ta′b, Rb′b, and
Vc′b diverge at L/La = π , which is identify as a threshold for
random laser emission. Clearly, this analytical method based
on Eq. (1) can only be applied below the laser threshold (i.e.,
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L/La < π ). If L/La is infinitely small (i.e., L/La → 0),
Eqs. (2)–(4) can be rewritten as Ta′b = [1/(L/l )]/N ,
Rb′b = [1 − 1/(L/l )]/N , and Vb = 0, respectively, which
are exactly the same as the coefficients for the linear case
[48]. Evidently, this generalized model is suitable for both the
amplifying and linear cases.

The quadrature operators are introduced as x̂ = â† + â and
p̂ = i(â† − â). According to Eq. (1), the quadrature operators
of scattered mode b are then written as

x̂b =
∑

a′

√
Ta′b

[
cos φa′bx̂in

a′ − sin φa′b p̂in
a′
]

+
∑

b′

√
Rb′b

[
cos φb′bx̂in

b′ − sin φb′b p̂in
b′
]

+
∑

c′

√
Vc′b

[
cos φc′bx̂in

c′ − sin φc′b p̂in
c′
]
, (5)

p̂b =
∑

a′

√
Ta′b

[
sin φa′bx̂in

a′ + cos φa′b p̂in
a′
]

+
∑

b′

√
Rb′b

[
sin φb′bx̂in

b′ + cos φb′b p̂in
b′
]

−
∑

c′

√
Vc′b

[
sin φc′bx̂in

c′ + cos φc′b p̂in
c′
]
, (6)

where we have defined ta′b = √
Ta′beiφa′b , rb′b = √

Rb′beiφb′b ,
v∗

c′b = √
Vc′be−iφc′b , x̂in

c′ = ĉin†
c′ + ĉin

c′ , and p̂in
c′ = i(ĉin†

c′ − ĉin
c′ ).

B. Modified propagation via wave-front shaping

In this work, we consider the situation of optical focusing
through a random medium with WFS. In such a case, the ex-
pected phases, φSLM

a′ = −φa′b (a′ = 1, 2, ..., N ) are imprinted
on the incident wave front via WFS where the output mode
b corresponds to the focused beam. This phase modulator
exactly compensates the phase retardation in the RAM for
each transmission channel which leads to a constructive in-
terference in the output mode b. Correspondingly, the initial
input-output relation in Eq. (1) is modified as

âw
b =

N∑
a′=1

|ta′b|âin
a′ +

2N∑
b′=N+1

rb′bâin
b′ +

∑
c′

v∗
c′bĉin†

c′ , (7)

where the superscript w stands for WFS and |ta′b| takes the
place of the original complex transmission coefficient ta′b.

By taking into account the WFS, based on Eq. (7), the
quadrature operators of the scattered mode b now become

x̂w
b =

∑
a′

√
Ta′bx̂in

a′ +
∑

b′

√
Rb′b

[
cos φb′bx̂in

b′ − sin φb′b p̂in
b′
]

+
∑

c′

√
Vc′b

[
cos φc′bx̂in

c′ − sin φc′b p̂in
c′
]
, (8)

p̂w
b =

∑
a′

√
Ta′b p̂in

a′ +
∑

b′

√
Rb′b

[
cos φb′b p̂in

b′ + sin φb′bx̂in
b′
]

+
∑

c′

√
Vc′b

[
cos φc′b p̂in

c′ + sin φc′bx̂in
c′
]
. (9)

Note in passing that our scheme can be realized with a
similar experimental setup, as shown in Refs. [49–51]. Nev-
ertheless, those works mainly focus on the enhanced intensity

in the speckle pattern, whereas our work will concentrate on
the reduced quantum noise of scattered modes.

III. VARIANCE OF QUADRATURE OF
THE SCATTERED MODES

The variance of operator Ô is defined as

〈(�Ô)2〉 ≡ 〈Ô2〉 − 〈Ô〉2, (10)

where Ô = x̂w
b , p̂w

b , and 〈Ô〉 denotes the expectation value of
Ô. That is to say, to obtain the variances, it requires us to
calculate 〈x̂w

b 〉, 〈p̂w
b 〉, 〈(x̂w

b )2〉, and 〈( p̂w
b )2〉.

Assume that the light is only injected on the left-hand side
of the RAM [see Fig. 1(b)] and the input beams of the other
side are vacuum states (i.e., 〈x̂in

b′ 〉 = 〈p̂in
b′ 〉 = 0). According to

Eqs. (8) and (9), the expectation values of x̂w
b and p̂w

b can be
obtained: 〈

x̂w
b

〉 =
∑

a′

√
Ta′b

〈
x̂in

a′
〉
, (11)

〈
p̂w

b

〉 =
∑

a′

√
Ta′b

〈
p̂in

a′
〉
. (12)

Note that 〈x̂w
b 〉 (〈p̂w

b 〉) is only related to the transmitted modes
〈x̂in

a′ 〉 (〈p̂in
a′ 〉).

Similarly, from Eqs. (8) and (9), the expectation values of
(x̂w

b )2 and ( p̂w
b )2 are found to be〈(

x̂w
b

)2〉 =
∑
a′a′′

√
Ta′bTa′′b

[〈
x̂in

a′ x̂in
a′′

〉]

+
∑

b′
Rb′b

[
cos2 φb′b

〈
x̂in2

b′
〉 + sin2 φb′b

〈
p̂in2

b′
〉

− cos φb′b sin φb′b
〈
x̂in

b′ p̂in
b′ + p̂in

b′ x̂in
b′
〉]

+
∑

c′
Vc′b

[
cos2 φc′b

〈
x̂in2

c′ 〉 + sin2 φc′b〈p̂in2
c′

〉

− cos φc′b sin φc′b
〈
x̂in

c′ p̂in
c′ + p̂in

c′ x̂in
c′
〉]
, (13)

〈(
p̂w

b

)2〉 =
∑
a′a′′

√
Ta′bTa′′b

[〈
p̂in

a′ p̂in
a′′

〉]

+
∑

b′
Rb′b

[
cos2 φb′b

〈
p̂in2

b′
〉 + sin2 φb′b

〈
x̂in2

b′
〉

+ cos φb′b sin φb′b
〈
x̂in

b′ p̂in
b′ + p̂in

b′ x̂in
b′
〉]

+
∑

c′
Vc′b

[
cos2 φc′b

〈
p̂in2

c′
〉 + sin2 φc′b

〈
x̂in2

c′
〉

+ cos φc′b sin φc′b
〈
x̂in

c′ p̂in
c′ + p̂in

c′ x̂in
c′
〉]
, (14)

which are universal for arbitrary input state.
Inserting Eqs. (11) and (13) into Eq. (10) yields the vari-

ance 〈(�x̂w
b )2〉 as

〈(
�x̂w

b

)2〉 =
∑

a′
Ta′b

〈(
�x̂in

a′
)2〉

+
∑
a′ 	=a′′

2
√

Ta′bTa′′b
[
cov

(
x̂in

a′ , x̂in
a′′

)]

+
∑

b′
Rb′b

[
cos2 φb′b

〈(
�x̂in

b′
)2〉
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+ sin2 φb′b
〈(
�p̂in

b′
)2〉

−2 cos φb′b sin φb′bcov
(
x̂in

b′ , p̂in
b′
)]

+
∑

c′
Vc′b

[
cos2 φc′b

〈(
�x̂in

c′
)2〉

+ sin2 φc′b
〈(
�p̂in

c′
)2〉

−2 cos φc′b sin φc′bcov
(
x̂in

c′ , p̂in
c′
)]

, (15)

where the covariance function is defined as cov(Ŷ , Ẑ ) ≡
1
2 (〈Ŷ Ẑ〉 + 〈ẐŶ 〉) − 〈Ŷ 〉〈Ẑ〉.

By averaging over the ensemble of RAMs, we obtain

〈(
�x̂w

b

)2〉 =
∑

a′
Ta′b

〈(
�x̂in

a′
)2〉

+
∑
a′ 	=a′′

2
√

Ta′bTa′′bcov
(
x̂in

a′ , x̂in
a′′

)

+
∑

b′

1

2
Rb′b

[〈(
�x̂in

b′
)2〉 + 〈(

�p̂in
b′
)2〉]

+
∑

c′

1

2
Vc′b

[〈(
�x̂in

c′
)2〉 + 〈(

�p̂in
c′
)2〉]

, (16)

where we have used sin2 φb′b = sin2 φc′b = cos2 φb′b =
cos2 φc′b = 1/2 and cos φb′b sin φb′b = cos φc′b sin φc′b = 0
[52].

Consider squeezed states as input (|� in〉 =
[D̂(α)Ŝ(r)|0〉]⊗N ), with the number of transmission
channels N , displacement operator D̂(α) = eαâ†−α∗â, and
squeezing operator Ŝ(r) = e(r/2)(â†2−â2 ) (complex number
α being the amplitude and real number r being the
squeezing parameter). One can obtain 〈(�x̂in

a′ )
2〉 = e−2r ,

〈(�x̂in
b′ )2〉 = 〈(�p̂in

b′ )2〉 = 〈(�x̂in
c′ )2〉 = 〈(�p̂in

c′ )2〉 = 1, and
cov(x̂in

a′ , x̂in
a′′ )|a′ 	=a′′ = 0. Straightforwardly, Eq. (16) can be

simplified to

〈(
�x̂w

b

)2〉
sqz = 2Vb + 1 − Tb(1 − e−2r ), (17)

since Tb + Rb − Vb = 1 (see Appendix A). It is obvious that
with the increase of r, the modified average quantum fluctua-
tion in Eq. (17) decreases for a given RAM.

Consider r = 0 (i.e., the coherent-state input), Eq. (17) is

then reduced to 〈(�x̂w
b )

2〉sqz→coh = 2Vb + 1. For convenience,
one can rewrite Eq. (17) as

〈(
�x̂w

b

)2〉
sqz = 〈(

�x̂w
b

)2〉
coh − Tb(1 − e−2r ), (18)

where 〈(�x̂w
b )

2〉coh ≡ 2Vb + 1. One can find that

〈(�x̂w
b )

2〉sqz < 〈(�x̂w
b )

2〉coh always succeeds when r > 0,
which indicates that with WFS, the squeezed state has lower
average output noise than that of the coherent state.

For comparison, we calculate the average quantum fluctu-
ation in the absence of WFS,

〈(�x̂b)2〉sqz = 〈(�x̂b)2〉coh + Tb[cosh(2r) − 1], (19)

where 〈(�x̂b)2〉coh ≡ 2Vb + 1 represents the average quantum
fluctuation of the scattered light in the absence of WFS with
the coherent-state input. The detailed derivation is present in
Appendix B.

Comparing Eqs. (18) and (19), one can extract the dif-
ference between the average quantum fluctuations with and
without WFS

〈(�x̂b)2〉sqz − 〈(
�x̂w

b

)2〉
sqz = Tb sinh(2r), (20)

since 〈(�x̂b)2〉coh = 〈(�x̂w
b )

2〉coh is used. Figure 2(a) [2(b)]

depicts the difference between 〈(�x̂b)2〉 and 〈(�x̂w
b )

2〉 as a
function of L/La and r [L/La and L/l]. It is found that the
difference is always larger than zero for a squeezed-state input
(r > 0), which implies that the WFS can reduce the average
quantum fluctuation in the presence of a squeezed-state input.

For convenience, we introduce the rescaled average quan-
tum fluctuation,

Rθ = 〈(�θ )2〉sqz/〈(�θ )2〉coh, (21)

where θ = x̂b, x̂w
b . Figure 3 compares the rescaled average

quantum fluctuations Rθ with and without WFS as a function
of r [(a), (b)] and L/La [(c), (d)]. In Figs. 3(a)–3(d), the curves
with the triangle marks denote the situations without WFS
whereas those without the triangle marks (except for the gray
dashed line) represent the cases with WFS. The gray dashed
line stands for the average output noise for the coherent-state
input.

As shown in Figs. 3(a)–3(d), the purple solid, red dashed,
and blue dashed lines without triangle marks are always below
their corresponding lines with triangle marks when r > 0.
This implies that the WFS can always reduce the average
quantum noise for the squeezed-state input.

IV. COMPARISON AND DISCUSSION

A. The suppressed and increased average quantum fluctuations

One important aspect neglected so far is the quadrature p̂w
b .

Similar to x̂w
b , the average quantum fluctuation of p̂w

b can be
cast into

〈(
� p̂w

b

)2〉
sqz = 〈(

� p̂w
b

)2〉
coh + Tb(e2r − 1), (22)

where 〈(� p̂w
b )2〉coh = 2Vb + 1 means the average output quan-

tum fluctuation for the coherent-state input. Meanwhile, the
average quantum fluctuation of p̂b in the absence of WFS is
found to be

〈(� p̂b)2〉sqz = 〈(� p̂b)2〉coh + Tb[cosh(2r) − 1], (23)

where 〈(� p̂b)2〉coh = 2Vb + 1 represents the case of the
coherent-state input.

Figures 4(a) and 4(b) compare the average quantum fluc-
tuations between x̂ and p̂ with and without WFS. Figure 4(a)
plots the average quantum fluctuations as a function of r. The
blue dot-dashed line with (without) triangle marks represents
the case of x̂b (x̂w

b ) while the red dashed line with (without)
square marks denotes the case of p̂b ( p̂w

b ). The gray dashed line
stands for the average quantum noise for the coherent-state
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FIG. 2. The difference between 〈(�x̂b)2〉 and 〈(�x̂w
b )

2〉 as a function of (a) r and L/La, and (b) L/l and L/La, in the presence of a
squeezed-state input (|� in〉 = [D̂(α)Ŝ(r)|0〉]⊗N ), with the number of transmission channels N , displacement operator D̂(α) = eαâ†−α∗ â, and
squeezing operator Ŝ(r) = e(r/2)(â†2−â2 ) (the complex number α being the amplitude and the real number r the squeezing parameter). Parameters
used are (a) L/l = 6 and (b) r = 1.5.

input. It is easy to find that with the increase of r, 〈(�x̂w
b )2〉 de-

creases, whereas 〈(�x̂b)2〉, 〈(�p̂b)2〉, and 〈(�p̂w
b )2〉 increase.

In the absence of WFS, the average quantum fluctuations of x̂b

and p̂b coincide with each other. Intriguingly, in the presence
of WFS, the average quantum fluctuation of x̂w

b is smaller
than that of x̂b whereas the average quantum fluctuation of p̂w

b
becomes larger than that of p̂b, which yields that the WFS
leads to a decrease in the average quantum fluctuation of
x̂ but an increase in that of p̂. In the absence of WFS, the

squeezed light experiences random phases when propagating
through the RAM. This means that both x̂b and p̂b will be
the mixture of the squeezing, antisqueezing, and quadrature
components in various orientations of the original squeezed
light, which leads to the same fluctuation for both quadratures.
On the other hand, the WFS removes these random phases,
which results in x̂w

b and p̂w
b retaining the original quadrature

of the squeezed light, with additional noise added from the
spontaneous emission.

FIG. 3. The rescaled average quantum fluctuations Rθ (θ = x̂b, x̂w
b ) vs r [(a), (b)] and L/La [(c), (d)]. The curves with the triangle marks

denote the situation without WFS while the ones without the triangle marks (except for the dashed gray line) represent the situation with WFS.
The gray dashed line stands for the average output noise with the coherent-state input. Parameters used are (a) L/La = 2.5, (b) L/l = 10,
(c) L/l = 10, and (d) r = 1.
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FIG. 4. The average quantum fluctuations 〈(�θ )2〉 (θ = x̂b, p̂b, x̂w
b , or p̂w

b ) vs (a) r and (b) L/La. The curves with the triangle (square)
marks denote the situation of θ = x̂b (θ = p̂b) while the blue dash-dotted (red dashed) line represents the situation of θ = x̂w

b (θ = p̂w
b ). The

gray dashed line labeled “coherent” stands for the average output noise for the coherent-state input. Parameters used are (a) L/La = 2.5,
L/l = 10 and (b) r = 0.7, L/l = 10.

Figure 4(b) depicts the average quantum fluctuations as
a function of L/La. It can be seen that as L/La increases,
〈(�x̂b)2〉, 〈(�x̂w

b )2〉, 〈(�p̂b)2〉, and 〈(�p̂w
b )2〉 increase. No-

tably, 〈(�x̂w
b )

2〉 is still below the gray dashed line, which
indicates that the squeezed state has lower average out-
put quantum noise than that of the coherent state with
WFS.

B. Comparison between the amplifying and linear cases

To give insight into the effects of nonlinearity on the sup-
pressed quantum noise, we compare the amplifying and linear
situations. By setting La → ∞ (i.e., L/La → 0 and Vb = 0,
amplifying effects vanishing), based on Eqs. (17) and (19), the
average quantum fluctuations in linear cases with and without
WFS can be expressed as

〈(
�x̂w

b

)2〉
sqz,lin = 1 − Tb(1 − e−2r ), (24)

〈(�x̂b)2〉sqz,lin = 1 + Tb[cosh(2r) − 1], (25)

respectively, which is consistent with our previous work [46].
Figure 5 shows the average output quantum fluctuations

〈(�x̂)2〉sqz (x̂ = x̂b, x̂w
b ) versus (a) r and (b) L/l . The blue

triangle-marked dashed, blue dashed, red triangle-marked

solid, red solid, and gray dot-dashed curves denote the cases
of amplifying media without WFS, amplifying ones with
WFS, linear ones without WFS, linear ones with WFS, and
the SNL, respectively.

In Fig. 5(a), with the increasing of r, the average out-
put quantum noise without WFS increases, whereas the one
with WFS decreases. This is due to the fact that the average
output quantum noise without WFS is related to the input
quantum noise, which encompasses not only the noise of
squeezed quadrature (〈(�x̂in

a′ )
2〉 = e−2r) but also the noise of

antisqueezed quadrature (〈(� p̂in
a′ )2〉 = e2r). When r becomes

large, the maximum noise ascends steeply, which provokes
the increase of the average output quantum noise. By contrast,
the average output quantum noise with WFS is related to the
input quantum noise, which includes only the squeezed noise
(〈(�x̂in

a′ )
2〉 = e−2r). The noise of the antisqueezed quadrature

〈(� p̂in
a′ )2〉 = e2r disappears owning to the destructive interfer-

ence of quantum noise [46,53]. With the increase of r, the
squeezed noise (〈(�x̂in

a′ )
2〉 = e−2r) decreases, which gives rise

to a decrease in the average output quantum noise. Figure 5(b)
shows the average output noise as a function of L/l . It is
obvious that with the increase of L/l , the average output noise
without WFS decreases, whereas the average output noise
with WFS increases.

FIG. 5. The average output quantum fluctuations 〈(�x̂)2〉sqz (x̂ = x̂b, x̂w
b ) vs (a) r and (b) L/l . The blue triangle-marked dashed, blue

dashed, red triangle-marked solid, red solid, and gray dash-dotted curves denote the cases of amplifying media without WFS, amplifying ones
with WFS, linear ones without WFS, linear ones with WFS, and the shot noise, respectively. Parameters used are (a) L/La = 1, L/l = 2 for
amplifying media and L/La = 0, L/l = 2 for linear ones, and (b) L/La = 1, r = 1 for amplifying ones and L/La = 0, r = 1 for linear ones.
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From Figs. 5(a) and 5(b), it is found that WFS can reduce
the average quantum fluctuation in both linear and amplifying
cases. Nevertheless, unlike the linear case (L/l = 0, solid
lines) where the suppressed quantum noise can always reach
below the SNL, the reduced average quantum noise can be
either below or above the SNL for the amplifying case.

The phenomenon can be explained as follows: Initially,
the linear situation without WFS shows the excess noise re-
sulting from multiple scattering. In contrast, the amplifying
case without WFS presents the excess noise induced by not
only multiple scattering but also nonlinear amplification. The
WFS can effectively reduce the excess noise from multiple
scattering rather than amplification. As a result, for the linear
case, the excess noise is well suppressed below the SNL via
WFS. Nevertheless, for the amplifying case, the excess noise
can be reduced below the SNL only if the multiple scatter-
ing dominates (i.e., weak amplification strength). It is worth
noting that the excess noise from amplification can be catego-
rized into two types: one from spontaneous emission and the
other one from stimulated emission. Although the WFS is not
able to reduce the noise due to spontaneous emission, it can
still effectively suppress the one from stimulated emission.
Therefore, the WFS could still reduce the output average noise
below the SNL in some certain condition for the amplifying
case.

C. The condition for the suppressed quantum fluctuations to
achieve below the SNL

Subshot noise of light belongs to the most prominent non-
classical trait. Nevertheless, the suppressed average quantum
noise cannot always reach below the SNL for the amplifying
case. We shall now discuss the condition for the suppressed
average quantum noise to achieve below the SNL. Assuming
that the suppressed average quantum noise reaches below the

SNL (i.e., 〈(�x̂w
b )

2〉sqz < 1), from Eq. (17), one has

2Vb − Tb(1 − e−2r ) < 0. (26)

Combined with Eqs. (2) and (4), Eq. (26) can be rewrit-
ten as

sin

(
l

La

)
(1 + e−2r ) + 2 sin

(
L − l

La

)
− 2 sin

(
L

La

)
< 0.

(27)

The solution is found to be

L/La < arcsin M+, (28)

where the detailed derivation is shown in Appendix C, M+ =
[mn + √

4m2 − n2 + 4]/[2(m2 + 1)] with n = 1 + e−2r , m =
(1 −

√
1 − p2)/p, and p = sin(l/La). Figure 6 intuitively il-

lustrates the solution in Eq. (28), where for simplicity we
consider the situation of the large squeezing strength (e−2r →
0) [54]. The colored region allows 〈(�x̂w

b )
2〉sqz to reach below

the SNL. It is obvious that this condition requires a weak am-
plification strength. This is because the WFS can effectively
reduce the excess noise induced by multiple scattering but not
amplification.

FIG. 6. The region for the suppressed average quantum fluctua-
tion to reach below the SNL. Parameter: e−2r → 0.

V. CONCLUSION

In summary, we investigate the effect of wave-front shap-
ing on the average quantum noise of scattered modes in
the random amplifying media. It is demonstrated that wave-
front shaping offers the ability to reduce the average output
quantum noise for a squeezed-state input. Particularly, the
wave-front shaping can effectively suppress the excess noise
resulting from multiple scattering but not amplification. This
reduction is owing to the destructive interference of quantum
noise. In addition, both the decrease on amplification strength
and the increase on the input squeezing strength can lead to a
decrease in the suppressed average noise.

It is found that unlike the linear media where the sup-
pressed average quantum noise is always below the shot-noise
level, the reduced average quantum noise can be either below
or above the shot-noise level for the amplifying case. More-
over, we provide the condition for the suppressed noise to
achieve below the shot-noise level which requires the ampli-
fication strength to be weak. Our results may have potential
implications in quantum information processing, such as high-
resolution imaging and optical authentication. For instance,
in the authentication system based on scattering medium
[5,6], the most vital process involves light focusing through
a random medium with the help of WFS. Our work might
contribute to design this kind of authentication schemes with
squeezed-state input.
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APPENDIX A: DERIVATION OF THE SUMMATION OF
TRANSMISSION, REFLECTION, AND SPONTANEOUS

EMISSION COEFFICIENTS

The input-output relation of a random amplifying medium
is given by

â†
b =

∑
a′

t∗
a′bâin†

a′ +
∑

b′
r∗

b′bâin†
b +

∑
c′

v∗
c′bĉin

c′ ,

(A1)
âb =

∑
a′

ta′bâin
a′ +

∑
b′

rb′bâin
b′ +

∑
c′

v∗
c′bĉin†

c′ ,

where t∗
a′b (r∗

b′b, v∗
c′b) is the conjugate of ta′b (rb′b, vc′b). Accord-

ing to the commutation relation [âb, â†
b] = 1, one can easily

obtain ∑
a′

|ta′b|2 +
∑

b′
|rb′b|2 −

∑
c′

|vc′b|2 = 1, (A2)

where [âin
i , âin†

j ] = δi j (i, j = a′, b′) has been used. Let
Tb = ∑

a′ |ta′b|2, Rb = ∑
b′ |rb′b|2, and Vb = ∑

c′ |vc′b|2. Equa-
tion (A2) can be then rewritten as Tb + Rb − Vb = 1.

APPENDIX B: AVERAGE QUANTUM FLUCTUATION OF
THE SCATTERED LIGHT IN THE ABSENCE OF WFS

The variance of x̂b without WFS is given by

〈(�x̂b)2〉 = 〈
x̂2

b

〉 − 〈x̂b〉2. (B1)

To obtain the variance 〈(�x̂b)2〉, it is necessary to calculate
〈x̂b〉 and 〈x̂2

b〉.
In the absence of WFS, the mean value of x̂b in Eq. (5) is

found to be

〈x̂b〉 = ∑
a′

√
Ta′b

[
cos φa′b

〈
x̂in

a′
〉 − sin φa′b

〈
p̂in

a′
〉]
, (B2)

According to Eq. (5), x̂2
b can be obtained:

x̂2
b =

∑
a′a′′

√
Ta′bTa′′b

[
cos φa′b cos φa′′bx̂in

a′ x̂in
a′′ + sin φa′b sin φa′′b p̂in

a′ p̂in
a′′ − cos φa′b sin φa′′bx̂in

a′ p̂in
a′′ − sin φa′b cos φa′′b p̂in

a′ x̂in
a′′

]

+
∑
b′b′′

√
Rb′bRb′′b

[
cos φb′b cos φb′′bx̂in

b′ x̂in
b′′ + sin φb′b sin φb′′b p̂in

b′ p̂in
b′′ − cos φb′b sin φb′′bx̂in

b′ p̂in
b′′ − sin φb′b cos φb′′b p̂in

b′ x̂in
b′′

]

+
∑
c′c′′

√
Vc′bVc′′b

[
cos φc′b cos φc′′bx̂in

c′ x̂in
c′′ + sin φc′b sin φc′′b p̂in

c′ p̂in
c′′ − cos φc′b sin φc′′bx̂in

c′ p̂in
c′′ − sin φc′b cos φc′′b p̂in

c′ x̂in
c′′

]

+
∑
a′b′

2
√

Ta′bRb′b
{[

cos φa′bx̂in
a′ − sin φa′b p̂in

a′
][

cos φb′bx̂in
b′ − sin φb′b p̂in

b′
]}

+
∑
a′c′

2
√

Ta′bVc′b
{[

cos φa′bx̂in
a′ − sin φa′b p̂in

a′
][

cos φc′bx̂in
c′ − sin φc′b p̂in

c′
]}

+
∑
b′c′

2
√

Rb′bVc′b
{[

cos φb′bx̂in
b′ − sin φb′b p̂in

b′
][

cos φc′bx̂in
c′ − sin φc′b p̂in

c′
]}

. (B3)

Then 〈x̂2
b〉 is found to be

〈
x̂2

b

〉 =
∑
a′a′′

√
Ta′bTa′′b

[
cos φa′b cos φa′′b

〈
x̂in

a′ x̂in
a′′

〉 + sin φa′b sin φa′′b
〈
p̂in

a′ p̂in
a′′

〉 − cos φa′b sin φa′′b
〈
x̂in

a′ p̂in
a′′

〉 − sin φa′b cos φa′′b
〈
p̂in

a′ x̂in
a′′

〉]

+
∑

b′
Rb′b

[
cos2 φb′b

〈
x̂in2

b′
〉 + sin2 φb′b

〈
p̂in2

b′
〉 − cos φb′b sin φb′b

〈
x̂in

b′ p̂in
b′ + p̂in

b′ x̂in
b′
〉]

+
∑

c′
Vc′b

[
cos2 φc′b

〈
x̂in2

c′
〉 + sin2 φc′b

〈
p̂in2

c′
〉 − cos φc′b sin φc′b

〈
x̂in

c′ p̂in
c′ + p̂in

c′ x̂in
c′
〉]
. (B4)

The variance is then expressed as

〈(�x̂b)2〉 =
∑

a′
Ta′b

[
cos2 φa′b

〈(
�x̂in

a′
)2〉 + sin2 φa′b

〈(
� p̂in

a′
)2〉 − 2 cos φa′b sin φa′bcov

(
x̂in

a′ , p̂in
a′
)]

+
∑

b′
Rb′b

[
cos2 φb′b

〈(
�x̂in

b′
)2〉 + sin2 φb′b

〈(
� p̂in

b′
)2〉 − 2 cos φb′b sin φb′bcov

(
x̂in

b′ , p̂in
b′
)]

+
∑

c′
Vc′b

[
cos2 φc′b

〈(
�x̂in

c′
)2〉 + sin2 φc′b

〈(
� p̂in

c′
)2〉 − 2 cos φc′b sin φc′bcov

(
x̂in

c′ , p̂in
c′
)]

+
∑
a′ 	=a′′

{√
Ta′bTa′′b

[
2 cos φa′b cos φa′′bcov

(
x̂in

a′ , x̂in
a′′

) + 2 sin φa′b sin φa′′bcov
(
p̂in

a′ , x̂in
a′′

)

− 2 cos φa′b sin φa′′bcov
(
x̂in

a′ , p̂in
a′′

)]}
, (B5)

where the covariance fuction is defined as cov(Ŷ , Ẑ ) ≡ 1
2 (〈Ŷ Ẑ〉 + 〈ẐŶ 〉) − 〈Ŷ 〉〈Ẑ〉.
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Consider the squeezed state as input (|� in〉 = [D̂(α)Ŝ(r)|0〉]⊗N ); by averaging over realizations of disorder, Eq. (B5) can be
simplified as

〈(�x̂b)2〉sqz = 1
2 Tb

[〈(
�x̂in

a′
)2〉 + 〈(

� p̂in
a′
)2〉] + Rb + Vb

= 2Vb + 1 + Tb[cosh(2r) − 1]. (B6)

When the input is the coherent state (i.e., r = 0), Eq. (B6) can
be cast into

〈(�x̂b)2〉coh = 2Vb + 1. (B7)

APPENDIX C: DERIVATION OF EQ. (28)

Inserting Eqs. (2) and (4) into (26) gives

sin

(
l

La

)
(1 + e−2r ) + 2 sin

(
L − l

La

)
− 2 sin

( L

La

)
< 0.

(C1)

By using trigonometric formulas, Eq. (C1) could be expressed
as [

1 + e−2r − 2 cos

(
L

La

)]
sin

(
l

La

)

+
[

cos

(
l

La

)
− 1

]
2 sin

(
L

La

)
< 0. (C2)

Equation (C2) could be further cast into

1 + e−2r

2
− 1 −

√
1 − p2

p
M <

√
1 − M2, (C3)

where we have defined M = sin(L/La) and p = sin(l/La) for
simplicity.

From Eq. (C3), one can obtain

(m2 + 1)M2 − mnM − (4 − n2)/4 < 0, (C4)

where n = 1 + e−2r and m = (1 −
√

1 − p2)/p.
It is easy to verify that there always exists a solution for

Eq. (C4)

M− < M < M+, (C5)

where

M± = mn ± √
4m2 − n2 + 4

2(m2 + 1)
. (C6)

It is worthy pointing out that M− < 0 and M+ > 0. However,
in our scheme, M = sin(L/La) > 0 should be positive (since
L/La < π corresponds to the case below the laser threshold
[47]). Therefore, the solution is found to be

0 < M < M+. (C7)

Accordingly, one can obtain

L/La < arcsin(M+). (C8)
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