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Collective emission of photons from dense, dipole-dipole interacting atomic ensembles
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We study the collective radiation properties of cold, trapped ensembles of atoms. We consider the high-density
regime with the mean interatomic distance being comparable to, or smaller than, the wavelength of the resonant
optical radiation emitted by the atoms. We find that the emission rate of a photon from an excited atomic
ensemble is strongly enhanced for an elongated cloud. We analyze collective single-excitation eigenstates of the
atomic ensemble and find that the absorption-emission spectrum is broadened and shifted to lower frequencies as
compared to the noninteracting (low-density) or single-atom spectrum. We also analyze the spatial and temporal
profile of the emitted radiation. Finally, we explore how to efficiently excite the collective superradiant states of
the atomic ensemble from a long-lived storage state in order to implement matter-light interfaces for quantum
computation and communication applications.
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I. INTRODUCTION

Super- and subradiance have been an active topic of re-
search since the seminal paper of Dicke [1] on collective
emission of atoms confined within a distance that is small
compared to the wavelength of the resonantly emitted ra-
diation. An extended atomic ensemble prepared by a laser
field in the excited “timed Dicke” state collectively de-
cays by an emission of a photon predominantly into the
phase-matched direction [2,3], while multiple scattering and
reabsorption of photons in large atomic clouds modifies the
exponential decay of the collective atomic excitation [3–5].
The behavior of the single-excitation states of the atoms
can be understood in terms of the collective eigenstates of
an effective non-Hermitian Hamiltonian [6,7], which exhibit
enhanced (superradiant) and suppressed (subradiant) decay
rates, together with level shifts (collective Lamb shift). Recent
experiments have demonstrated both subradiance [8,9] and
superradiance [10–14] in large, dilute atomic clouds. In this
article, we calculate the spectral and spatiotemporal properties
of the emitted radiation for various trapping geometries of the
atomic clouds, taking into account the interatomic interactions
in the high-atom-density regime [15–18]. We also consider
the excitation of the collective superradiant states from a
long-lived storage state of atoms for Raman conversion of an
atomic spin wave into an optical photon.

In addition to the fundamental interest in the physical
processes, our study is motivated by practical applications
of matter-light interfaces for quantum information processing
and communications. Atomic ensembles have good coher-
ence properties and strong dipole transitions for efficient
coupling to optical photons [19–21]. Moreover, atoms can
couple to microwave fields and thereby be interfaced with
superconducting circuits, which are currently among the most
advanced candidates for quantum processors [22]. The atomic
ensembles can then play the role of quantum memories and
microwave-to-optical transducers [22–25]. In turn, photons

can serve as flying qubits to encode and reliably transmit
quantum information over long distances [26,27]. For opti-
cal photons, transmission may occur through free space or
via fiber waveguides, and it is important to determine the
spatiotemporal profile of the photon emitted by the atoms
to optimally construct the paraxial optical elements that will
collect the photon and direct it to a distant receiver [28].

This paper is structured as follows. In Sec. II, we present
the mathematical formalism to describe the quantum inter-
actions between N cold atoms at random positions in a trap
and the quantized radiation field mediating interatomic inter-
actions and their collective emission. In Sec. III, we discuss
solutions for two-level atoms and identify how the trapping
geometry influences the emission properties of the system. In
Sec. IV, we extend the analysis to three-level atoms where the
initial excitation is driven from a third storage state, and the
excitation dynamics is influenced by the atomic interactions.
Section V concludes the article and discusses the prospects of
applications.

II. QUANTUM INTERACTIONS BETWEEN
ATOMS AND LIGHT

We consider N � 1 cold atoms at random positions in a
harmonic trap, with the density distribution

ρ(r) = N
exp

(− x2

2σ 2
x

− y2

2σ 2
y

− z2

2σ 2
z

)
(2π )3/2σxσyσz

. (1)

The relevant internal states of the atoms are the ground state
|g〉, an electronically excited state |e〉, and a long-lived storage
state |s〉, as shown in Fig. 1.

We denote the collective ground state of the atoms as
|G〉 ≡ |g1, g2, . . . , gN 〉. A weak (single-photon) microwave
or Raman process that acts symmetrically on all the atoms
can transfer the ground state to the collective single-excitation
storage state |S〉 = 1√

N

∑N
j=1 |g1, g2, . . . , s j, . . . , gN 〉.
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FIG. 1. Internal states and spatial configuration of an ensemble
of cold atoms with random positions in an elongated harmonic trap.
With all the atoms initially in the ground state |g〉, a weak microwave
or Raman transition (light blue arrow) creates a single collective
excitation in the storage state |s〉. The atoms can be transferred from
the storage state to the excited state |e〉 by a laser pulse with Rabi
frequency � and wave vector kc. The excited-state atoms decay to
the ground state by emitting a photon into the free-space radiation
field E .

Subsequently, a spatially uniform laser pulse can near-
resonantly couple the storage state |s〉 to the excited state |e〉
with Rabi frequency �. An atom in the excited state |e〉 can
decay to the ground state |g〉 by emitting a photon into the
free-space radiation field Ê(r) = ∑

k âkuk (r), where âk are
the bosonic annihilation operators for the plane-wave modes
uk (r) = ε̂k,σ

√
h̄ωk

2ε0V eik·r forming a complete basis for the field
within the quantization volume V . The Hamiltonian of the
system is

H =
∑

k

h̄ωkâ†
k âk +

N∑
j=1

∑
μ=g,s,e

h̄ωμ |μ〉 j〈μ|

−
N∑

j=1

[h̄�ei(kc·r j−ωct ) |e〉 j〈s|

+℘eg · Ê(r j ) |e〉 j〈g| + H.c.], (2)

where the first term on the right-hand side is the Hamiltonian
for the field modes with energies h̄ωk , the second term cor-
responds to the Bohr energies h̄ωμ of the atomic levels |μ〉
(μ = g, s, e), the third term describes the interaction of the
atoms at positions r j with the coupling laser with frequency
ωc and wave vector kc ‖ ẑ, and the last term describes the
coupling of the atoms to the quantized free-space radiation
field with the dipole moment ℘eg on the transition |e〉 → |g〉.
For simplicity, we neglect the coupling of the atoms with the
free-space radiation and the resulting decay on the |e〉 → |s〉
transition [29]. We set the energy of the ground state to zero,
h̄ωg = 0, and assume that ωs 	 ωe (ωc 
 ωe).

The state vector of the system with the single atomic or
photonic excitation can be expanded as

|�〉 =
∑

j

c je
−iωst |s j〉 ⊗ |0〉 +

∑
j

b je
−iωet |e j〉 ⊗ |0〉

+ |G〉 ⊗
∑

k

ake−iωkt |1k〉,

where |G〉 ≡ |g1, g2, . . . , gN 〉, |s j〉 ≡ |g1, g2, . . . , s j, . . . ,

gN 〉, |e j〉 ≡ |g1, g2, . . . , e j, . . . , gN 〉, while |1k〉 ≡ â†
k |0〉

denotes the state of the radiation field with a single photon in
mode k. The state vector evolves according to the Schrödinger
equation ∂t |�〉 = − i

h̄ H |�〉, leading to a set of equations for
the atomic amplitudes

∂t c j = i�∗e−ikc·r j b je
i
ct , (3a)

∂t b j = i�eikc·r j c je
−i
ct + i

∑
k

gk (r j )akei(ωe−ωk )t , (3b)

with 
c = ωc − ωe, and an equation for the field amplitudes
cast in the integral form

ak (t ) = i
∑

j

g∗
k (r j )

∫ t

0
dt ′b j (t

′)ei(ωk−ωe )t ′
, (4)

where gk (r j ) = ℘eg·uk (r j )
h̄ is the atom-field coupling strength.

A. Atoms

Let us for the moment disregard the storage state and the
transition |s〉 → |e〉, assuming � = 0, and consider two-level
atoms with the ground |g〉 and excited |e〉 states. We substitute
Eq. (4) into Eq. (3b) and use the Born-Markov approximation
to eliminate the radiation field [15,16], obtaining a closed set
of equations for the atomic amplitudes,

∂t b j = −1

2
� b j − 1

2
�

∑
i �= j

Fjibi. (5)

Here � = 1
4πε0

4k3
e |℘eg|2
3h̄ is the usual spontaneous decay rate of

the atom in the excited state |e〉 whose Lamb shift can be in-
corporated into ωe [33,34], and Fji = f ji + ig ji is the complex
dipole-dipole exchange interaction (including the near-field
terms) between the atoms,

f ji = 3

2
[1 − (℘̂· r̂i j )

2]
sin(keri j )

keri j

+ 3

2
[1 − 3(℘̂· r̂i j )

2]

[
cos(keri j )

(keri j )2
− sin(keri j )

(keri j )3

]
,

g ji = −3

2
[1 − (℘̂· r̂i j )

2]
cos(keri j )

keri j

+ 3

2
[1 − 3(℘̂· r̂i j )

2]

[
sin(keri j )

(keri j )2
+ cos(keri j )

(keri j )3

]
,

where ℘̂≡ ℘eg

℘eg
is the unit vector in the direction of the atomic

dipole moment, r̂i j ≡ ri j

ri j
is the unit vector along the direction

of the relative position vector ri j = ri − r j between atoms i
and j, ri j ≡ |ri j | is the distance between the atoms, and ke =
ωe/c = 2π/λe with λe being the wavelength of the resonant
photon. Note that for an isotropic dipole moment (℘̂· r̂i j )2 =
1
3 ∀r̂i j (or for sufficiently low density with the mean inter-
atomic separation 〈ri j〉 > λe) the interatomic interaction takes

the simple form Fji = eikeri j

ikeri j
(or Fji 
 3

2 [1 − (℘̂· r̂i j )2] eikeri j

ikeri j
)

[5,7].
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B. Radiation field

Consider now the wave function [32,33] of the emitted
single-photon field

E(r, t ) ≡ 〈0| 〈G| Ê(r) |�(t )〉 =
∑

k

uk (r)ak (t )e−iωkt

= i
℘eg

2ε0V

∑
k,σ

ε̂k,σ (℘̂· ε̂k,σ ) ωk

∑
j

eik·(r−r j )

×
∫ t

0
dt ′b j (t

′)e−iωk (t−t ′ )−iωet ′
. (6)

We sum over the two orthogonal photon polarizations σ =
1, 2 for each k (ε̂k,σ ⊥ k),

∑
σ ε̂k,σ · ε̂k,σ = I − k̂ ⊗ k̂, where

I is the unity tensor and k̂ ≡ k
k , and replace the summation

over the modes k by an integration via
∑

k → V
(2π )3

∫
d3k =

V
(2π )3

∫ ∞
0 dk k2

∫
4π

d�k [33,34], obtaining

E(r, t )

= i
℘eg

2(2π )3ε0

∑
j

∫ t

0
dt ′b j (t

′)e−iωet ′
∫ ∞

0
dkk2ωke−iωk (t−t ′ )

×
∫

4π

d�keik·(r−r j )[I − k̂ ⊗ k̂] · ℘̂. (7)

The integration over the 4π solid angle with
d�k = sin θ dθ dϕ leads to 4π

sin(k|r−r j |)
k|r−r j | [I − r̂ j ⊗ r̂ j] =

−i 2πc[I−r̂ j⊗r̂ j ]
ωk |r−r j | (eik|r−r j | − c.c.), where r̂ j ≡ r j

r j
. We substitute

this into the above equation, assume that during the photon
emission k is peaked around the atomic resonance ke = ωe/c
and pull k2

e out of the integral, and extend the lower limit
of integration over k to −∞, as in the Weisskopf-Wigner
approximation [32,33]. We then have

∫ ∞

−∞
dk(eik|r−r j |−ick(t−t ′ ) − e−ik|r−r j |−ick(t−t ′ ) )

= 2π

c
δ(t ′ − t + |r − r j |/c) + 2π

c
δ(t ′ − t − |r − r j |/c).

Upon substitution into Eq. (7) the second term is always zero,
and we finally obtain

E(r, t ) = ℘egk2
e

4πε0

∑
j

e−iωe(t−|r−r j |/c)

|r − r j | b j (t − |r − r j |/c)

× [I − r̂ j ⊗ r̂ j] · ℘̂. (8)

For a single atom at the origin, we have a (gener-

ally anisotropic) spherical wave E(r, t ) = ℘egk2
e

4πε0

e−iωe (t−r/c)

r b(t −
r/c) [I − r̂ j ⊗ r̂ j] · ℘̂, while the intensity of the emitted radi-
ation in the direction of r is Iσ (r, t ) = ε0c

2 |ε̂r,σ · E(r, t )|2 =
h̄ωe

4πr2
3|ε̂r,σ ·℘̂|2

8 �|b(t − r/c)|2 for each polarization component
ε̂r,σ ⊥ r. As an example, for 
M = ±1 atomic transition
with ℘̂= 1√

2
(x̂ ± iŷ) we obtain the dipole emission pattern

I1 + I2 ∝ 1
2 (1 + cos2 θ ).

In the far-field region, we have |r − r j | 
 r − (r · r j )/r =
r − r̂ · r j , and therefore

E (ff )
σ (r, t ) = (ε̂r,σ · ℘̂)

℘egk2
e

4πε0

ei(ker−ωet )

r

∑
j

b j (t − r/c)e−ike·r j ,

(9)
where ke ≡ ker̂.

Noninteracting atoms

Consider an ensemble of N atoms with density ρ(r),
such that

∫
d3rρ(r) = N , prepared initially in the col-

lective single-excitation (timed-Dicke [2]) state |ETD〉 =
1√
N

∑N
j=1 eikc·r j |e j〉. For noninteracting atoms, Fji = 0, we

have from Eq. (5) that b j (t ) = 1√
N

e− 1
2 �t eikc·r j . Disregarding

the photon polarization, the emitted field in the far-field region
is

E (ff )(r, t ) = ℘egk2
e

4πε0

e− 1
2 �(t−r/c)

√
N

e−iωet E (r), (10a)

E (r) ≡ eiker

r

∑
j

ei(kc−ke )·r j

= eiker

r

∫
d3r′ρ(r′)ei(kc−ke )·r′

. (10b)

Substituting here the Gaussian density distribution ρ(r′) of
Eq. (1) and performing the integration over r′, we obtain

E (r) = N
eiker

r
exp

{
−k2

e

2

[
x2 + y2

r2
σ 2

⊥ + (z − r)2

r2
σ 2

z

]}
,

(11)
where we assume that σx,y = σ⊥. Consider the field amplitude
E (r) along the z direction within a small axial distance � =√

x2 + y2 	 z, such that r =
√

z2 + �2 
 z + �2

2z . With r2 ≈
z2 and (r − z)2 ≈ 0, we have from Eq. (11)

E (r) ≈ N

z + �2

2z

exp

[
ike

(
z + �2

2z

)
− k2

e

2

�2

z2
σ 2

⊥

]
. (12)

On the other hand, a Gaussian field mode with the waist w0 at
z = 0 has the form

φk (r) = ζk

q∗
k (z)

exp

[
ik

(
z + �2

2q∗
k (z)

)]
, (13)

where ζk = kw2
0/2 is the Rayleigh length and qk (z) = z + iζk

is the complex beam parameter. In the far field, z2 + ζ 2
k ≈ z2,

we have

φk (r) ≈ ζk

z − iζk
exp

[
ik

(
z + �2

2z

)
− k2

2

�2

z2

ζk

k

]
. (14)

Comparing this with Eq. (12), we see that, apart from the
Gouy phase that originates from the imaginary part of ζk

z−iζk
,

the far field E (r) is mostly emitted into a Gaussian mode with
wave vector k = ke and a beam waist determined from ζk/k =
w2

0/2 ≈ σ 2
⊥, i.e., w0 = √

2σ⊥, while the angular spread (diver-

gence) of the beam is 
θ = λe
πw0

=
√

2
keσ⊥

. More qualitatively
[30,31], the probability of the cooperative photon emission
into the phase-matched direction within the solid angle 
� =
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π (
θ )2 = 2π
(keσ⊥ )2 , as opposed to spontaneous, uncorrelated

photon emission into the 4π solid angle, is

P
� 
 N
�

4π + N
�
. (15)

III. TWO-LEVEL ATOMIC MEDIUM

A. Collective decay dynamics of interacting atoms

Let us assume that at some initial time t = 0 the atoms are
prepared by a laser in the collective single-excitation (timed-
Dicke [2]) state

|ETD〉 = 1√
N

N∑
j=1

eikc·r j |e j〉 = 1√
N

N∑
j=1

|ẽ j〉, (16)

with |ẽ j〉 ≡ eikc·r j |e j〉 and kc ‖ ẑ. We expand the state
of the atomic ensemble as |�〉 = ∑

j b je−iωet |e j〉 ≡∑
j b̃ je−iωet |ẽ j〉, where the slowly varying in time and space

excited-state amplitudes b̃ j = e−ikc·r j b j obey the equations

∂t b̃ j = −1

2
� b̃ j − 1

2
�

∑
i �= j

Fjie
ikc·ri j b̃i (17)

with the initial conditions b̃ j (0) = 1√
N

∀ j. For a noninteract-
ing atomic ensemble, Fji → 0, i.e., in the dilute regime of
large mean interatomic separation 〈ri j〉 � N1/4(σzλe)1/2, the
initial state |�(0)〉 = |ETD〉 will decay with the single-atom
rate � to the collective ground state |G〉 and emit a photon
with the spatial profile of Eq. (12). But in the high-density
regime, the interatomic dipole-dipole interaction mediated by
the multiple scattering of the photon by the atoms significantly
modifies this behavior, resulting in both accelerated (superra-
diant) decay with rate �S > � and decelerated (subradiant)
decay with the rate �s < �, as seen in Fig. 2. Moreover,
for a fixed mean density of the atom cloud, the super- and
subradiant decays strongly depend on the geometry of the
atom cloud: atoms in an elongated trap, σz > σx,y, typically
decay faster, which can be attributed to the constructive in-
terference of the photon emission (scattering) in the forward
direction with larger optical depth. We can approximate the
superradiant decay rate as

�S ≈ G N

k2
e σ

2
x,y

�, (18)

where the numerical factor G depends on the geometry of the
atom cloud (G ≈ 4

3 , 5
6 , 2

3 , 2
5 for the four geometries shown in

Figs. 2 and 3). This is consistent with the previously derived
results for isotropic dipoles or lower atom densities [3,4,6–
8,12,13,35–37], since the interatomic interactions are predom-
inantly long range, Fji 
 eikeri j

ikeri j
, and the contribution of the

near-field terms ∝ (keri j )−2(3) is small when ke〈ri j〉 � 1.
Increasing the atom number N and thereby the density in

the same trapping volume accelerates the superradiant decay,
i.e., further increases �S , and decelerates the subradiant decay,
i.e., further decreases �s, of the collective timed-Dicke state
as seen in Fig. 3. On the other hand, increasing the atom
number and proportionally the trapping volume to keep the
atom density constant, we observe smaller modification of
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FIG. 2. Dynamics of the population pTD(t ) = |〈ETD|�(t )〉|2 of
the initially prepared timed-Dicke state |ETD〉 of the atoms in a
harmonic trap with different aspect ratios σx,y/σz. The progres-
sively lower curves correspond to decreasing σx,y and increas-
ing σz, with the product σxσyσz kept constant. We place N =
1000 atoms at random positions in an effective volume Veff =
(2π )3/2σxσyσz = (2π )3/28 μm3, i.e., the mean interatomic separa-
tion 〈ri j〉 = 3

√
Veff/N 
 0.5 μm. Each curve corresponds to a single

realization of the ensemble of atoms at random positions, but differ-
ent realizations for the same atom number and trap geometry give
very similar results (for large enough N as here). The wavelength
of the resonant transition |e〉 → |g〉 is λe = 780 nm, decay rate
� = 2 × 107 s−1, and the transition dipole moment is along ℘̂= x̂+iŷ√

2
(
M = 1 transition). In the lower panel, we fit the population decay
curves with the sum of three exponential terms, pTD(t ) 
 p1e−�St +
p2e−�t + p3e−�st , having superradiant �S > �, single-atom �, and
subradiant �s < � decay rates.

the superradiant decay, consistent with Eq. (18). Finally, for
a fixed atom density, changing only the width of the trap, but
not its length, increases the subradiant fraction of the initial
population (see the insets of Fig. 3), which indicates that
the subradiant dynamics is mostly governed by the multiple
scattering of the photons off the z axis, while the superradiant
emission happens mostly in the forward direction along z.

B. Single-excitation spectrum of the atoms

Equation (17) implies an effective non-Hermitian Hamilto-
nian for N interacting atoms:

Heff =
N∑

j=1

h̄

(
ωe − i

�

2

)
|ẽ j〉〈ẽ j |

− i
�

2

N∑
j=1

N∑
j′ �= j

Fj j′e
ikc·r j′ j |ẽ j′ 〉〈ẽ j | . (19)

The solution of the eigenvalue problem Heff |�〉 = h̄λ |�〉
results in N generally nonorthogonal (right) eigenstates |�n〉
with complex eigenvalues λn. The real part of each eigen-
value Re(λn) = ωe + δn determines the level shift δn of the
corresponding eigenstate from the single-atom resonance ωe,
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FIG. 3. Same as in Fig. 2 (thin solid lines are for reference, with
the upper-left, upper-right, lower-left, and lower-right panels corre-
sponding to decreasing σx,y and increasing σz), but for N = 2000
atoms, in traps with the same volume Veff = (2π )3/28 μm3 but twice
the atom density (dashed lines), or in traps with rescaled dimensions
σx,y,z → 3

√
2σx,y,z and twice the volume Veff = (2π )3/216 μm3 but the

same density as in Fig. 2 (dotted lines). The insets in the lower panels
show the decay dynamics for N = 2000 atoms in the elongated traps
with the same lengths σz = 4, 8 μm but larger widths σx,y → √

2σx,y

and twice the volume Veff = (2π )3/216 μm3, i.e., the same density as
in Fig. 2.

while the imaginary part Im(λn) = −γn yields the level width
or (half-)decay rate γn of the eigenstate.

Note that for a noninteracting system with Fj j′ = 0 ∀ j′ �=
j, all N eigenstates would be degenerate, λn = ωe − i�/2, and
we could construct one “bright” eigenstate |�B〉 = |ETD〉 that
corresponds to the timed-Dicke state of Eq. (16), while all
the other eigenstates would be “dark,” 〈ETD|�n �=B〉 = 0, i.e.,
not accessible from either the ground or the storage state by a
uniform laser field with wave vector kc (see below).

In Fig. 4 we show the spectrum of the effective Hamil-
tonian (19) for each of the four geometries of the trap with
N = 1000 atoms. Since the eigenstates |�n〉 of the interacting
system can be populated either from the ground state |G〉 or
from the collective storage state |S〉 using a near-resonant
laser with wave vector kc, we calculate the Franck-Condon
(FC) overlap 〈ETD|�n〉 of each eigenstate with the timed-
Dicke state of Eq. (16). We observe that the spectrum of
the effective Hamiltonian has superradiant, γn > �/2, and
subradiant, γn < �/2, states, and most of the subradiant states
have small level shifts |δn| � �, while the superradiant states
have a broader spectrum of shifts from the atomic transition
resonance ωe. For trap dimensions σx,y ∼ σz the averaged
spectrum and the spectrum of eigenstates weighted by the FC
factors are approximately symmetric about the resonance, δ =
0. But in the elongated trap σz � σx,y the superradiant states
with the largest FC factors tend to be shifted towards the lower
frequencies δ < 0 (see the lower right panel of Fig. 4). This
effect is even better pronounced for highly elongated traps,
as shown in Fig. 5, and it is closely related to the collective
shift of resonant light scattering by a one-dimensional atomic

FIG. 4. Eigenvalues of the effective Hamiltonian (19) for N =
1000 atoms in four different traps as in Fig. 2 (same color code,
with the upper-left, upper-right, lower-left, and lower-right panels
corresponding to decreasing σx,y and increasing σz). The main panels
show the eigenvalues, as obtained for a single realization of the
ensemble of atoms at random positions in the trapping volume; each
eigenvalue λn = (ωe + δn) − iγn is shown as a circle centered at the
corresponding [δn, γn] with the radius equal to the norm |〈ETD|�n〉|2
of the Franck-Condon overlap of the eigenstate |�n〉 with the single-
excitation state |ETD〉 of Eq. (16). The upper inset in each panel
shows the spectrum of eigenvalues averaged over 103 random realiza-
tions of the ensemble, while the lower inset shows the same spectrum
with each eigenvalue weighted by the corresponding FC factor (the
shading is in arbitrary units, for best visibility).

medium, due to constructive interference of the red-detuned
light, as reported in Ref. [38].

The amplitude Bn(t ) of an eigenstate |�n〉 excited
with probability |Bn(0)|2 at time t = 0 evolves accord-
ing to Bn(t ) = Bn(0)e−iλnt . Taking the Fourier transform∫ ∞

0 dtBn(t )eiωt , we can then associate with each eigenstate
having the decay rate γn and level shift δn a Lorentzian

emission-absorption line |Bn(0)|2γ 2
n

(
−δn )2+γ 2
n

with 
 = ω − ωe. Since
the excitation probability of each eigenstate from either the
ground or the storage state via a laser with wave vector kc is
proportional to |〈ETD|�n〉|2, we can then define the excitation
(absorption) spectrum of the systems as

S(
) =
N∑

n=1

|〈ETD|�n〉|2γ 2
n

(
 − δn)2 + γ 2
n

. (20)

In Fig. 6 we plot S(
) for various geometries of the atomic
ensemble. With increasing length of the atomic ensemble, the
excitation spectrum is progressively broadened and shifted
towards the lower frequencies, i.e., negative detuning 
. This
is expected from Fig. 5, which demonstrates that in the highly
elongated atomic ensembles the eigenstates with the largest
FC factors are superradiant (γ > �/2) and redshifted (δ < 0)
with respect to the single-atom resonance ωe. The redshift of
the collective resonance in elongated atomic ensembles has
been experimentally observed in Ref. [13].
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FIG. 5. Density of eigenvalues weighted by the corresponding
FC factors |〈ETD|�n〉|2 averaged over 103 random realizations of
the ensemble of N = 1000 atoms in the elongated harmonic traps
with lengths σz = 4, 8, . . . , 24 μm and widths σx,y = √

8/σz, i.e.,
the same effective volume Veff = (2π )3/2σxσyσz = (2π )3/28 μm3,
and mean interatomic separation 〈|ri j |〉 = 3

√
Veff/N 
 0.5 μm as in

Figs. 2 and 4.

C. Angular emission profile

The (far) field emitted by the atoms, Eq. (9), in terms of
the temporally and spatially slowly varying atomic amplitudes
b̃ j = e−ikc·r j b j , is given by

E (ff )
σ (r, t ) = (ε̂r,σ · ℘̂)

℘egk2
e

4πε0

ei(ker−ωet )

r

×
∑

j

b̃ j (t − r/c)ei(kc−ke )·r j , (21)

−4 −2 0 2 4
Δ/Γ

0

0.2

0.4

0.6

0.8

1

S(
Δ)

FIG. 6. Excitation spectrum S(
) of Eq. (20) for N = 1000
atoms in harmonic traps with different length σz and width σx,y =√

8/σz, i.e., the same effective volume Veff = (2π )3/2σxσyσz =
(2π )3/28 μm3. The spectrum is progressively broadened and shifted
towards the negative detuning 
 with increasing σz. For each geom-
etry, the shown spectrum is averaged over 103 random realizations of
the atomic ensemble. Insets show the peak position and full width at
half maximum (FWHM) of each spectrum.

which clearly reveals the phase-matching condition ke 

kc ‖ ẑ for constructive interference of photon emission. The
intensity of the emitted radiation in the direction of r is
Iσ (r, t ) = ε0c

2 |Eσ (r, t )|2, while the total radiation (energy)
collected by an ideal detector at position r is U (r) δs =∑

σ=1,2

∫ ∞
0 dtIσ (r, t ) δs, where δs is the surface element, or

detector cross section (pixel size), in the plane perpendicular
to r. From the discussion of Eq. (12), we expect that the angu-
lar distribution of the radiation emitted into the phase-matched
direction z can be approximated by a Gaussian

U (θ ) ∝ e−2θ2/
θ2
(22)

with the beam divergence 
θ = λe
πw0

=
√

2
keσ⊥

. In Fig. 7 we
show the angular probability distribution of U (θ, φ) which is
highly peaked around θ = 0 due to cooperative photon emis-
sion into the phase-matched direction, while for larger angles
θ > 
θ we observe a weak background noise due to spon-
taneous, uncorrelated photon emission by atoms at random
positions. For large enough width σ⊥ of the atomic cloud, the
emitted radiation profile is indeed Gaussian with the angular
width 
θ . But as the transverse width of the cloud becomes
comparable to, or smaller than, the wavelength, σ⊥ � λe =
0.780 μm, the angular profile of the beam starts to strongly
deviate from the Gaussian, i.e., it becomes narrower than the
corresponding 
θ and develops a “flat top.” We have checked
that the narrowing effect is also present in the ensemble of
noninteracting atoms, but the flattening of the top is effected
by interatomic interactions. Thus, to maximize the collection
of radiation from a highly elongated atomic cloud, one should
engineer a lens with an appropriate noncircular curvature.

Our aim is to determine the probability of collecting the
photon by an appropriate paraxial optics into the Gaussian
mode

φke (r, t ) = ζke e
−icket

q∗
ke

(z)
exp

[
ike

(
z + x2 + y2

2q∗
ke

(z)

)]
(23)

with the wave vector ke and waist w0 = √
2σx,y. To

this end, we calculate the overlap of the far field E (ff )
σ

with φke on a spherical surface with large radius r =√
x2 + y2 + z2 � σx,y,z, ζke integrating over the 4π solid

angle,
∫

4π
d�r[E (ff )

σ (r, t ) φ∗
ke

(r, t )]. The probability for the
emitted photon to be collected into the Gaussian mode φ∗

ke
(r)

is then

P =
∑

σ=1,2

∣∣∫
4π

d�r
∫ ∞

0 dt ε0c
2

[
E (ff )

σ (r, t ) φ∗
ke

(r, t )
]∣∣2

∫
d�rU (r)

∫
d�r |φke (r)|2 . (24)

In Fig. 8 we show P for various lengths σz and the correspond-
ing widths σx,y or the atomic ensemble with the same effective
volume and density. Note that the portion of the radiation
emitted into the phase-matched direction z grows monoton-
ically with increasing cloud length σz, although this growth
nearly stops once the decreasing transverse width of the cloud
becomes comparable to the wavelength, σx,y � λe = 0.780
μm. The probability P of the photon to be emitted into the ap-
propriate Gaussian mode also grows initially with increasing
σz, but it is peaked around σz 
 9 μm (σx,y � 1 μm) and then
decreases, since the spatial profile of the emitted radiation
increasingly deviates from the Gaussian for narrower atom
clouds (cf. upper insets in Fig. 7). Note finally that the ap-
proximate analytic result of Eq. (15) for noninteracting atomic
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FIG. 7. Angular probability distribution U (θ, φ) of the photon emitted in the z direction, as a function of θx = θ cos(φ) and θy = θ sin(φ),
with θ the polar and φ the azimuthal angles, for N = 1000 atoms in elongated harmonic traps with the same effective volume Veff =
(2π )3/2σxσyσz and different aspect ratios σx,y/σz. The black solid line in the upper inset of each density plot shows U (θx, θy = 0) while

the red dashed line is the Gaussian of Eq. (22) with the corresponding width 
θ =
√

2
keσx,y

. Only the interval of |θ | � 0.2π is shown as in the
remaining solid angle only a weak noisy signal is present.

ensemble predicts larger emission probabilities into the Gaus-
sian mode, but this result also does not take into account the
narrowing of the emission profile for highly elongated atom
clouds.

IV. THREE-LEVEL ATOMIC MEDIUM

In the previous section, we considered an ensemble of two-
level atoms and assumed that initially the system is somehow

2 4 6 8 10 12 14 16
σ (μm)

0

0.2

0.4

0.6

0.8

1

P

2 1.41 1.15 1 0.89 0.82 0.76 0.71

σ (μm)

FIG. 8. Probability P of Eq. (24) for collecting the emitted pho-
ton into the Gaussian mode of waist w0 = √

2σx,y as a function of
length σz (lower horizontal axis) or width σx,y (upper horizontal axis)
of a cloud of N = 1000 interacting atoms with fixed effective volume
Veff = (2π )3/2σxσyσz = (2π )3/28 (red solid line with open circles).
Also shown is the total probability of photon emission into the z
direction within the solid angle � f = π (2 
θ )2 (blue dashed line
with filled triangles). For comparison, we also show the approximate
analytic results of Eq. (15) for an ensemble of noninteracting atoms
(black dotted line).

prepared in the ideal timed-Dicke state with single collec-
tive excitation. But starting from the collective ground or
storage state of the atomic ensemble, the preparation of the
timed-Dicke state may be hindered by the strong interatomic
interactions leading to spectral broadening and suppression of
the transition to the collective excited states, as discussed in
Sec. III B. We therefore consider now all three atomic levels,
and assume that the initially populated collective storage state
|S〉 = 1√

N

∑N
j=1 |s j〉 is coupled to the excited state by a laser

with time-dependent Rabi frequency �(t ) and detuning 
c,
as shown in Fig. 1. The atomic amplitudes obey the equations

∂t c j = i�∗b̃ je
i
ct , (25a)

∂t b̃ j = i�c je
−i
ct − 1

2
� b̃ j − 1

2
�

∑
i �= j

Fjie
ikc·ri j b̃i. (25b)

For noninteracting atoms [28], Fji = 0, assuming a res-
onant laser 
c = 0 with sufficiently weak Rabi frequency
|�| < �, we can set ∂t b̃ j = 0, obtaining b̃ j 
 i �

�/2 eikc·r j c j .
Substituting this into Eq. (25a) and performing the integration,
we have

c j (t ) 
 c j (0) exp

[
−

∫ t

0
dt ′ |�(t ′)|2

�/2

]
, (26a)

b̃ j (t ) 
 i
�(t )

�/2
c j (t ), (26b)

with the initial condition c j (0) = 1/
√

N ∀ j ∈ [1, N]. Using
this solution in Eq. (9) or Eq. (21), we obtain

E (ff )
σ (r, t ) = i

℘egk2
e

4πε0

β(t − r/c)√
N

e−iωet Eσ (r), (27a)

Eσ (r) ≡ (ε̂r,σ · ℘̂)
eiker

r

∑
j

ei(kc−ke )·r j , (27b)

which, apart from the time dependence contained in β(t ) ≡
�(t )
�/2 exp [− ∫ t

0 dt ′ |�(t ′ )|2
�/2 ] and field polarization, is the same as
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FIG. 9. Dynamics of population transfer of the atoms from the
storage state to the excited state that decays to the ground state
with the emission of a photon. The upper panel shows the time
dependence of the coupling field Rabi frequency �(t ) = �0

1
2 [1 +

erf ( t−t0√
2σt

)] with t0 = 1 μs and σt = 0.4 μs. The lower panel shows
the populations of the storage pS , excited pE , and ground pG states
for three different detunings 
c of the coupling field (with the detun-
ings 
c/2π = ±3 MHz leading to slower or faster transfer compared
to the 
c = 0 case), as obtained from averaging over 102 random
realizations of the ensemble for N = 1000 atoms in a harmonic trap
with dimensions σz = 8 μm and σx,y = 1 μm. Also shown are the
populations for an ensemble of noninteracting atoms under the same
driving and decay conditions (light gray curves). The inset shows
the transfer probability to the ground state pG at time t = 2 μs as a
function of detunings 
c, as obtained from a single realization of the
random atomic ensemble (thick solid brown line), and as obtained
from the approximate analytic solution of Eqs. (28) with parameters
�eff = 0.92�, δE = −1.0�, and �S = 6.0� (thin dotted black line);
note that this value for �S was obtained in Fig. 2 by fitting the decay
curve for an initially excited atomic ensemble.

Eqs. (10) with all the consequences discussed there. Detailed
treatment of Raman conversion of collective atomic excitation
in a noninteracting ensemble to a photon and its optimal
collection via paraxial optics is presented in Ref. [28].

A. Dynamics of population transfer

For strongly interacting atoms, the above simple solution
does not apply, and we resort to the numerical solutions of the
atomic equations of motion [Eqs. (25)]. In Fig. 9 we show the
dynamics of populations of the storage state pS = ∑

j |c j |2,

the excited state pE = ∑
j |b̃ j |2, and the ground state pG =

1 − pS − pE upon applying to the ensemble a coupling field
with a smooth time-dependent Rabi frequency �(t ) and var-
ious detunings 
c from the unperturbed atomic transition
|s〉 → |e〉. It follows from the above discussion that the tran-
sition from the symmetric storage state |S〉 to the collective
excited state |ETD〉 driven by a uniform laser with wave vector
kc ‖ ẑ is suppressed by either the small FC factors 〈ETD|�n〉
or large widths γn of the single-excitation eigenstates |�n〉,
which results in much slower population transfer as compared
to the noninteracting atoms. Moreover, since the spectrum of

the eigenstates |�n〉 weighted by the corresponding FC fac-
tors is asymmetric and redshifted from the atomic resonance
frequency ωe, we observe stronger excitation, followed by
decay, for negative detuning 
c < 0. The inset in Fig. 9 shows
the transfer probability to pG at an intermediate time t = 2 μs
as a function of 
c, which is closely related to the excitation
spectrum S(
) of Fig. 6.

It is instructive to consider an effective three-level system
with the ground state |G〉, the storage state |S〉, and an excited
state |E〉 which is shifted from the single-atom resonance
by δE and decays to the ground state with rate �S > �. The
initially populated storage state is coupled to the excited state
|E〉 with an effective Rabi frequency �eff . The amplitudes c
and b of the storage and excited states obey the equations

∂t c = i�∗
effb ei(
c−δE )t , (28a)

∂t b = i�effc e−i(
c−δE )t − 1
2�Sb, (28b)

which have an approximate analytic solution similar to that of
Eqs. (26), namely,

c(t ) 
 c(0) exp

[
−

∫ t

0
dt ′ |�eff (t ′)|2

�S/2 − i(
c − δE )

]
, (29a)

b(t ) 
 i
�eff (t )e−i(
c−δE )t

�S/2 − i(
c − δE )
c(t ), (29b)

with c(0) = 1. The probability of population transfer to
the ground state can then be approximated as pG(t ) = 1 −
|c(t )|2 − |b(t )|2. In the inset in Fig. 9 we compare this analytic
result with the exact numerical result and find reasonable
agreement for appropriate parameters �eff , δE , and �S .

B. Radiation field

The angular distribution U (θ, φ) of the emitted radiation is
shown in Fig. 10. We observe that for an interacting atomic
ensemble the spatial profile of the radiation emitted in the
phase-matched direction z closely matches a Gaussian mode
of waist w0 = √

2σx,y. But the probability of cooperative
emission into this Gaussian mode is rather small, P 
 0.58,
since multiple photon scattering by the atoms results in large
fraction 1 − P � 0.4 of the radiation to be incoherently emit-
ted into all 4π directions. For comparison, for a noninteracting
atomic ensemble we obtain a much larger P 
 0.73, even
though the forward emitted radiation has somewhat narrower
angular distribution than that of the expected Gaussian mode
[for a slightly narrower Gaussian collection mode, we obtain
P 
 0.77 close to the theoretical result of Eq. (15) and Fig. 8].
Hence, dilute atomic ensembles with reduced multiple photon
scattering seem to be better suited for achieving higher effi-
ciency of photon collection into appropriate Gaussian modes
[28].

Remarkably, even though the dynamics of population
transfer between the collective atomic states depends on the
detuning 
c of the coupling field (cf. Fig. 9), for large inte-
gration times, when the population of the symmetric storage
state of the atomic ensemble is completely depleted, pS = 0
and pG 
 1, we obtain the same emission pattern U (θ, φ)
and photon collection probability P 
 0.58 of the interacting
atomic ensemble for any detuning 
c. Thus the atomic ensem-
ble indeed behaves as an effective three-level medium with
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FIG. 10. Angular probability distribution U (θ, φ) of the photon
emitted in the z direction for Raman excitation of the atomic cloud
with all the parameters the same as in Fig. 9. The left panel shows
U (θ, φ) vs θx = θ cos(φ) and θy = θ sin(φ) as obtained for a single
realization of the random atomic ensemble. For large integration
times, the photon emission pattern is the same for different detunings

c of the coupling field, and the probability of cooperative emission
into a Gaussian mode of waist w0 = √

2σx,y is P 
 0.583, with the
remaining radiation incoherently scattered into all 4π directions.
The right panel shows U (θ, φ) for a noninteracting atomic ensemble
under the otherwise identical conditions, leading to P 
 0.727 [for
comparison, the analytic result of Eq. (15) and Fig. 8 is P = 0.794].
The black solid line in the upper inset of each density plot shows
U (θx, θy = 0) while the red dashed line is the Gaussian of Eq. (22)

with the corresponding width 
θ =
√

2
keσx,y

.

a single broad intermediate excited state (cf. inset in Fig. 9),
rather than as a collection of single-excitation states |�n〉 with
different widths and coupling strengths.

V. CONCLUSIONS

A topic of great interest of current research is the inter-
action of light with regular arrays of strongly (dipole-dipole)
interacting atoms [39–45]. Such systems possess cooperative
resonances corresponding to super- and subradiant opti-
cal modes and can serve as, e.g., perfect optical mirrors
[39,42,44,45] or tailored, highly efficient photon emitters into

the desired spatial modes [41,43]. These unique properties,
however, critically depend on the periodic, defect-free spatial
arrangement of single atoms in lattices with subwavelength
spacing.

Here, we have considered a high-density regime of random
atomic ensembles with the subwavelength mean interatomic
distance. This system permits a much smaller degree of
control of the super- and subradiance and spatial emission
pattern of the radiation, as compared to the perfectly periodic
one-, two-, or three-dimensional arrays of atoms. Yet, the
random atomic ensembles are much easier to realize exper-
imentally in various trapping geometries, which still allow
a certain amount of control of their optical properties, as
we have shown above. In particular, we have found that the
phase-matched, superradiant emission of radiation is strongly
enhanced in elongated atomic ensembles, while multiple scat-
tering of photons off the phase-matching direction is mainly
responsible for the subradiant emission. It would be interest-
ing to investigate how the super- and subradiant collective
modes can be selectively suppressed or converted on demand
into each other, and how to control and further enhance
the directionality of the photon emission using, e.g., spatial
and/or temporal modulation of the amplitudes and phases of
the atoms in extended traps, which can be accomplished by
spatially varying electric or magnetic fields or ac Stark shifts
induced by off-resonant lasers. Finally, studying multiple ex-
citations in strongly interacting but random atomic ensembles
beyond the liner optical regime would be an interesting and
important problem to tackle via development of effective ana-
lytic and efficient numerical tools.
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