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Superradiance as single scattering embedded in an effective medium
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We present an optical picture of linear-optics superradiance, based on a single scattering event embedded in a
dispersive effective medium composed by the other atoms. This linear-dispersion theory is valid at low density
and in the single-scattering regime, i.e., when the exciting field is largely detuned. The comparison with the
coupled-dipole model shows a perfect agreement for the superradiant decay rate. Then we use two advantages
of this approach. First we make a direct comparison with experimental data, without any free parameter, and
show a good quantitative agreement. Second, we address the problem of moving atoms, which can be efficiently
simulated by adding the Doppler broadening to the theory. In particular, we discuss how to recover superradiance
at high temperature.
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I. INTRODUCTION

Superradiance generally refers to the accelerated radia-
tion rate of excited atoms due to the collective interaction
of the sample with light and the vacuum reservoir. It has
been originally introduced by Dicke for a collection of ex-
cited atoms in a small volume [1], and experimentally studied
with large-size, low-density samples [2,3]. Although Dicke’s
approach is based on collective atomic states, it is also in-
teresting to develop an optical picture of the superradiance
(or superfluorescence [4]) phenomenon, in particular to un-
derstand propagation effects associated to the size and shape
of the sample. In the case of many excited atoms, one may
consider superradiance as the transient form of stimulated
emission [2].

More recently the subject of “single-photon superradiance”
has been brought up by Scully et al. [5,6] and experimentally
observed using weak continuous excitation of large-size and
dilute samples [7,8]. In this linear-optics regime the picture
of stimulated emission obviously cannot apply. Is it still pos-
sible, then, to use an optical picture of superradiance in that
case?

In this article we present such an optical picture, which
is based on a single scattering event embedded in the effec-
tive medium built by the whole atomic sample. The effective
medium has a complex refractive index that introduces at-
tenuation and dispersion. In this picture, the physics of
linear-optics superradiance appears to be very close to the
one of optical precursors and flash effects [9–13], the only
supplementary ingredient being the scattering event, which
does modify the decay rate. Linear-optics superradiance is
thus mainly a dispersion effect.

Besides providing a nice physical description, this picture
also allows us to derive a simple equation to compute the early
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decay of scattered light. This “linear-dispersion” (LD) theory,
first introduced in [14] and recently used to simulate the
excitation dynamics at the switch-on [15,16], is very efficient
from the computing point of view. We can then apply it to a
direct quantitative comparison with experimental data and to
the problem of moving atoms [17,18].

The paper is organized as follows. In the next section we
describe the LD theory of superradiance in a very simple way
and benchmark it against the more commonly used coupled-
dipole (CD) model. In Sec. III we compare its results with
experimental data from [7]. In its limit of validity, which is
that multiple scattering should be negligible, the agreement is
very good. Finally in Sec. IV we address the case of thermal
motion and show that, in principle, superradiance can be ob-
served with room-temperature vapors.

II. LINEAR-DISPERSION THEORY OF SUPERRADIANCE

The main physical ingredient of the LD theory is to con-
sider the different frequency components of the field that
drives the atoms. These frequency components are due to the
switch-on and -off of the field. The LD theory is thus relevant
to study nonstationary effects in light-atom interactions, such
as the transient behavior at the switch-on [15,16] and the
superradiant decay at the switch-off.

A. Simple version of the linear-dispersion theory

For pedagogical purposes, we only present here the result
of the LD theory without derivation and in its simplest version,
which corresponds to the case of motionless atoms and a
scalar model for light. We also do not bother with numeri-
cal prefactors. A more sophisticated version, accounting for
the polarization, Zeeman states, and a velocity distribution,
is given in the Appendix A, along with the main ideas and
approximations for its derivation.

Let us start from the result and explain its meaning. The
intensity Ik′ (t ) detected in the direction k′ as a function of time
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t is given by
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In this equation, ρ(r) is the atomic density distribution, E0(ω)
is the Fourier transform of the incident field,

α̃(ω) = −1

i + 2(ω − ωat )/�0
(2)

is the dimensionless atomic polarizability with �0 the natural
linewidth, and the b0(r, k) terms denote the resonant optical
thickness through a part of the cloud, from the position r
into the direction k′, and from the incident direction k to the
position r. In the case of a Gaussian cloud of rms size R, and
taking the incident wave vector along the z axis and putting
the origin of coordinates at the center of the cloud, one can
easily compute
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where b0 = √
2πρ0σ0R is the resonant optical thickness

through the center of the cloud, with ρ0 the peak atomic
density and σ0 the resonant scattering cross section.

The meaning of Eq. (1) is clear: each Fourier component
of the initial field propagates through the cloud until the
scattering position r, propagation during which it undergoes
attenuation and dephasing following Beer’s law. Then it is
scattered at position r with some probability and associated
dephasing given by the atomic polarizability (2). Finally it
propagates again through the atomic cloud until it escapes the
sample. The whole process acts as a linear transfer function,
which applies to the frequency components of the incident
field. The temporal dependence is recovered by a Fourier
transform and the intensity is computed by taking the squared
modulus. Then all possible scattering positions are summed
up.

This equation is valid for single-scattering only, since there
is only one scattering term. Note also that the average over
the scattering positions is done on the intensity: the random
phase associated with incoherent scattering and the associated
speckle pattern are averaged out. Indeed, what is computed is
formally a quantum-mechanical average, i.e., an average over
the disorder configurations (see Appendix A). Still, since this
model describes superradiance, as we show below, it means
that superradiance is not related to the interference between
light scattered by different atoms. It is actually related to the
interference between the different Fourier components of the
incident field scattered by the atoms and attenuated or de-
phased by the surrounding effective medium. It is thus mainly
a dispersion effect. Of course, the complex refractive index of
the effective medium can also be considered as an interference
effect between light coherently scattered by all atoms.

This calculation is very similar to what is done to explain
the transient effects observed in the coherently transmitted
beam, the so-called optical precursors and flash effects [9–13],
except for the extra scattering term. In this case, though,
this approach is more natural because there is no random
phase associated with any scattering. The extra scattering term
introduces a quantitative difference between superradiance
off-axis, as observed in [7], and superradiance of the forward
scattering lobe, as studied in [5,8,19,20].

In this approach, one can understand the occurrence of a
superradiant decay rate (�sup > �0) for large b0 by the spectral
broadening of the transfer function induced by the larger value
of b0: if the transfer function becomes broader in Fourier
space, the temporal response becomes faster. This is also the
intuitive picture given for the flash effect, which can also have
a decay rate faster than �0 [13].

B. Benchmark against the coupled-dipole model

In Fig. 1 we compare the results of the decay rate fitted
at very early time on temporal traces computed from the CD
model and the linear-dispersion (LD) model [Eq. (1)], at large
detuning (� = −10�0). The agreement is excellent. Note that
several densities are used in the CD simulations, from ρ0λ

3 =
1.5 to 25 (with an exclusion volume k0ri j > 0.5), while the
density is not a parameter in the LD model. This shows that,
in this range of parameters, the density does not plays any
role.

We also show an analytical result that can be computed
from Eq. (1) using the residue theorem. For a squared pulse
of duration T � �−1

0 , in the limit t → 0, i.e., right after the
switch-off, and under the condition b0�0/� � 1, we obtain
(see [14])

�sup =
(

1 + b0

4

)
�0. (4)

Note that for isotropic samples, this does not depend on
the observing direction, and that the model only contains
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FIG. 1. Comparison between the coupled-dipole (CD) model and
the linear-dispersion (LD) theory for the superradiant decay rate �sup.
Also shown is the analytical result for the large-detuning limit. The
detuning is � = −10�0; the observation direction is θ = 45◦. The
fitting range is 0 < t < 0.02�−1

0 .
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superradiance off-axis, i.e., with a true scattering event; it
does not include the forward lobe of the timed-Dicke (TD)
state [5,8,19–21]. As a consequence the decay rate is different,
even in the forward direction, than for the TD state. The extra
α̃(ω) term (scattering) is responsible for a factor 2 in the
superradiant enhancement factor. It emphasizes the different
nature of the forward lobe, which is, in a photon picture,
diffracted or refracted light by the effective medium, without
any true scattering. The different superradiant decay rates be-
tween on-axis and off-axis scattering was already numerically
observed in [7].

A deviation from this analytical limit can be seen for
the largest b0’s. This is the first sign of the suppression of
superradiance as soon as b0�0/� is not small. A system-
atic numerical study shows that the superradiant decay rate
reaches it maximum at b0 	 8�/�0 and decays beyond this
value. Then, for very large b0, it slowly tends toward �0, but
the LD model is not valid in that regime because the actual
optical thickness b(�) = b0/(1 + 4�2/�2

0 ) is not small and
thus multiple scattering is not negligible any more. A possi-
ble interpretation for the decrease of �sup is that the initial
detuning must be much larger than the width of the transfer
function. Then the incident spectrum E0(ω) is almost constant
at the scale of the transfer function and thus does not narrow
the transferred spectrum, yielding the fastest dynamics. This
leads to the condition � � �sup/2, which corresponds well to
b0 � 8�/�0. Note that another, but consistent, interpretation
of the reduction of superradiance close to resonance has al-
ready been discussed in the framework of the CD model [22].

Of course, the LD theory is extremely efficient from a
computing point of view. Moreover there is no limitation for
the atom number or b0 (contrary to the CD model), and we can
also include the Zeeman structure. It is thus possible to make
a direct comparison with experimental data without any free
parameter. Another possible extension is to include the effect
of atomic motion, which can be done by a simple Doppler
broadening of the atomic polarizability and a Doppler shift at
the scattering (see Appendix A). Whereas the CD simulations
with moving atoms are extremely time demanding [17,18],
the LD theory allows fast computing. We address those two
problems in the following.

III. COMPARISON WITH EXPERIMENTAL DATA

To perform such a comparison we can use the experimental
results of Ref. [7] on off-axis superradiance [23]. For the
linear-dispersion modeling, we have simulated as closely as
possible the experimental switch-off profile of the laser, which
has been measured independently [24]. About the multilevel
aspect of the rubidium atoms used in the experiment, it ac-
tually does not change the modeling. Indeed, we suppose
that all Zeeman states are equipopulated and, in addition, the
total light intensity was measured without any polarization
selection [25]. Under these conditions, one can show that the
complete multilevel equation (A4) is equivalent to Eq. (1),
where b0 is the resonant optical thickness measured in the ex-
periment, which includes a degeneracy factor in the scattering
cross section.

The result of the LD theory is reported in Fig. 2 along with
the data points. The decay rates are determined by exponential
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FIG. 2. Ab initio comparison between the experimental data
(symbols) from [7] and the linear-dispersion theory (solid lines) for
the superradiant decay rate �sup as a function of the resonant optical
thickness b0 for different detunings. Here the fitting range starts as
t > 0.1�−1

0 (to wait for the laser switch-off) until the detected light
intensity decreases to 20% from its steady-state value (before the
switch-off).

fits using the same fitting window for both (see caption). Ex-
cept for the lowest part of the � = −7�0 data set, where there
is a small discrepancy that is not understood, the agreement
is very good for large detunings, without any free parameter.
Yet a discrepancy appears at large b0 for the lowest detuning
� = −4�. Other data sets at even lower detuning (not shown
for clarity) are also not in agreement with the LD theory.
We attribute this discrepancy to multiple scattering, which is
neglected in the LD theory: as soon as the condition b(�) � 1
is not fulfilled any more, deviations from the LD theory start
to appear. For � = −4�0, the discrepancy starts at b0 > 20,
corresponding to b(�) > 0.3. We note, however, that for data
at larger �, the agreement seems to go beyond this limit.

Interestingly, one can also notice that some of the measured
and computed decay rates are larger than the prediction of
Eq. (4). Using different switch-off profiles in the LD theory,
we have checked that an instantaneous switch-off, which leads
to Eq. (4), does not produce the fastest decay rate, which is
somewhat counterintuitive. One possible explanation is that
resonant photons produce longer-lived excitations [26,27].
For an initially detuned field, a large broadening (fast extinc-
tion) is thus not favorable for superradiance. This effect will
be the subject of further investigations.

Finally, the large-b0 limit is not visible in Fig. 2 but we have
checked that the LD theory predicts a decay rate slowly reach-
ing the single-atom one (e.g., �sup 	 1.14�0 for � = −4�0

and b0 = 200), although the experiment yields lower values
due to multiple scattering [7].

IV. SUPERRADIANCE WITH THERMAL MOTION

One can easily include the effect of atomic motion in the
LD theory by convoluting the atomic polarizability with the
detuning distribution corresponding to the Doppler broad-
ening [Eq. (A4)] The Doppler broadening also acts on the
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FIG. 3. Comparison between the coupled-dipole model (sym-
bols) and the linear-dispersion theory (solid lines) for the superra-
diant decay rate �sup as a function of the normalized Doppler width
k0σv/�0 (σv is the rms width of the velocity distribution), for two
detunings, � = −4 (blue) and � = −10 (red). The parameters are
N = 1500, ρ0λ

3 = 2, b0 = 5.78, θ = π/2, averaged over ϕ and over
∼200 realizations, and the fitting range is 0 < t < 0.15�−1

0 .

propagation part [Eq. (A6)] and one should also take into
account the Doppler shift between the incident light and the
scattered light. For the computing time, it is tremendously
more efficient than solving the CD equations with moving
atoms, as done in [17,18] for subradiance.

A. Benchmark against the coupled-dipole model

We use the same CD simulation method as in [17], with
moving atoms. The comparison between the two models is
shown in Fig. 3 for a fixed b0 and two different detunings. The
agreement is good, with only a slight discrepancy in the T = 0
limit. This discrepancy was absent in Fig. 1 computed with
motionless atoms. In that case we used an exclusion volume to
suppress the influence of strong superradiant pairs, while we
removed the exclusion volume for the case of moving atoms.
These superradiant pairs (with at most � = 2) contribute to a
slight decrease of the superradiant decay rate in the CD model.

The two models agree well in predicting a certain ro-
bustness of superradiance: the superradiant decay rate is
unaffected until a Doppler broadening on the order of �0.
For 87Rb, it corresponds to T ∼ 235 mK, well above standard
temperatures of cold-atom experiments. In Appendix B we
show experimental data that confirms this robustness until
T ∼ 11 mK.

The two models also agree in their prediction of suppressed
superradiance at higher temperature, with a critical tempera-
ture that clearly depends on the detuning: a larger detuning
allows one to observe superradiance at larger temperature. We
interpret this behavior by the reduction and suppression of
superradiance when the driving field is close to resonance, as
discussed in the previous sections (and in [7,22]). Here, the
same effect occurs with the Doppler-broadened resonance.

This raises the question of the possibility of observing
superradiance at higher temperature, even at room tempera-
ture, by using very large detunings. When solving the CD
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FIG. 4. Superradiant decay rate computed from the LD theory
as a function of the detuning for different values of the Doppler
broadening, with b0 = 20. The decay rate is determined in the range
0 < t < 0.02�−1

0 . At large detuning � � k0σv , superradiance is
recovered.

equations, larger detunings need finer time sampling, which
increases the computation time. Detunings larger than the
Doppler broadening are thus very difficult to explore with the
CD model at large temperature.

B. Room-temperature superradiance

In Fig. 4 we show the superradiant decay rate computed
from the LD theory as a function of the detuning for several
values of the Doppler broadening, up to k0σv = 40�0, corre-
sponding to T ≈ 400 K for Rb. Correspondingly, the detuning
goes up to � = 300�0. The resonant optical thickness is fixed,
b0 = 20 (defined for motionless atoms). As expected, super-
radiance is suppressed near resonance. At very large detuning,
however, superradiance is recovered.

With some algebra, it is actually possible to analytically
show, starting from Eq. (A4), which includes the atomic ve-
locity distribution, that one should recover the motionless
superradiant decay rate in the limit � � k0σv . Numerically
we obtain a slight discrepancy, which is due to the fitting range
(see caption): the maximum decay rate is only visible for a
very short time after t = 0, beyond our numerical resolution.
Note also that the decay rate is overestimated for the lowest
temperatures on resonance because multiple scattering should
be significant there.

From these results, it seems possible to observe super-
radiance in the linear-optics regime using room-temperature
vapor at moderate optical thickness. Since the driving field
must be largely detuned, it interacts only very weakly with
the atomic vapor: therefore the experimental difficulty is to
collect enough scattered light (compared to spurious light).

V. CONCLUSION

We have presented a linear-dispersion model for off-axis
superradiance in the linear-optics regime for disordered dilute
samples. This approach is very useful from a computational
point of view, as it provides a fast method of calculating the
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superradiant dynamics. It also gives a nice description of the
physics from the point of view of light. Superradiance appears
as a dispersion effect, similar to optical precursors, without
involving interference between light scattered by different
atoms.

If one uses Eq. (1) to compute the decay at all time, one can
check that after the fast superradiant part, the following of the
decay tends to a single exponential of rate �0: the LD theory
does not describe subradiance. This means that linear-optics
subradiance cannot be understood as a dispersion effect, con-
trary to linear-optics superradiance. An optical description of
subradiance in disordered samples is therefore still an open
problem. It should rely on mechanisms not included in the LD
approach, such as multiple scattering [28,29], recurrent scat-
tering, or refractive-index-gradient trapping [30,31]. Which of
these mechanisms is the dominant one probably depends on
the parameters of the experiment, such as the detuning of the
excitation and the density of the sample [32,33]. Note that in
multiple-scattering approaches the effective medium between
scattering events also plays an important role [28,29,34].

Another open problem is the extension of this model to
the case of dense samples. At high density other phenomena
occur, such as collective shifts and recurrent scattering [35],
which are not included in the present model. However it might
be possible to keep the essential ingredients of the linear-
dispersion theory and include the high-density effects through
a renormalization of the atomic susceptibility, following the
method recently presented in [36].
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APPENDIX A: MAIN STEPS FOR THE DERIVATION
OF THE LINEAR-DISPERSION THEORY

The intensity Iν (�, t ) of the light polarization component ν

that the atomic ensemble scatters in a unit solid angle around
an arbitrary direction given by the vector R [� = (θ, ϕ)]
is determined by the electric field second-order correlation
function D(E )

ν1 ν2
(r1, t1; r2, t2) via [37]

Iν (�, t ) = c

2π

∫
Su

d2rD(E )
νν (r, t ; r, t ). (A1)

Here the integral is calculated over a spherical surface Su

corresponding to a unit spherical angle and located far from
the considered atomic ensemble. The center of the sphere is

assumed to be in this ensemble and c is the speed of light in
vacuum.

In order to theoretically describe the effect of superradi-
ance, we have to be able to calculate the correlation function
D(E )

νν (r, t ; r, t ). In the general case this function is expressed in
terms of negative-frequency E (−)

ν1
(r, t ) and positive-frequency

E (+)
ν1

(r, t ) components of the Heisenberg electric field opera-
tors:

D(E )
ν1 ν2

(r1, t1; r2, t2) = 〈E (−)
ν2

(r2, t2)E (+)
ν1

(r1, t1)〉. (A2)

The brackets in this expression correspond to quantum-
mechanical statistical averaging over the density operator of
the entire system under investigation.

The correlation function (A2) can be calculated by the
diagram technique for nonequilibrium systems (see for exam-
ple [38–42]). This technique is based on a perturbation-theory
expansion. The field correlation function is expanded into
series over interaction between atoms and light. Each item
in this expansion is represented by a diagram. Part of the
diagrams can be summed up.

In this paper we consider only the case of side scattering,
when the mean values of the field operators are equal to
zero, 〈E (±)

ν (r,t )〉 = 0, in the region of the photodetector. In
addition, when calculating the correlation function (A2), we
assume the following typical experimental conditions: The
initial states of the atomic ensemble and light are uncorrelated;
the atomic ensemble is dilute, which means that the average
interatomic distance is much larger than the wavelength of the
resonant radiation.

The exciting light is assumed to be a long pulse and the
time profile of its positive frequency component can be de-
termined by the following superposition of monochromatic
waves:

E (+)
μ (r, t ) = uμ

∫ ∞

0

dω

2π
E (ω) exp(ikr − iωt ), (A3)

where the unit vector uμ determines the polarization of the
incident light. This light is weak and all nonlinear optical
phenomena can be neglected.

Under such assumptions we can get an expansion of the
correlation function (A2) as a series over the number of events
of incoherent scattering of a photon in the medium. By inco-
herent, in contrast to coherent forward scattering, we mean an
act of scattering of a photon by an atom in which the direction
of the wave vector changes. Coherent forward scattering can
be taken into account at all orders by introducing the exact
advanced and retarded Green’s functions of the electromag-
netic field in the considered medium. They can be found
analytically as solutions of the corresponding Dyson equation
(see for example [41,42]). In a similar way we can sum up all
diagrams responsible for the interaction of excited atoms with
the vacuum reservoir and introduce “dressed” atomic Green’s
functions. They also can be found analytically [41,42].

Every event of incoherent scattering leads to a delay of the
secondary photon caused by the so-called dwell or Wigner
time [26,27]. For this reason, to describe the process of su-
perradiance, which takes place just after the exciting pulse is
switched off, we can consider only the contribution of a single
incoherent scattering event.
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FIG. 5. Experimental superradiance data for � = −4�0. (a) Decay curves for light scattered off axis with b0 = 35. The amplitude is
normalized to 1 for the steady-state level, right before the switch-off at t = 0. The dashed line is the single-atom decay and the temperature is
encoded in the color. The two horizontal dashed lines indicate the range used for fitting the decay rates. (b) Fitted decay rates as a function of
b(�) for different temperatures (same color code). For clarity, statistical error bars are shown for one data set only.

Omitting all calculations, which can be found in [41,42],
we reproduce here the final result for the single scattering
contribution Is

ν (�, t ) in the light intensity Iν (�, t ). This con-
tribution is

Is
ν (�, t ) =

∫
d3r

∫
d3 p

(2π h̄)3

c

4π h̄2

∑
m

ρmm(p, r)

×
∣∣∣∣∣∣

∑
μ′,ν ′,m′

∞∫
0

k2dω

2π
E (ω) exp(−iωt )u′

νXνν ′

×(R, r, ω′)α(m′m)
ν ′μ′ (ω − kv)Xμ′μ(r, r0, ω)uμ

∣∣2
.

(A4)

This is valid even for anisotropic media when the populations
of the different Zeeman sublevels are different. Here the unit
vectors u′ correspond to the two possible orthogonal polariza-
tions of scattered light; the function Xμ′μ(r, r0, ω) describes
the propagation of light from the source r0 to the point r,
where a single incoherent scattering event takes place. The
function Xνν ′ (R, r, ω′) describes the propagation of a sec-
ondary photon with frequency ω′ toward the photodetector.
The frequency ω′ = ω + (k′ − k) · v differs from ω due to a
Doppler shift.

In the typical case of isotropic media, when all Zeeman
sublevels of the ground state are uniformly populated and the
single atom density matrix ρmm(p, r) does not depend on the
magnetic quantum number m, the function Xμ1 μ2

(r1, r2; ω)
can be calculated as follows:

Xμ1 μ2
(r1, r2; ω) = exp[−b(r1, r2, ω)/2]δμ1 μ2

, (A5)

where the “complex optical thickness” (accounting for atten-
uation and dephasing) of the inhomogeneous cloud between
points r1 and r2 for the considered case is

b(r1, r2, ω) = 4πk′‖d j0 j‖2

3h̄

∫ r1

r2

n(r)ds

×
∫

d3 p

(2π h̄)3

f (p)

−i(ω − ω j j0 − k′v) + �0/2
.

(A6)

Here n(r) and f (p) are the spatial and momentum distri-
butions of atoms in the considered ensemble, ‖dj0 j‖ is the
reduced matrix element of the dipole operator for the tran-
sition between the ground and excited states of total angular
momentum j0 and j respectively, and �0 is the natural
linewidth. The wave vector k′ is directed along r1 − r2.

The matrix α(m′m)
νμ (ω) is a scattering amplitude of the probe

photon on an atom:

α(m′m)
νμ (ω) = −

∑
n

(dν )m′m (dμ)nm

h̄(ω − ωnm) + ih̄�0/2
. (A7)

Note that expression (A4) describes only the contribution
of single incoherent scattering. It can be used for the descrip-
tion of superradiance when the average optical thickness of
the cloud is small. Another restriction is that Eq. (A4) can be
used for all directions except in the zones of backward and for-
ward scattering. For forward scattering the main contribution
comes from the coherent component of the scattered light, and
for backward direction, one of the polarization components
is absent for single scattering and scattering of higher order
should be taken into account. Equation (A4) is also not valid
for a cloud with a large aspect ratio. In such a case diffraction
and refraction effects play essential roles [43–45] and the
propagation function X cannot be described by Eq. (A5).

APPENDIX B: EXPERIMENTAL DATA ON
SUPERRADIANCE AS A FUNCTION

OF THE TEMPERATURE

In this Appendix we show some experimental data on the
superradiant decay as a function of the temperature of the
sample. The experimental setup and procedure are the same
as in Ref. [17] devoted to the influence of atomic motion on
subradiance. Here we analyze the temporal dynamics of the
decay of scattered light at early time.

Several decay curves are shown in Fig. 5(a) for fixed op-
tical thickness and detuning and for temperatures between
110 μK and 11 mK, corresponding to normalized Doppler
broadening k0σv/�0 between 0.022 and 0.22. All curves ex-
hibit a superradiant behavior, with an early decay significantly
faster than the single-atom decay. There is no visible dif-
ference between the data acquired at different temperatures,

023702-6



SUPERRADIANCE AS SINGLE SCATTERING EMBEDDED … PHYSICAL REVIEW A 103, 023702 (2021)

which demonstrate the robustness of superradiance in this
temperature range. This is confirmed in Fig. 5(b), where we
show the fitted superradiant decay rate as a function of the
optical thickness for the same temperatures. At the precision
of the experiment and in this limited range of temperature, we
do not observer any influence of the temperature. The behav-

ior is the one observed in Fig. 1 for motionless atoms, i.e.,
an increase with the optical thickness as long as b(�) � 1,
and then a decrease. Note also that superradiance is more
limited than in the data of Fig. 2 because the switch-off
of the laser was significantly slower (∼15 ns instead of
∼3 ns).
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