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Driven quadrature and spin squeezing in a cavity-coupled ensemble of two-level states
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The generated magnitude of quadrature squeezing in a cavity-coupled ensemble, which is continuously driven
using a coherent off-axis field, is theoretically explored. Using a truncated set of equations of motion derived
from a Dicke Hamiltonian, steady-state quadrature squeezing of the cavity field is numerically calculated to
approach a limit of −3 dB, while frequency-modulated quadrature squeezing approaches a limit of −14 dB,
in the absence of pure dephasing and as a function of the ensemble’s size and detuning. The impact of pure
dephasing on steady-state quadrature squeezing is shown to be mitigated by increased detuning of the driving
field, while frequency-modulated squeezing is only shielded in a regime where the cumulative coupling and
driving rates are in excess of the pure-dephasing rate. Spin-squeezed entanglement is also calculated to occur
simultaneously with weakly driven frequency-modulated quadrature squeezing.
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I. INTRODUCTION

Quadrature squeezed light is an important experimental
resource in quantum optics, with a number of applications
ranging from enhancing interferometry beyond the shot-noise
limit [1,2] to its use in generating entangled continuous-
variable states for quantum information protocols [3,4]. Due
to its utility, there is justifiable motivation to not only generate
larger squeezing magnitudes, necessary in particular for fault-
tolerant continuous-variable quantum computing [5], but also
in expanding its bandwidth [6], and in optimizing its exper-
imental efficiency and integrability [7]. By making squeezed
light sources more accessible and practically implementable,
their benefits may be reaped in both routine spectroscopy and
interferometry [8,9], while further spurring the development
of hybrid continuous and discrete variable quantum infor-
mation protocols [10], and optical sensing schemes that go
beyond the classical limits [11].

State-of-the-art sources of quadrature squeezed light are
based on cavity-assisted χ (2) parametric down-conversion
[12], while much effort is currently being invested in devel-
oping alternative on-chip integrated sources based on χ (3)

four-wave mixing schemes [13,14]. An alternative quadrature
squeezing mechanism, which is technically simpler but less
explored, is based on the resonant fluorescence of weakly
driven optical dipoles, first proposed by Walls and Zoller [15].

The maximum measurable degree of quadrature squeezing
in free space from such two-level systems is predicted to be of
the order of −1.25 dB, without accounting for optical losses
and realistic detection efficiencies. Experimental attempts so
far have successfully substantiated this prediction; however,
due to limited detection efficiencies and cumulative optical
losses, the measured quadrature squeezing has been far be-
low the predicted value, ranging between the orders of −10

*haitham.el@gmail.com

and −100 mdB for cavity-coupled atoms and quantum dots,
respectively [16,17].

Compared to the measured −15 dB from state-of-the-
art parametric cavity systems [12] and considering the
−15 to −17 dB desired for fault-tolerant continuous vari-
able quantum computing [5], the motivation for pursuing
resonance-fluorescence based quadrature squeezing lies rather
in the possible technical advantages and accessible wave-
lengths. The appeal of their potentially small technical
footprint, and in providing squeezed light sources at wave-
lengths towards the higher energy end of the visible spectrum,
makes exploring this approach worthwhile. The latter point
is particularly interesting, given the technical challenges of
frequency converting squeezed vacuum states [18] and the
difficulty of engineering suitable nonlinear systems for gen-
erating such states at wavelengths shorter than 600 nm.

Quadrature squeezing through resonance fluorescence is
based on an established proportionality between the scattered
field’s quadrature fluctuations and the dipole moment’s fluc-
tuations, such that they may be considered interchangeable
[19–21]. When considering an ensemble of noninteract-
ing dipoles, this relationship may be transposed into a
relationship between the collective angular momentum op-
erator and the far-field quadrature, thereby highlighting a
possible link between far-field quadrature squeezing and
ensemble spin squeezing [22]. In turn, given the direct
relationship between spin squeezing and multipartite entan-
glement [23,24], any observable nonclassical fluctuation of
the far-field quadratures can be considered an unambiguous
witness of multipartite entanglement, for certain experimental
configurations.

Spin-squeezed states are an important class of metrolog-
ical probes, usually employed in interferometric schemes
that revolve around assessing a phase shift of the col-
lective spin state, imparted by an external physical quan-
tity. The smallest uncertainty when measuring such phase
shifts, and therefore the spin state’s ultimate sensitivity, is
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directly proportional to its degree of multipartite entanglement
[25,26]. Experimentally determining large-scale entangle-
ment is a principal goal in many areas of quantum information
science. Therefore, exposing and delineating relationships
between metrologically useful multipartite entangled states
and directly measurable quantities, such as the quadrature
fluctuations of coupled fields in this work, is fundamentally
informative.

Here, an indirectly driven cavity-ensemble system is nu-
merically explored to determine the conditions needed for
generating quadrature-squeezing magnitudes beyond the free-
space limit, and the consequential degree and type of spin
squeezing. Analogous to the cavity-mediated detuned scheme
studied in [27] and the Raman-based scheme in [28], the
cavity-ensemble system is numerically solved for varying de-
tuned configurations that address the sidebands, or dressed
states, of the coupled system, with the various rates and de-
tuning framed in relation to the two-level state’s longitudinal
relaxation rate.

The numerical results highlight how the generation of both
steady-state and frequency-modulated quadrature squeezing
of a cavity field can exceed the free-space limit of sin-
gle two-level systems while accounting for pure dephasing.
Furthermore, they highlight how the generation of frequency-
modulated quadrature squeezing can simultaneously generate
entangled spin squeezing.

The investigation begins with delineating the studied
Hamiltonian, the assumptions made, and the considered
solid-state ensemble systems in Sec. II. This is followed
by a discussion of the numerical steady-state results for
quadrature squeezing from off-axis-driven and cavity-coupled
single, and ensemble, two-level emitters in Sec. III. Finally,
the numerical results for the generated frequency-modulated
quadrature squeezing and the simultaneous occurrence of
entangled spin squeezing are presented and discussed in
Sec. IV.

II. HAMILTONIAN AND FLUCTUATIONS

A. System Hamiltonian and dynamics

A two-level system, representing either an optical or mag-
netic dipole, is typically defined using pseudospin operators
for a ground- and excited-state basis {|g〉, |e〉} separated by an
energy h̄ω0, such that σ = |g〉〈e|, σ = (σ †)†, and the commu-
tation [σ †, σ ] = σz. A Hermitian quadrature operator Uφ for
a dipole may be similarly defined to that of a single optical
mode Xφ , considering a relative measurement phase or the
optical field’s instantaneous phase (θ or φ):

Uφ = (eiφσ + e−iφσ †), Xθ = (e−iθ a + eiθ a†). (1)

Assuming that an ensemble’s constituents only interact indi-
rectly via the external fields, the energy and dynamics of a
cavity-coupled ensemble may be described by a Dicke Hamil-
tonian,

H/h̄ = ωca†a + 1

2

N∑
k

ωkσkz +
N∑
k

gkX0U π
2 ,k, (2)

where ωc and ωk are the cavity and dipole transition frequen-
cies, and gk is the coupling strength of the dipole and cavity

mode. In the scenario discussed here, the dipole ensemble is
considered to be directly driven by an off-axis field which
bypasses the cavity input, as described in [27]. This is easily
facilitated using a ring-based cavity configuration, but may
also be implemented using a linear cavity via either off-axis
excitation (requiring consideration of the relative dipole align-
ment with the external driving field and the cavity field) or
detuning of the cavity from the dipole’s and external field
transition.

Such a system is schematically pictured in Fig. 1. This
configuration ensures that the cavity remains a passive ele-
ment, which acts as a coherence “purifier” of the ensemble’s
transition, in the sense of which the coherent cavity-coupling
rate outcompetes the incoherent decay rates of the ensemble.
For an appropriately engineered cavity system, this config-
uration can collect a large part of the ensemble’s emitted
fluorescence, while avoiding the bandwidth restrictions of
driving the ensemble through the cavity itself, in addition
to being experimentally convenient for distinguishing the
driving field light from the cavity-transmitted light during
detection.

The driving field of the ensemble is described using a
dipole-approximated semiclassical term,

H�/h̄ = �

2
(eiωl t + e−iωl t )

N∑
k

U0,k, (3)

which is defined as a function of a driving Rabi frequency �

and a field frequency ωl , and for which � represents a product
of a linearly polarized plane-wave electric field and a linear
transition moment of the two-level state.

The resulting system dynamics are calculated by numer-
ically integrating the system’s Markov approximated master
equation ρ̇, while accounting for a cavity decay rate κ , the
radiative longitudinal relaxation rate γ1, and pure-dephasing
rate γ ∗

2 , as detailed in the Appendix.
A thermal starting configuration of the system (relevant for

e.g. magnetic dipoles) is consistently used here for all nu-
merically derived results, such that {〈σz(0)〉, 〈a(0)〉} = {0, 0},
and 〈a†a(0)〉 = n̄. It should be noted that identical results are
obtained when considering 〈σz(0)〉 = −1, which would be the
expected case for an ensemble of optical dipoles.

When deriving the coupled equations of motion, the system
is treated symmetrically as carried out in [29,30], such that
for all ensemble constituents k, single dipole expectation val-
ues and their correlation with the cavity field are considered
equal, 〈σk〉 = 〈σ1〉, 〈a†σk〉 = 〈a†σ1〉, while all pairs of spins
are designated as 〈σ †

k σ j〉 = 〈σ †
1 σ2〉 for all j �= k, adhering to

the commutation relation [σ †
j , σk] = σ jzδ jk . The generation of

the equations of motion is an indefinite procedure which is
truncated using a cumulant expansion approach [29–31], as
described in the Appendix.

A rotating frame with the driving field frequency ωl

is considered, along with the rotating wave approximation.
However, this is not employed for the cavity-coupling term,
as the rapidly oscillating terms become non-negligible for in-
creasing ensemble sizes, especially considering the possibility
of the collective coupling strength approaching the transition
frequency.
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FIG. 1. A simplified schematic describing the considered system parameters. An N-sized ensemble is placed within an optical cavity with
a decay rate κ and is collectively coupled with a rate g1

√
N . The ensemble is driven coherently with an off-axis field at a rate � and decays

with a total dephasing rate t . The system’s intracavity and off-axis field’s quadrature fluctuations 〈�X 2
θ 〉 and 〈�U 2

θ 〉 are squeezed along one
direction in phase space. The ensemble spin-state fluctuations 〈�J2

k 〉 may be squeezed simultaneously along one or two of the orthogonal
coordinates of the ensemble Bloch sphere, resulting in three possible types of squeezed spin states. The dashed circles represent the shot-noise
or spin-noise uncertainty limit.

B. Quadrature squeezing

The variance of an operator’s fluctuations is defined with
respect to its expectation value such that

�a = a − 〈a〉,
〈�a2〉 = 〈a2〉 − 〈a〉2. (4)

For a single-mode field, its quadrature fluctuations are
defined as

〈
�X 2

θ

〉 = 2(〈�a†�a〉 + Re{e−i2θ 〈�a2〉}) + 1. (5)

This expression consists of a coherent and incoherent con-
tribution 〈�a2〉 and 〈�a†�a〉, respectively, which are both
effectively zero for a vacuum state. This sets the minimum
uncertainty (the shot-noise level) to a value of 1, which is a
consequence of the chosen quadrature definitions in Eq. (1).

A similar picture may be attributed to that of a single two-
level emitter such that

〈
�U 2

φ

〉 = 2(〈�σ †�σ 〉 + Re{e−i2φ〈�σ 2〉})−〈σz〉. (6)

This resulting expression can be understood in analogy with
Eq. (5), consisting of a dipole transition’s coherent and
incoherent contributions. However, instead of a constant un-
certainty level like that of the optical field, the fluctuations are
limited by the instantaneous population inversion 〈σz〉, which
is a function of the external driving fields and intrinsic decay
rates.

To obtain a consistent prognosis, 〈σz〉 is set to −1/2, rather
then being discarded via employing normal ordering during
the derivation of Eq. (6). This corresponds to the minimum
value it takes when the coherent fluctuations 〈�σ 2〉 are at a
maximum, and for which the minimum uncertainty product
abides by 〈�U 2

φ 〉〈�U 2
φ+ π

2
〉�1/4.

Considering an ensemble of noninteracting dipoles,
the field-mediated intra-ensemble fluctuations are linearly
summed, rather then summed in quadrature, as all the indi-
vidual fluctuations are correlated via their identical coupling

to the same cavity,

�inc = N〈�σ
†
1 �σ1〉 + (N−1)〈�σ

†
1 �σ2〉,

�coh = N
〈
�σ 2

1

〉 + (N−1)〈�σ1�σ2〉,〈
�U 2

φ

〉′ = 2(�inc + Re{e−i2φ�coh}) + N

2
. (7)

The degree of quadrature squeezing is conventionally char-
acterized using homodyne detection, where the signal of
interest is mixed with a local oscillator at a given phase θ and a
frequency ωLO , generating sidebands at the frequencies ωLO ±
ν. Upon detection with a suitable bandwidth detector, these
are converted into a low-frequency photocurrent, whose spec-
tral density Sθ (ν) directly measures the ν-dependent noise
variance.

Given the weak-sense stationary nature of the rate equa-
tions, Sθ (ν) is by definition the Fourier transform of the
field quadrature’s autocorrelation function (g(1)), via the
Wiener-Khintchine theorem. However, in the case where an
analytical expression is not sought, it is numerically conve-
nient to directly estimate the spectral density of the integrated
rate equations using a periodogram-based computation (e.g.,
Welch’s method [32]).

The periodogram, P̂, normally ordered variance,
〈:�X 2

θ (t ):〉 (which excludes the constant term), is scaled
as a product of the collection and detection efficiencies ηd

(the probability of collecting one photon and generating
one photoelectron) and the cavity escape efficiency ηκ

[= κ/(κ + nonradiative loss rate)] to obtain an estimate of
Sθ (ν):

Sθ (ν) = 1 + ηdηκ P̂
{〈:�X 2

θ (t ):〉}1/2
. (8)

For constant steady-state quadrature variances, a power spec-
trum is not meaningful as there are no frequency components
other than what is introduced. The power spectrum is there-
fore only calculated for oscillating solutions, which directly
conveys the distribution and magnitude of the quadrature fluc-
tuation’s frequency components.

C. Spin squeezing

The fluctuations of an ensemble of two-level states are
conventionally assessed via a collective angular momen-
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tum operator 〈J〉 = {〈Jx〉, 〈Jy〉, 〈Jz〉}, also referred to as the
collective spin. While there are a few definitions of spin
squeezing, depending on the experimental settings and the
observables of interest [33,34], the variance and basic un-
certainty relationships of the collective spin components are
defined in terms of the three orthogonal coordinates of the
collective state Bloch sphere:

〈J�〉 =
N∑
k

〈σk�〉
2

, (9)

where � = {x, y, z} designates the given Pauli matrix, which
are defined in terms of the pseudospin operators. Their vari-
ance, and the basic uncertainty relation, are further defined
with respect to the previously described symmetric treatment
of the ensemble,〈

�J2
�

〉 = N

4

[〈
σ 2

1�

〉 + (N−1)〈σ1�σ2�〉
] − 〈J�〉2, (10)〈

�J2
j

〉
< 1

4

√
〈Jk〉2 + 〈Jl〉2, (11)

where { j, k, l} represent the three orthogonal spin coordinates.
For this uncertainty relationship, it is possible for squeez-

ing to occur simultaneously in the two orthogonal directions
of the Bloch sphere’s equatorial plane (see Fig. 1), generating
planar spin-squeezed states as opposed to a standard squeezed
state along only one of the orientations (Jx,y), and Dicke
spin-squeezed states which represent unpolarized ensembles
where only the spin coordinate in the axial plane (Jz) is
squeezed [26,35]. Planar spin-squeezed states are particularly
interesting as they enable the simultaneous measurement of
imparted phase and amplitude changes beyond the classical
limit, unlike their standard counterpart [36].

It has been established that spin squeezing directly implies
multipartite entanglement, which is deemed metrologically
useful [35] when below a size-dependent threshold [23,25],

ξ 2
j ≡

〈
�J2

j

〉
〈Jk〉2 + 〈Jl〉2

<
1

N
. (12)

Comparing Eqs. (12) and (11), it is evident that multi-
partite entanglement and spin squeezing do not necessarily
correspond [34]; however, any degree of spin squeezing
immediately implies some magnitude of multipartite entan-
glement [37].

D. Solid-state ensemble densities and coupling strengths

Considering solid-state ensembles, the symmetric descrip-
tion of a two-level ensemble employed here implies a
uniformity which counters the typical inhomogeneity associ-
ated with such systems. As the particular spectral information
is not sought here, the specifics of the inhomogeneous distri-
bution are not needed for the following analysis; the individual
coupling strengths are considered identical, while the direct
effect of density-dependent spectral and pure-dephasing in-
homogeneity can be crudely accounted for to first order by
setting γ ∗

2 	 γ1.
Generally, the cavity-coupling strength is proportional to

an effective mode volume Ve f and scaled by the relative
alignment of the transition moment and the resonant field ζ ,
such that a collective coupling strength G can be defined as
proportional to a given ensemble density Nd and longitudinal
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FIG. 2. Conceptual limit of the ensemble size for single coupling
strengths as a function of varying effective cavity volume. A simple
confocal cavity is considered here, where the effective mode volume
Ve f = πLW 2

0 /4 is varied by increasing its length and the related
mirror curvatures, in terms of a near-concentric cavity beam waist
defined via W0 ≈ √

Lλ/2π .

decay rate γ1. For optical dipoles, this may be expressed via

G =
√

Ng1 ∝ ζ

[
(NdVe f )

(
3πc3γ1

2ω2
k n3Ve f

)]1/2

, (13)

where c is the speed of light and n is the refractive index of the
cavity medium. Based on this, the relationship between g1 and
Ve f may be considered constant for any given Nd . Instead, the
allowed values of g1 and N may be delineated for any given
Nd with respect to the considered cavity system and the type
of ensemble used.

Considering the simple case of a near-concentric optical
cavity, where the mode volume is estimated as a product of
a zeroth-order Laguerre-Gaussian beam waist and the cav-
ity length, the resulting ensemble sizes and expected single
emitter coupling strength are plotted in Fig. 2 for a range of
concentrations. A choice of appropriate coupling rates and
ensemble sizes can thereby be based on experimentally de-
termined γ1.

For single two-level systems, the experimentally achieved
coupling strength has typically been four to six orders of mag-
nitude lower than the transition frequency [38], while the ratio
g1/{γ1, κ} can span between 0.1 to 100 for highly optimized
systems, but are usually two to three orders of magnitude
lower than γ1.

For solid-state optical defects such as tin vacancy cen-
ters in diamond, the average decay rates of the order of
200 MHz have been measured from ensembles with densities
estimated in the order of 1 ppm [39,40]. Alternatively, for rare-
earth ion systems such as europium-doped yttrium silicate or
praseodymium-doped yttrium aluminum garnet, decay rates
down to 100 Hz below 10 K, and up to 50 MHz at room
temperature, have been measured [41,42].

Further accounting for the crystal symmetry, e.g. the
tetrahedral symmetry of diamond and how a tin vacancy
ensembles’s dipole orientations will be distributed over four
distinct orientations, the dipole alignment factor ζ ranges be-
tween 0.5 and 0.75, such that a realistic collective coupling
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strength can be considered to range from G ∝ 10−8ωk for
diamond-based ensembles, and up to ∝10−3ωk for rare-earth
ion ensembles, considering the rough scaling in Fig. 2.

Conceptually, the proportion between N and g1 can be
modified by varying the concentration, but the issues asso-
ciated with larger concentrations are nontrivial. As well as
increased inhomogeneous broadening, a hard limit on the fea-
sible density exists beyond which the defect loses its integrity
and desired transition properties.

However, as demonstrated using dense rare-earth ion en-
sembles, inhomogeneous broadening can be circumvented via
spectral-hole burning techniques, e.g., [43]. Ideally, a system
where the ground- and excited-state hyperfine transition fre-
quencies exceed the inhomogeneous broadening frequency is
desirable, such as Ho3+ [44], in order to avoid issues related to
the modification of the cavity’s free spectral range and decay
rate by the hole-burning procedure [45,46].

Another possibility could involve preparing highly con-
centrated colloidal quantum dot aggregates. Such systems
characteristically possess much faster decoherence and lon-
gitudinal decay rates, but provide the advantage of facilitating
the creation of comparably homogeneous concentrations ex-
ceeding 100 ppm, which span larger volumes, with the
appealing potential for wavelength tunability by adjusting
their size. Considering a recent example demonstrating dis-
crete single-photon emission from colloidal perovskite-based
quantum dots [47], the longitudinal decay rates are measured
to be an order of magnitude faster then those for diamond
defects, which projects possible rates of the order of G ∝
10−4ωk , considering the example scaling in Fig. 2.

III. CONTINUOUSLY DRIVEN SQUEEZING

A. Single dipole

For the case of a single emitter without a cavity (N =
1, g1 = 0), a direct analytical solution may be obtained for
the steady-state quadrature fluctuations, in a rotating frame
with the driving field frequency ωl . The steady-state expres-
sion in terms of a scaled Rabi frequency z = (�/|t |)2 is
derived as

〈
�U 2

φ

〉′
s = zα

(2zα + 1)
− Re

{
z(1 + e−i2φ )

4(2zα + 1)2

}
+ 1

2
, (14)

where t =  + i�0, α = /2γ1,  = γ1/2 + γ ∗
2 + n̄γ1 is

the total temperature-dependent dephasing rate, �0 = (ω0 −
ωl ) is the detuning with respect to the driving field, and the
subscript s denotes a settled steady-state after a duration such
that d

dt 〈· · · 〉 = 0.
Neglecting heat (n̄ = 0), Eq. (14) is plotted in Fig. 3(a)

and shows that the minimum squeezed variance is obtained
for z = 1/6, of the order of −1.25 dB. Introducing dephasing
drastically reduces the difference between the two orthogonal
quadratures, such that no squeezing may be generated when
γ ∗

2 > γ1.
When coupling a single dipole to a cavity and coherently

driving its transition resonantly [�c=(ωc−ωl )=0=�0] using
an off-axis field, a simultaneous increase in the fluctuations
of both orthogonal quadratures is generated as � is increased,
which is plotted in Fig. 3(b).
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FIG. 3. (a) Quadrature fluctuations of a free-space single emitter
as a function of the scaled Rabi frequency z for various dephasing
rates γ ∗

2 /γ1 = {0, 0.1, . . . , 1}, and (b) for various cavity-coupling
rates g1/γ1 = {0, 0.4, 0.6, 1}, where κ/γ1 = 10. Blue and red traces
represent orthogonal quadrature variances.

Based on a cursory analysis of the steady-state form of
the coupled rate equations (see the Appendix), this may be
considered a consequence of the enhanced exchange rate
of quanta between the cavity field and the dipole 〈a†σ1〉s,
which leads to the simultaneous reduction of the coherent
fluctuations 〈�σ 2

1 〉s and the increase of incoherent fluctuations
〈�σ

†
1 �σ1〉s:

〈
�σ 2

1

〉
s ∝ − g2

1

2
t
〈aσ1z〉2

s ,

〈�σ
†
1 �σ1〉s ∝ g1

γ1
〈a†σ1〉s. (15)

Evidently, these counteractive mechanisms may be mit-
igated by detuning the dipole from the driving frequency,
in particular towards �0 > g1 which reduces the coherence-
reducing correlation 〈a†σ1z〉s quadratically compared to the
detuning-insensitive (to first order) exchange of quanta
〈a†σ1〉s.

The resulting enhancement is demonstrated in Fig. 4,
which compares both resonant and detuned configurations. In
the resonant case, the quadrature fluctuations can be seen to
be reduced when the cavity is on resonance with the dressed
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FIG. 4. Steady-state map of the minimum quadrature variance as
a function of the cavity detuning �c and the Rabi frequency �, for
(a) resonant and (b) detuned single emitter and driving field.

states generated by the coherent driving field. In the detuned
case, squeezing of the order of −2.5 dB may be achieved
when the dressed state (generalized Rabi) frequency matches
that of the detuning frequency, such that �c ≈

√
�2 + �2

0 .
These relationships have been established through the work
of, e.g., [27,48], and present an exploitable link between
the ensemble’s far-field quadrature and the cavity output’s
quadrature, which is plotted in Fig. 4(b,ii).

Compellingly, the quadrature variance of the cavity out-
put is also modified, showing non-negligible squeezing
in the antidetuned case. Further analysis of the steady-
state expressions points towards a mechanism based on the
detuning-dependent relationship between the intracavity co-
herence and the dipole coherence,

〈�a2〉s ∝ g1N

c
〈aσ1z〉s − g2

1N2

2
c

〈�σ 2
1 〉s

�⇒∝ g1N

c
〈aσ1z〉s + g4

1N2

2
c 

2
t
〈aσ1z〉2

s . (16)

FIG. 5. Plot of the cavity-field steady-state quadrature variance
as a function of coupling strengths g1 for a single emitter for various
cavity-field detunings. The parameters used are �/κ = 1, γ1/κ =
0.1, and �0/κ = 25, which are the same as those used for the
detuned case in Fig. 4(b).

This highlights how the correlation between the intracav-
ity field and the population inversion 〈aσ1z〉s is strongly
enhanced or suppressed when the relative detunings are of
opposite signs, such that the real and imaginary components
of the denominator increase and decrease, respectively.

Physically, this illustrates how a coherent sideband-driven
process of the coupled system generates coupled photons
without incoherently populating the cavity (via 〈a†a〉s and
thereby 〈�a†�a〉s). A rough proportionality may thus be de-
fined between the ensemble and cavity quadrature fluctuations
such that

〈
�X 2

0

〉
s ∝

(
g2

1N

ct

)2〈
�U 2

π/2

〉′
s for κ < �c. (17)

This indicates how, for low driving rates such that 〈�U 2
π/2〉′s

is squeezed [cf. Eq. (14)] and at detunings beyond the cavity
decay rate, matching the product of oppositely signed cavity
and emitter detuning to the square of the coupling strength
[i.e., the product of the denominator in Eq. (17) is maximized
for Im{c} < 0, Im{t } > 0 to exceed the numerator], any
squeezing generated in the ensemble can be proportionally
transferred to the cavity field.

This relation can be understood in terms of how the direct
exchange of quanta via the coherent coupling term can be
regulated by compensating for the difference between the
cavity and two-level relaxation rates through the relative de-
tuning. This resulting squeezing is thereby measurable in the
cavity output field and enhanced by appropriately set relative
detunings to offset larger coupling rates.

Going further, the generated virtual dressed state via the
detuned driving, in addition to the direct transition coupled
to the cavity, can be understood to constitute a three-level
scheme. This can thereby facilitate lasing beyond both a given
coupling or driving rate, which manifests as an exponential
increase in both the cavity occupation 〈a†a〉s and quadrature
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FIG. 6. Steady-state map of the minimum quadrature variance
as a function of cavity detuning �c and the Rabi frequency �, for
a detuned ensemble of emitters, using the same parameters as for
Fig. 4, except for g1 which is adjusted such that g1

√
N/κ = G/κ = 1.

variances. This is demonstrated in Fig. 5 as a function of g1

for varying values of �c.
The onset of lasing occurs prominently in a far-detuned

regime (κ < 2�c) when the coupling exceeds the product
of the ensemble and cavity decay rates, g2

1N � 1
2ct . By

varying the cavity detuning for a given coupling strength, the
system can be tuned to reside just before the threshold where
squeezing is optimized. Thus, for lower g1 coupling values
and larger �c detuning values, squeezing in the cavity-output
quadrature may approach the free-space limit of a single two-
level state, at the expense of a reduced cavity-field amplitude.

B. Dipole ensemble

Increasing the ensemble size leads to an enhancement of
all cavity-field related correlations by a factor N , which aug-
ments the proportionality highlighted in Eq. (17). However,
this is counteracted by a reducing lasing threshold, beyond
which the quadrature variances of both the cavity field and
the ensemble far field increase by an order of magnitude.
This driving- and coupling-dependent threshold can, however,
be pushed to higher values at the expense of the cavity-field
amplitude.

Replacing the single emitter with an ensemble, the result-
ing detuning dependence is plotted in Fig. 6, for which the
collective coupling strength is set to equal the value of g1 used
in Fig. 4, such that G/κ = 1 (N = 106, g1 = 10−3).
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FIG. 7. Plot of the steady-state quadrature variances as a function
of the scaled driving frequency z for various ensemble sizes. The
ensemble detuning here is set to �0/κ = 80, while the remaining
parameters are kept identical to those used in Fig. 6, γ1/κ = 0.1,
�c/κ = −5, and γ ∗

2 = 0.

Given the assumption of a noninteracting ensemble, the
reduction of g1 implies that 〈�U 2

φ 〉s will resemble that of the
single free-space emitter. In this case, provided with a weakly
driven regime where � < 2�0, the intra-ensemble correla-
tions are negligible, with the exception of when the cavity is
tuned into antiresonance with the ensemble’s driven dressed
state (�c ≈ −

√
�2 + �2

0 ). The effect on the cavity-output
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FIG. 8. Plot of the (a) minimum steady-state quadrature variance
of the cavity field and (b) the steady-state photon number of the
cavity field, for a range of γ ∗

2 /γ1 fractions, which are annotated in
the plots. The same parameters as in Fig. 7 are used for N = 108

and z = 10−6. The blue traces represent γ ∗
2 = 0, while the annotated

thick lines are increasing γ ∗
2 /γ1 order of magnitude.
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FIG. 9. Time-dependent dynamics plotted for two different detuning regimes, which demonstrates how quadrature squeezing may be
generated as a steady state or as a periodic modulation, depending on the choice of relative detuning and driving field strength. The dotted
lines in the leftmost plot of (c) represent a starting condition of 〈σz(0)〉 = −1, and are shown to highlight that both thermal and ground-state
polarized initial conditions lead to identical periodic behavior, despite slightly different onsets. Plots are simulated for N = 108, g1/κ = 0.005,
γ1/κ = 0.1, and γ ∗

2 = 0.

quadrature remains nearly identical, as expected considering
the proportionality described in Eqs. (16) and (17).

The influence of ensemble size is explored in Fig. 7, high-
lighting how the cavity field may be squeezed towards a limit
of −3 dB in the absence of pure dephasing. In particular,
it shows how this is reached by increasing the ensemble
size under weak driving. In terms of the proportionality in
Eq. (17), this results in a decreased ensemble quadrature
variance 〈�U 2

φ 〉s by virtue of the increased coherent intra-
ensemble fluctuations 〈�σ1�σ2〉s [Eq. (7)].

Beyond the threshold, a phase transition occurs pertaining
to an increase in the incoherent intra-ensemble fluctuations
〈�σ

†
1 �σ2〉s, up to the point where the scaled Rabi frequency

z matches the detuning frequency. Beyond this value, the
strength of the driving field exceeds the rate of the enhanced
collective process, and the proportionality outlined in Eq. (17)
is invalidated by higher-order correlations.

Interestingly, the transition from a conventional lasing
character to a more superradiant one is reflected in the rela-
tive change of the ensemble quadrature fluctuations—as the
ensemble size is increased, the quadrature fluctuations of the
cavity increase while the ensemble fluctuations decrease. This
is a result of the concurrent increase in both coherent and
incoherent intra-ensemble fluctuations, which increases the
number of cavity photons, as the ensemble size and collective
coupling rate increases.

Introducing a finite pure-dephasing rate, the degree of
squeezing in the cavity-output quadrature is only weakly per-
turbed, as demonstrated in Fig. 8(a). In particular, the impact

of pure dephasing is observed to be mitigated by varying the
cavity detuning, such that by keeping the detuning rate larger
then the pure-dephasing rate, irrespective of the cavity and
coupling rate, a degree of squeezing can be maintained.

Provided that the pure-dephasing rate γ ∗
2 does not exceed

the ensemble’s detuning �0 [such that the proportionality
defined in Eq. (17) is optimized], the presence of pure dephas-
ing is therefore not completely detrimental to the generated
squeezing of 〈�X 2

θ 〉s. However, this mode of control is useful
only so far as the intracavity field retains an experimentally
detectable number of photons, shown in Fig. 8(b), which
inadvertently decreases 〈a†a〉s as a function ∝ 1/�0.

IV. FREQUENCY-MODULATED QUADRATURE
AND SPIN SQUEEZING

Aside from the well-known phenomenon of coherent
collapse-and-revival, there are other periodic dynamics, as
shown in Fig. 9, which may uniquely generate a de-
gree of quadrature and spin squeezing. Despite starting
from a thermally mixed state, it is possible to generate
frequency-modulated quadrature fluctuations, where the pe-
riodic enhancement can significantly exceed the optimized
steady-state squeezing discussed in the previous section.

Such periodic modulation transposes itself to the en-
sembles occupation, which also results in a modulation of
the collective angular momenta, via the relationship be-
tween the intra-ensemble correlations and the modulated
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FIG. 10. (a) Dependence of the dynamic frequency-modulated
quadrature on the scaled driving frequency �/κ , and a magnifica-
tion of the shaded region (black asterisk) plotting the oscillating
quadratures. (b) A plot of the minimum squeezing achieved for
the cavity-field quadratures and the maximum degree of spin-
squeezed entanglement achieved as a function of driving frequency,
for N = 104, g1/κ = 0.005, γ1/κ = 0.1, γ ∗

2 = 0, �0/κ = 0, and
�c/κ = 100.

exchange rate of quanta between the cavity field and the
ensemble (〈a†σ1〉).

Figure 9(a) shows how a weakly driven detuned system
results in a polarized ensemble which generates a squeezed
intracavity field. When increasing the driving Rabi frequency
� beyond a certain threshold, Fig. 9(b) shows how the system
shifts into a lasing superradiant state, for which the cav-
ity occupation number 〈a†a〉 increases exponentially towards
the order of N , while the ensemble is collectively polarized
(〈a†a〉/N � 1, 〈σ †

1 σ1〉 − 〈σ1σ
†
1 〉 = 〈σ1z〉 � 1).

When detuning the cavity from the coherent driving
frequency (within the cavity bandwidth κ) towards lower en-
ergies, the intracavity field may be indirectly populated at a
commensurate rate by a nonresonantly driven ensemble. Con-
versely, when the cavity is detuned towards higher energies
and the ensemble is driven weakly and resonantly, a mix-
ing of the Rabi frequency and the cavity-detuned frequency
manifests as a modulation of the cavity quadrature outputs, as
shown in Fig. 9(c).

Despite a thermally mixed starting point, persistent mod-
ulation of the intracavity field quadratures and the collective
angular momenta is generated, for which both the resulting
rate and minimum squeezed magnitude become a function
of the driving field frequency and the detuning. In particular,
the modulation is comprised of the cavity-detuning frequency
enveloped by the much slower coherent driving rate.

As shown in Fig. 10, the lower the driving Rabi frequency
� and the larger its difference with the cavity detuning �c, the
more pronounced the modulation, albeit occurring at slower
rates. This reaches an asymptotic limit of the order of −14 dB,
while the simultaneous modulated spin squeezing transitions
from a Dicke-like state, where only ξ 2

z is squeezed and ξ 2
x,y are

FIG. 11. Dependence of the minimum frequency-modulated
quadrature squeezing and degree of spin-squeezed entanglement on
the pure-dephasing rate, plotted using the same parameters as in
Fig. 10, while setting �/κ = 0.02. The trends highlight two distinct
regimes where the dephasing rate exceeds the scaled sum of the

coupling and driving frequencies (γ ∗
2 /γ1 = [(g1/γ1)2 + (2�/κ )2]

1/2
,

annotated by the vertical dashed line). The spectral densities for two
orthogonal quadrature variances are also plotted using Eq. (8) for
γ ∗

2 /γ1 = {0, 0.1, 0.2} and ηdηκ = 0.8.

highly uncertain, to a more planarlike state, with squeezing of
both ξ 2

y and ξ 2
z .

This difference in scaling between the phase and
population-related spin squeezing can be understood in rela-
tion to how the correlations 〈σ1zσ2z〉 and 〈σ1(x,y)σ2(x,y)〉 scale
with � and the ensemble size N . For larger ensembles, lower
values of � are required to limit the noise contribution of
〈σ1zσ2z〉 to 〈�J2

z 〉 [Eq. (10)]. Conversely, the phase fluctua-
tions along the orthogonal axis are directly limited by the ratio
between the collective coupling rate G and the detuning of the
cavity.

The impact of introducing a finite γ ∗
2 and the resulting

spectral density of 〈�X 2
θ 〉 is plotted in Fig. 11. Two regimes

are delineated around the point where γ ∗
2 equals the sum

of the scaled off-axis driving rate and cavity-coupling rate.
Unlike the steady-state case, the pure-dephasing rate cannot
be mitigated by increasing the cavity detuning. Instead, the
sum of the individual coupling rate and driving rate need to
outcompete γ ∗

2 to ensure that both quadrature and entangled
spin squeezing may be generated.

The spectral density plots in Fig. 11 highlight the well-
known property of phase-continuous frequency-modulated
signals (e.g., sine-wave modulation), which distribute the
time-dependent amplitude over multiple frequency compo-
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nents, and for which the cumulative integrated power is
commensurate with the minimum time-dependent squeezing.
Experimentally, data acquisition can be locked at the instances
of minimum squeezed variance, which can greatly exceed that
of the optimized steady-state value. However, for the small
fixed bandwidths within the modulation rate generated here,
the spectral density shows how squeezing for single-frequency
components will not exceed the free-space limit for these
detuning and driving rates.

V. CONCLUSION

Using a Markov-approximated master equation derived for
a Dicke-type Hamiltonian, which describes a cavity-coupled
ensemble driven by an off-axis field, the truncated equa-
tions of motion (via third-order cumulant expansion) were
numerically integrated to explore the generation of quadra-
ture and entangled spin squeezing. The minimum steady-state
and frequency-modulated quadrature squeezing was calcu-
lated to occur in the limit of −3 and −14 dB, respectively,
while entangled spin squeezing was calculated to occur
at a similar order of magnitude alongside weakly driven
frequency-modulated squeezing.

A direct proportionality between the cavity-field quadra-
ture and the ensemble’s dipole quadrature was described to
scale as a function of the ratio between the collective cou-
pling strength and the relative cavity- and ensemble-loss rates,
which is modifiable via the relative detuning of the cavity and
the external driving field. Consequentially, the degradation of
the cavity-field squeezing by the ensemble’s pure-dephasing
rate was observed to be mitigated by increasing the relative
detuning, at the expense of decreasing the intracavity ampli-
tude.

Frequency-modulated quadrature squeezing was also
shown to concur with entangled spin squeezing in a weakly
driven regime, where the driving Rabi frequency was orders of
magnitude lower than the collective coupling strength. Unlike
the steady-state regime, frequency-modulated squeezing is
more susceptible to the presence of a finite pure-dephasing
rate, which is instead only mitigated by larger cavity-coupling
rates.

Albeit using a rudimentary Dicke Hamiltonian and
Markov-approximated rate equations, this work highlights the
possibility of continuously generating quadrature squeezed
light from a cavity via applying an off-axis drive to a cou-
pled ensemble, which exceeds the free-space limit of a single
two-level emitter. Furthermore, the pure-dephasing rate of
the ensemble constituents and, by extension, the ensemble’s
inhomogeneous broadening, may be mitigated with an appro-
priately detuned and driven configuration, although optimized
squeezing is obtained at the expense of the cavity’s output
field amplitude and bandwidth. Notably, the generation of
entangled spin-squeezed states is found to be inherent in a
weakly driven regime, but is bandwidth limited depending on
the driving and pure-dephasing rates.

The motivating interest of this work has been in exploring
the limits in optimizing quadrature squeezing from an en-
semble of emitters, using a cavity and off-axis near-resonant
driving. While more sophisticated non-Markovian theoretical
approaches need to be considered which account for intra-

ensemble interactions, these results provide an informative
basis for the experimental exploration of the practical aspects
of near-resonance fluorescence-based squeezing using solid-
state dipole ensembles. This is considered in anticipation of
providing solid-state systems emitting at shorter wavelengths
and possessing smaller technical footprints, which can com-
pliment established parametric oscillator sources.
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APPENDIX: SYSTEM DYNAMICS

The quadrature fluctuations and steady-state expectation
values are obtained by integrating the systems Markov-
approximated master equation. Accounting for the cavity
decay rate κ and the radiative damping in the presence of
a heat bath, n̄, with relaxation and pure-dephasing rates γ1

and γ ∗
2 , respectively, the master equation and the associated

Lindblad operator terms take the form

d

dt
ρ = − i

h̄
[(H + H�), ρ] + Lκ + Lγ1 + Lγ ∗

2
,

Lκ = κ[(n̄+1)(2aρa†−{a†a, ρ})+n̄(2a†ρa−{aa†, ρ})],

Lγ1 =
N∑
k

γ1,k

2
[(n̄+1)

(
2σkρσ

†
k − {σ †

k σk, ρ})

+ n̄(2σ
†
k ρσk − {σkσ

†
k , ρ})],

Lγ ∗
2

=
N∑
k

γ ∗
2,k

2
(σkzρσkz − ρ),

n̄ = (eh̄ω0(kBT )−1 − 1)−1. (A1)

This system is analytically solvable in the case of free-space
emitters (N � 1, g1 = 0), but when g1 �= 0, the process of
extracting the equations of motion results in an infinite set of
successively increasing correlation orders.

A common strategy for truncation usually involves as-
suming some form of weakly driven or perturbed systems,
where 〈σz〉 is set to −1 and is assumed to negligibly
change. For ensemble systems, this is usually accompanied by
the Holstein-Primakoff approximation, subsequently enabling
the simplification of higher-order correlations by mapping the
spin operators onto bosonic operators. These approximations
enable the derivation of a closed set of coupled equations,
which have been experimentally validated in weakly driven
systems, e.g., [16].

However, these approximations are not appropriate when
accounting for non-negligible amplitudes of near-resonant
driving fields. Furthermore, for an ensemble, the number of
equations quickly increases to an unworkable amount depen-
dent on the ensemble size.

As carried out in [29,30] and described in Sec. IIA, the
ensemble is described symmetrically to decouple the N de-
pendence of the number of coupled equations of motion.
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Following this, an alternative strategy is employed to further
simplify and reduce the number of coupled equations, based
on expanding the correlations in terms of their cumulant ex-
pectation values [29,31]. This avoids any direct restriction of
the coupling and driving field strengths, but does assume that
the third-order cumulants are negligible, such that

〈abc〉 ≈ 〈ab〉〈c〉 + 〈ac〉〈b〉 + 〈bc〉〈a〉 − 2〈a〉〈b〉〈c〉. (A2)

The truncation of third-order correlations is justified in the
regime where the photon fluctuations negligibly affect the en-
semble inversion, which is the case when {g1,�}/�c<κ . This
is especially appropriate in the case where the cavity is only

populated indirectly via the emission of the ensemble, and its
validity was confirmed by comparing the dynamics of 〈σ1z(t )〉
obtained from fourth- and third-order truncated systems.

Given the time and computational expense of numerically
integrating the fourth-order truncated system, third-order trun-
cation was instead used with the justification that it was
sufficiently accurate for the parameter space explored in this
work.

The resulting coupled rate equations (not including the
conjugate set of equations) are defined below, with the
complex loss rates denoted as c = κ + i�c, t =  +
i�0,  = γ1( 1

2 + n̄) + γ ∗
2 ,

d
dt 〈a〉 = −c〈a〉 + g1N (〈σ1〉 − 〈σ †

1 〉), (A3)

d
dt 〈σ1〉 = −t 〈σ1〉 + g1(〈aσ1z〉 + 〈a†σ1z〉) + i�

2
〈σ1z〉, (A4)

d
dt 〈a2〉 = −2c〈a2〉 + 2g1N (〈aσ1〉 − 〈aσ

†
1 〉), (A5)

d
dt 〈a†a〉 = −2κ (〈a†a〉 − n̄) + g1N (〈a†σ1〉 + 〈aσ

†
1 〉 − 〈aσ1〉 − 〈a†σ

†
1 〉), (A6)

d
dt 〈σ †

1 σ1〉 = −γ1(〈σ †
1 σ1〉 + n̄〈σ1z〉) − g1(〈a†σ1〉 + 〈aσ

†
1 〉 + 〈aσ1〉 + 〈a†σ

†
1 〉) − i�

2
(〈σ †

1 〉 − 〈σ1〉), (A7)

d
dt 〈σ1σ2〉 = −2t 〈σ1σ2〉 + 2g1(〈aσ1σ2z〉 + 〈a†σ1σ2z〉) + i�〈σ1σ2z〉, (A8)

d
dt 〈σ †

1 σ2〉 = −2〈σ †
1 σ2〉 + g1(〈a†σ1σ2z〉 + 〈aσ

†
1 σ2z〉 + 〈aσ1σ2z〉 + 〈a†σ

†
1 σ2z〉) − i�

2
(〈σ1σ2z〉 − 〈σ †

1 σ2z〉), (A9)

d
dt 〈σ1zσ2z〉 = −4γ1(〈σ †

1 σ1σ2z〉 + n̄〈σ1zσ2z〉)−4g1(〈a†σ1σ2z〉 + 〈aσ
†
1 σ2z〉 + 〈aσ1σ2z〉 + 〈a†σ

†
1 σ2z〉) − i2�(〈σ †

1 σ2z〉 − 〈σ1σ2z〉),

(A10)
d
dt 〈σ1σ2z〉 = −2〈σ1σ2z〉−2γ1(〈σ1σ2σ

†
2 〉 + n̄〈σ1σ2z〉)+g1(〈aσ1zσ2z〉 + 〈a†σ1zσ2z〉−2[〈a†σ1σ2〉 + 〈aσ1σ

†
2 〉] + 〈aσ1σ2〉

+〈a†σ1σ
†
2 〉]) − i�

2
(2[〈σ1σ

†
2 〉 − 〈σ1σ2〉] − 〈σ1zσ2z〉), (A11)

d
dt 〈aσ1〉 = −(t+c)〈aσ1〉+g1(〈a2σ1z〉 + 〈a†aσ1z〉 − 〈σ1σ

†
1 〉) + g1(N−1)(〈σ1σ2〉 − 〈σ1σ

†
2 〉) + i�

2
〈aσ1z〉, (A12)

d
dt 〈a†σ1〉 = −(t+c

†)〈a†σ1〉+g1(〈σ †
1 σ1〉 + 〈a†aσ1z〉+〈a†a†σ1z〉) + g1(N−1)(〈σ1σ

†
2 〉 − 〈σ1σ2〉) + i�

2
〈a†σ1z〉, (A13)

d
dt 〈aσ1z〉 = −c〈aσ1z〉 − 2γ1(〈aσ

†
1 σ1〉 + n̄〈aσ1z〉) − g1(2[〈a2σ1〉 + 〈a2σ

†
1 〉 + 〈a†aσ1〉 + 〈a†aσ

†
1 〉] + 〈σ1〉 + 〈σ †

1 〉)

+g1(N−1)(〈σ1σ2z〉 − 〈σ †
1 σ2〉) − i�(〈aσ

†
1 〉 − 〈aσ1〉). (A14)

The employed approximations convert the resulting au-
tonomous differential system of equations from an infinite
linear set to a finite nonlinear one, which does not always con-
verge to an asymptotically stable solution given the presence
of a continuous coherent drive.

While the global stability of the resulting nonlinear system
cannot be analytically assessed using conventional stability
theory, a rudimentary analysis of the linearized Jacobian in-
dicates that the system’s equilibrium solutions are at least
stable for the physically allowed values (〈σz〉 ∈ [−1, 1] and
〈a†a〉 ∈ [0,+∞)) or will at least converge to a stable periodic
solution.

On the other hand, the resulting system can be-
come severely numerically stiff for parameter configura-
tions that are difficult to predict. This is especially so
when detuning is introduced and the single cooperativity
C = g2

1/κγ1 > 1.
In light of this, some of the steady-state solutions are

double checked by numerically integrating the rate equations.
This is carried out to ensure that the derivatives converges to a
limit where they settle within the numerical solver’s tolerance
and remain so for a duration corresponding to at least an order
of magnitude longer than the reciprocal of the slowest defined
rate.
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