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Gyrating solitons in a necklace of optical waveguides
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We consider light pulses in a circular array of 2N coupled nonlinear optical waveguides. The waveguides are
either Hermitian or alternate gain and loss in a PT -symmetric fashion. Simple patterns in the array include a
ring of 2N pulses traveling abreast and a breather—a string of pulses where all even and all odd waveguides
flash in turn. In addition, the structure displays solitons gyrating around the necklace by switching from one
waveguide to the next. Some of the gyrating solitons are stable while other ones are weakly unstable and evolve
into gyrating multiflash strings. By tuning the gain-loss coefficient, the gyration of solitons in a non-Hermitian
array may be reversed without changing the direction of their translational motion.
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I. INTRODUCTION

The uses of nonlinear fiber arrays for the all-optical signal
processing have been recognised since the late 1980s. The
multiple-channel waveguide couplers and multicore fibers
can be utilized for light switching [1,2], power dividing
[3], beam shaping [4], discrete diffraction management [5],
spatial-division multiplexing [6], coherent beam combina-
tion, and optical pulse compression [7]. In recent years
interest has been shifting to low-dimensional arrays, typ-
ically arranged in a ring [8,9]. Current applications of
circular arrays include vortex-switching schemes [10,11]
and generation of light beams carrying orbital angular
momentum [12].

Studies of coupled waveguides have received a new impe-
tus with the advent of the parity-time symmetry. Originally
proposed in the context of the non-Hermitian quantum me-
chanics [13], the PT symmetry proved to furnish a set of
rules for the inclusion of gain and loss in fiber arrays [14]
and photonic lattices [15]. The non-Hermitian optics pro-
vides light-control opportunities unattainable with traditional
setups, including low-threshold switching [14,16] and unidi-
rectional invisibility [14,17].

A circular array of waveguides is an ideal platform for
the PT -symmetric modification. An example of such a de-
velopment is a ring-shaped necklace of 2N waveguides with
alternating gain and loss. Reference [18] has demonstrated
that the zero-amplitude state in the PT -symmetric necklace
remains stable as long as N is odd and the gain-loss coefficient
does not exceed a finite threshold. The author of Ref. [19]
has pointed out then that the stability in the necklace can
be controlled by twisting it about the central axis. Further
studies have concerned stationary modes in a cyclic array of
PT -symmetric dimers [20], a Hermitian waveguide ring with
a PT -symmetric impurity [21], and a multicore fiber with

FIG. 1. A gyrating soliton in the necklace of 2N = 10 waveg-
uides (schematic representation).

gain in the central core and loss in the surrounding ring of
waveguides [22].

With a few notable exceptions [9], studies of Hermitian
and PT -symmetric necklaces have been focusing on the sta-
tionary states of light. In the present work, we turn to short
optical pulses. We show that the necklace of nonlinear dis-
persive waveguides—with or without gain and loss—supports
solitons of a previously unknown kind. As these light pulses
propagate along the axis of the multicore fiber, they gyrate
around the necklace switching from one waveguide to another
(Fig. 1).

There are several types of gyrating solitons coexisting in
the array of the same number of guides. Some of these objects
consist of a single pulse that spirals around the necklace; other
ones comprise series of pulses of varied brightness. There
are solitons with different propagation constants within each
of the two varieties. While the systematic classification of
stability properties of the gyrating solitons is beyond the scope
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of the present study, our analysis indicates that some of these
are stable.

The paper is organized as follows. In the next section
(Sec. II) we classify linear supermodes in the nondispersive
necklace. These serve as starting points for the bifurcat-
ing nonlinear patterns (Sec. III). In Sec. IV we consider
constellations of pulses appearing simultaneously in all 2N
waveguides, and in Secs. V and VI, we discuss solitons os-
cillating between even and odd subsets of the array. Solitons
whose motion along the fiber is accompanied by their gy-
ration around the necklace are introduced in Sec. VII. In
the subsequent section (Sec. VIII), we consider more com-
plex, multiflash, gyrating patterns. Stability and interaction
of gyrating solitons are touched upon in Sec. IX. Section X
summarizes the results of this study.

II. LINEAR NONDISPERSIVE WAVEGUIDES

The necklace of waveguides is described by the following
system of 2N equations written in the reference frame travel-
ing at the common group velocity [9,23]:

i∂zψn + ∂2
τ ψn + ψn−1 + ψn+1 + 2|ψn|2ψn = 2i�nψn. (2.1)

Here ψn is the amplitude of the complex mode in the nth core
(n = 1, . . . , 2N), z measures the length along the device, and
τ is a retarded time. We are considering waveguides with an
anomalous group velocity dispersion and all coefficients have
been normalized to unity.

In the system (2.1) we have assumed that waveguides with
gain and loss alternate:

�n = (−1)n+1γ .

Here γ > 0 is a common gain-loss coefficient. Skipping ahead
a bit, many of our results will remain valid for the Hermitian
array, γ = 0.

The equation (2.1) with n = 1 contains an unknown ψ0

and the equation with n = 2N includes ψ2N+1. These two
variables are defined by virtue of the periodicity condition:

ψn+2N = ψn.

We start by examining the linear nondispersive limit of
(2.1) which results from dropping the nonlinearity and time
derivative ∂2

τ ψn. Assuming a separable solution of the form
ψn = vneiβz, the coefficients vn make up an eigenvector �v =
(v1, v2, . . . , v2N )T of the matrix L:

L�v = β�v,

where

Lnm = δn,m−1 + δn,m+1 − 2i�nδn,m. (2.2)

The δ symbol in (2.2) is 2N periodic:

δn,m =
{

1, n = m mod(2N ),
0, otherwise.

The eigenvalues of L were determined in Ref. [18] as

β = ±βα, βα = 2

√
cos2

(
kα

2

)
− γ 2 > 0,

kα = 2π

N
α, α = 1, 2, . . . , N. (2.3)

The eigenvalues are all real if γ � γc, where

γc(N ) =
{

0, N = even,

sin
(

π
2N

)
, N = odd.

(2.4)

Note that, in the necklace with even N , the eigenvalues be-
come complex as soon as γ is nonzero. For this reason we
only consider odd N in what follows. We also assume that the
symmetry is not broken, that is, γ � γc.

Two eigenvalues, βN and −βN , are simple (nonrepeated).
The other N−1

2 positive and N−1
2 negative eigenvalues have

algebraic multiplicity 2. Indeed, βα coincides with β(N−α) for
all α = 1, 2, . . . , N − 1.

Turning to the eigenvectors of L, one can readily check that

�v(α) = (eik+iθ , eik, e2ik+iθ , e2ik, . . . , eNik+iθ , eNik )T (2.5)

is an eigenvector corresponding to a positive eigenvalue β =
βα . Here k = kα is as in (2.3) and θ = θα is defined by

eiθα = 1 + e−ikα

2iγ + βα

, α = 1, 2, . . . , N.

It is not difficult to verify that the vectors �v(α) and �v(N−α) are
linearly independent for all α = 1, 2, . . . , N−1

2 and so each
positive eigenvalue β = βα has a geometric multiplicity 2.

The vector

�w(α) = (eik+iφ, eik, e2ik+iφ, e2ik, . . . , eNik+iφ, eNik )T , (2.6)

where k = kα is as in (2.3) and φ = φα is defined by

eiφα = 1 + e−ikα

2iγ − βα

, α = 1, 2, . . . , N,

is an eigenvector associated with a negative eigenvalue β =
−βα . Since the eigenvectors �w(α) and �w(N−α) pertaining to the
equal eigenvalues −βN−α and −βα are linearly independent
for any 1 � α � N−1

2 , we conclude that each repeated nega-
tive eigenvalue of the matrix L has a geometric multiplicity 2
as well.

III. NONLINEAR SELECTION RULE

Returning to the nonlinear dispersive system (2.1), we in-
troduce a hierarchy of stretched coordinates Z = εz and time
scales T = ετ ;  = 0, 1, 2, . . . In the limit ε → 0 all these
variables become independent and the chain rule gives

∂

∂z
= D0 + ε2D2 + ε4D4 + · · · ,

∂

∂τ
= ∂0 + ε∂1 + ε2∂2 + · · · ,

where D = ∂/∂Z and ∂ = ∂/∂T. Symmetry considerations
suggest that the complex modes ψn should not depend on the
odd coordinates Z1, Z3, . . .; this is why we have omitted the
odd terms in the expansion of ∂z. Expanding

ψn = εAn + ε3Bn + · · ·
and substituting into (2.1), we equate coefficients of like pow-
ers of ε.

The order ε1 gives

iD0 �A + L �A = 0, (3.1)
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where �A = (A1, A2, . . . , A2N )T and we have assumed that �A
does not change on the fast time scale, T0. The general solution
of (3.1) is given by a linear combination:

�A =
N∑

α=1

p(α)�v(α)eiβαz +
N∑

α=1

r (α) �w(α)e−iβαz, (3.2)

where the constant vectors �v(α) and �w(α) are as in (2.5) and
(2.6) while the scalar coefficients p(α) and r (α) are assumed to
depend on the “slow” variables Z2, Z4, . . . and T1, T2, . . . The
individual terms in (3.2) are commonly referred to as super-
modes. The sum (3.2) with a specific choice of coefficients is
called a “linear pattern” in what follows.

To determine nonlinear constraints that select particular
linear patterns in the necklace, we proceed to the order ε3

which gives a nonhomogeneous system of equations for co-
efficients Bn:

iD0 �B + L �B = �R, (3.3)

where

Rn = −(
iD2 + ∂2

1 + 2|An|2
)
An,

n = 1, 2, . . . , 2N . The vector function �R will generally have
terms that are in resonance with the “frequencies” of the
linear nondispersive system. The unbounded growth of the
coefficients Bn as z → ∞ (and the resulting breakdown of the
asymptotic expansion) can only be avoided if �R is orthogonal
to the eigenvectors of the matrix L. These orthogonality rela-
tions (a) select the linear patterns that persist in the nonlinear
dispersive regime when the amplitudes of the complex modes
are no longer small and the beams are no longer stationary
and (b) determine the longitudinal structure and temporal
evolution of nonlinear pulses of light.

In the subsequent sections we go over several possible
choices in (3.2).

IV. SIMULTANEOUS PULSES IN 2N GUIDES

Circular-symmetric distributions of the power |ψn|2 result
by keeping only one supermode in the linear pattern (3.2).
Choosing

�A = p�v(N )eiβz, (4.1)

where β = βN and p = p(N ), a bounded solution to Eq. (3.3)
(if one exists) will have the form

�B = �X eiβz, (4.2)

where �X satisfies

(L − βI ) �X = −(
iD2 p + ∂2

1 p + 2|p|2 p
)
�v(N ). (4.3)

The singular system (4.3) admits a solution if and only if
its right-hand side is orthogonal to the eigenvector �v(N ) in the
sense of the dot product

�y · �z =
2N∑

n=1

ynzn. (4.4)

[In Eq. (4.4), �y and �z are vectors with complex components.]
Making use of the identity

�v (α) · �v (α) = (1 + eiθN )Nδα,N , (4.5)

with α = N , the solvability condition reduces to the nonlinear
Schrödinger equation

i
∂ p

∂Z2
+ ∂2 p

∂T 2
1

+ 2|p|2 p = 0. (4.6)

A localized solution of Eq. (4.6) is the soliton

p = eiZ2 sech T1, (4.7)

where the amplitude has been set equal to 1. (There is no loss
in generality in setting the amplitude to unity as it only appears
as a coefficient in front of ε when the solution is expressed
in the original coordinates.) The vector function (4.1) with p
as in (4.7) describes identical light pulses traveling level with
each other in 2N waveguides. All waveguides shine in unison
and with the same intensity: |ψn|2 = ε2sech2(ετ ).

Another simultaneous ring of pulses results by letting
r (α) = 0 for all α = 1, . . . , N , and p(α) = 0 for all α except
one particular value α = α0 and its symmetric partner α =
N − α0. Here 1 � α0 � N−1

2 . Denoting

p(α0 ) ≡ p, p(N−α0 ) ≡ q, �v(α0 ) ≡ �v, �v(N−α0 ) ≡ �u,

and βα0 = β, the linearized pattern (3.2) becomes

�A = (p�v + q�u)eiβz. (4.8)

A bounded third-order correction Bn has the form (4.2), where
the vector �X satisfies the system

2N∑
m=1

LnmXm − βXn = − Fvn − Gun

− 2
[
q2 p∗u2

nv
∗
n + p2q∗v2

nu∗
n

]
, (4.9)

with the coefficient functions

F (Z2, . . . , T1, . . .) = (
iD2 + ∂2

1 + 2|p|2 + 4|q|2)p, (4.10)

G(Z2, . . . , T1, . . .) = (
iD2 + ∂2

1 + 4|p|2 + 2|q|2)q. (4.11)

Since the zero eigenvalue of the matrix L − βI in the
left-hand side of (4.9) has geometric multiplicity 2, the non-
homogeneous system (4.9) has two solvability conditions.
Taking the scalar product of its right-hand side with �u and
�v produces a pair of amplitude equations:

i
∂ p

∂Z2
+ ∂2 p

∂T 2
1

+ 2(|p|2 + 2|q|2)p = 0, (4.12a)

i
∂q

∂Z2
+ ∂2q

∂T 2
1

+ 2(|q|2 + 2|p|2)q = 0. (4.12b)

In obtaining the system (4.12), we used the following two
identities in addition to the identity (4.5):

�v(α) · �v(N−α) = (
ei(kα+2θα ) + 1

)
N,

2N∑
n=1

v3
nu∗

n =
2N∑

n=1

u3
nv

∗
n = 0. (4.13)

The power distribution associated with a repeated eigen-
value βα0 is z-independent but not uniform across the
necklace. Letting, for simplicity, p = q, Eq. (4.8) gives

|An|2 = 2|p|2[1 + cos(nkα0 )].
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A localized pattern arises when the soliton solution of
(4.12) is chosen:

p = q = 1√
3

eiZ2 sech T1. (4.14)

The vector (4.8) with p and q as in (4.14) describes a ring-
shaped constellation of light pulses traveling abreast in 2N
fibers. The pulse power undergoes a sinusoidal variation along
the ring.

Earlier studies of simultaneous pulses in circular ar-
rays of coupled Hermitian waveguides were reported in
Refs. [18,24,25]. In Ref. [25], rings of solitonic pulses with
varying power were described as bifurcations of the uniformly
powered ring. Our perspective here is different; we have
considered simultaneous pulses as nonlinear perturbations of
nonuniform linear patterns.

V. UNIFORM BREATHERS

Keeping terms with both positive and negative propagation
constants in the linear pattern (3.2) gives rise to z-dependent
power distributions. The simplest possibility corresponds to
retaining just two terms:

�A = p�veiβz + q �we−iβz. (5.1)

Here β = βN is a simple positive eigenvalue, while

�v = �v(N ), �w = �w(N )

are the eigenvectors corresponding to βN and its negative, re-
spectively. With this choice, the bounded solution of Eq. (3.3)
is

�B = �X eiβz + �Ye−iβz + �Me3iβz + �N e−3iβz, (5.2)

where the amplitudes �X and �Y satisfy nonhomogeneous alge-
braic equations with singular matrices:

(L − βI ) �X = −F �v, (5.3)

(L + βI ) �Y = −G �w. (5.4)

Here F and G are as in (4.10) and (4.11).
Equation (5.3) admits a solution if and only if its right-hand

side is orthogonal to �v while the right-hand side of (5.4)
should be orthogonal to �w. [Here orthogonality is understood
in the sense of the dot product (4.4).] Using (4.5) and the
identity

�w (α) · �w (α) = (1 + eiφN )Nδα,N ,

with α = N , these orthogonality constraints translate into Eqs.
(4.12).

Letting q = p, Eq. (5.1) gives rise to an oscillatory power
distribution:

|A2m−1|2 = 4|p|2 sin2(βz + θN ),

|A2m|2 = 4|p|2 cos2(βz),

m = 1, 2, . . . , N . This describes a flashing necklace: all odd
waveguides blink in unison and all even waveguides reach
their maximum power at the same z, but there is a lag between
the odd and the even guides. Note that the flashing is uniform:
the maximum power is the same for all waveguides.

The soliton solution (4.14) of the system (4.12) provides
an envelope for a finite-duration sequence of short flashes in

the necklace—a spatiotemporal pattern commonly referred to
as a breather. Breathers in fiber directional couplers (that is,
in necklaces consisting just of two waveguides, with no gain
or loss) have been described numerically and variationally
[26]. For the asymptotic descriptions and non-Hermitian ex-
tensions, see Ref. [27].

VI. NONUNIFORM FLASHING

A set of slightly more complex patterns results by letting,
in Eq. (3.2), r (α) = 0 and p(α) = 0 for all α = 1, 2, . . . , N
except one particular value, α = α0 (1 � α0 � N−1

2 ), and its
symmetric partner, α = N − α0. Denoting

p(α0 ) ≡ p1, r (α0 ) ≡ q1, r (N−α0 ) ≡ p2, p(N−α0 ) ≡ q2,

and βα0 = β, Eq. (3.2) becomes

�A = �ηeiβz + �ξe−iβz, (6.1a)

where

�η = p1�v(α0 ) + q2�v(N−α0 ), �ξ = q1 �w(α0 ) + p2 �w(N−α0 ). (6.1b)

The next-order correction has the form (5.2), where �X and
�Y satisfy

(L − βI ) �X = − �F , (6.2)

(L + βI ) �Y = − �G, (6.3)

with

Fn = iD2ηn + ∂2
1 ηn + 2(|ηn|2 + 2|ξn|2)ηn,

Gn = iD2ξn + ∂2
1 ξn + 2(2|ηn|2 + |ξn|2)ξn.

The zero eigenvalue of the matrix L − βI in Eq. (6.2) has
geometric multiplicity 2, and the same is true for the zero
eigenvalue of the matrix L + βI in (6.3). Evaluating the dot
product of the right-hand side of (6.2) with the vectors �v(α0 )

and �v(N−α0 ), and then taking the product of the right-hand side
of (6.3) with �w(α0 ) and �w(N−α0 ), we arrive at a system of four
amplitude equations:

i
∂ pμ

∂Z2
+ ∂2 pμ

∂T 2
1

+ 2(|pμ|2 + 2|pμ+1|2)pμ

+ 4(|q1|2 + |q2|2)pμ + 4q1q2 p∗
μ+1

= 0, (6.4a)

i
∂qμ

∂Z2
+ ∂2qμ

∂T 2
1

+ 2(|qμ|2 + 2|qμ+1|2)qμ

+ 4(|p1|2 + |p2|2)qμ + 4p1 p2q∗
μ+1

= 0, (6.4b)

where μ = 1 and 2. In (6.4), we use the cyclic notation for the
indices: p3 should be understood as p1 and q3 as q1.

The system (6.4) is invariant under a three-parameter trans-
formation:

qμ → eiϕμqμ, pμ → eiϑμ pμ (μ = 1, 2), (6.5a)

where ϕ1,2 and ϑ1,2 are four constant angles satisfying

ϕ1 + ϕ2 = ϑ1 + ϑ2. (6.5b)
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Solutions that are related by the transformation (6.5) will
be regarded as equivalent.

It is convenient to introduce vector notation for the four-
component columns:

� =

⎛
⎜⎝

p1

p2

q1

q2

⎞
⎟⎠.

There are (4
2) = 6 nonequivalent soliton solutions with two

nonzero components:

�(12) =

⎛
⎜⎝

1
0
0
1

⎞
⎟⎠ f , �(21) =

⎛
⎜⎝

0
1
1
0

⎞
⎟⎠ f , �(11) =

⎛
⎜⎝

1
0
1
0

⎞
⎟⎠ f ,

�(22) =

⎛
⎜⎝

0
1
0
1

⎞
⎟⎠ f , �(p) =

⎛
⎜⎝

1
1
0
0

⎞
⎟⎠ f , �(q) =

⎛
⎜⎝

0
0
1
1

⎞
⎟⎠ f .

Here, f accounts for the large-scale space-time variation of
the pattern:

f (Z2, T1) = 1√
3

eiZ2 sech T1. (6.6)

The solution �(12) reproduces Eq. (4.8) with p and q as in
(4.14). This solution as well as �(21) describe constellations
of 2N pulses traveling abreast, with their power varying along
the necklace. On the other hand, �(11) and �(22) define uni-
formly flashing patterns similar to (5.1).

Deferring the intepretation of �(p) and �(q) to the next
section, here we consider two more soliton solutions of
the system (6.4). All the components of both solutions are
nonzero:

�(A) = 1√
3

⎛
⎜⎝

1
1
1
1

⎞
⎟⎠ f , �(B) =

√
3

5

⎛
⎜⎝

1
1
1

−1

⎞
⎟⎠ f , (6.7)

where f (Z2, T1) is as in (6.6).
The power load of individual waveguides associated with

the solution �(A) is given by

|A2m−1|2 = 16

3
| f |2 cos2

(
2m − 1

2
k

)

× sin2

(
βz + θ + k

2

)
,

|A2m|2 = 16

3
| f |2 cos2(mk) cos2(βz), (6.8)

while the soliton �(B) carries the following power distribution:

|A2m−1|2 = 12
5 | f |2 + 12

5 | f |2 sin[(2m − 1)k]

× sin(2βz + 2θ + k),

|A2m|2 = 12
5 | f |2 − 12

5 | f |2 sin(2mk) sin(2βz). (6.9)

In either of these equations, β = βα0 , k = kα0 , and θ = θα0 ,
while m changes from 1 to N . Both (6.8) and (6.9) repre-

sent flashing patterns, or breathers, where all odd and all
even waveguides flash synchronously. The maximum power
attainable in an individual waveguide undergoes a sinusoidal
variation along the necklace.

VII. GYRATING SOLITONS

A. Single-frequency pattern

The solitons �(p) and �(q) represent light pulses gyrating
around the necklace.

The power distribution associated with �(p) has the form
of a spiral wave [Fig. 2(a)]:

|A2m−1|2 = 4| f |2 sin2(km + βz + θ ),

|A2m|2 = 4| f |2 cos2(km + βz). (7.1)

Here m = 1, 2, . . . , N and the parameters are k = kα , β = βα ,
and θ = θα . To simplify the notation, we have dropped the
subscript 0 from the index α (1 � α � N−1

2 ).
To establish whether the soliton is gyrating clockwise or

counterclockwise, we need to determine which of the two
neighbors of the 2mth waveguide will flash immediately after
the 2mth guide has. Assume that the 2mth waveguide attains
its maximum power at the point z = z0. Then the closest
maximum of |A2m+1|2 to the right of z0 is at z = z0 + �2m+1,
and the nearest maximum of |A2m−1|2 to the right of z0 is at
z = z0 + �2m−1, where the delay intervals are given by

�2m+1 = 1

β

(π

2
− θ − k

)
(7.2)

and

�2m−1 =
{− 1

β

(
π
2 + θ

)
if θ < −π

2 ,
1
β

(
π
2 − θ

)
if θ > −π

2 .
(7.3)

Comparing the lags (7.2) and (7.3) one can readily check
that the (2m + 1)th guide flashes sooner, respectively later,
than the (2m − 1)th one if γ < γα , respectively γ > γα ,
where

γα = cos2 kα

2
.

Let

αc(N ) = floor
[N

π
arccos

(
γ 1/2

c

)]
, (7.4)

where floor[x] stands for the greatest integer less than or equal
to x, while γc = sin ( π

2N ) is the linear PT -symmetry-breaking
threshold given by Eq. (2.4). For all α � αc we have γα � γc.
Since we are considering a necklace operating in the sta-
ble regime (γ � γc), then, assuming that the waveguides are
numbered against the clock, we conclude that the soliton �(p)

with any α = 1, 2, . . . , αc, and regardless of γ , is gyrating
counterclockwise.

By contrast, the sense of gyration of the soliton �(p) with
α = αc + 1, . . . , N−1

2 does depend on γ . The corresponding
transition values γα lie under the PT -symmetry-breaking
threshold. When 0 � γ < γα , the soliton gyrates counter-
clockwise, but when γα < γ < γc, it revolves in the clockwise
direction. This crossover is illustrated by Fig. 3.

The behavior of the solitons �(q) is opposite to that of �(p).
Namely, pulses with α = 1, 2, . . . , αc are gyrating clockwise
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FIG. 2. Four types of gyrating solitons in a necklace of 2N = 6 waveguides. Each panel consists of six vertical lanes displaying the (τ, z)
distribution of optical power in six waveguides. The horizontal side of each lane represents a short period of time, −20 < τ < 20; the τ axis
is not marked or labeled. The vertical coordinate measures the length along the waveguides, with 0 � z � 20. (a) Jiver soliton (7.5). The panel
shows the power distribution (7.1). (b) The power density (7.7) corresponding to the waltzer (7.8). (c) Power distribution (8.1) associated with
the multiflash gyrator A. (d) Power pattern (8.2) of the multiflash solution B. In all panels, γ = 0 and α = 1. All solitons have the inverse-width
parameter ε = 0.1.

for all γ . Those with α = αc + 1, . . . , N−1
2 are also revolving

clockwise for small γ , but their direction of gyration can be
reversed by raising γ above γα .

The two gyrating solitons whose linear patterns are given
by Eq. (6.1), with the coefficients defined by the vector �(p)

or �(q), can be written in a unified way as

�ψ = ε
�v(α)eiβαz + �w(N−α)e−iβαz

√
3

eiε2zsech(ετ ) + O(ε3), (7.5)

where 1 � α � N − 1. Solitons with α = N − αc, . . . , N − 1
are gyrating clockwise and those with α = 1, . . . , αc are mov-
ing against the clock. For α = αc + 1, . . . , N − αc − 1, the
direction of gyration is controlled by the choice of γ .

Before turning to other types of gyrating pulses we note
two more characteristics of the solitons (7.5) that can be
controlled in the non-Hermitian situation. Namely, by varying

the gain-loss coefficient one can change the length of the pulse
and its period of revolution around the necklace. Both of these
quantities are given by the z period of the power density (7.1).
The length of two particular pulses with α = N±1

2 can even be
sent to infinity—one just needs to tune γ to γc. (The reason is
that the propagation constant β(N±1)/2 → 0 as γ → γc.)

Figure 3 exemplifies the change in the flash duration with
a sequence of four values of γ from the interval (0, γc).

B. Two-frequency pattern

A quasiperiodic pattern that does not fit into the general
ansatz (6.1) combines eigenvectors associated with a repeated
and a single eigenvalue:

�A = p�v(α)eiβαz + q�v(N )eiβN z. (7.6)

023532-6



GYRATING SOLITONS IN A NECKLACE OF OPTICAL … PHYSICAL REVIEW A 103, 023532 (2021)

FIG. 3. The transition from counterclockwise to clockwise gyration in the necklace of six waveguides. All four panels pertain to the same
jiver soliton as in Fig. 2(a) but with different γ . As in Fig. 2, each panel consists of six vertical lanes. The nth lane shows |An(τ, z)|2, the
power density in the nth waveguide. The horizontal side of each lane represents a short period of time, −20 < τ < 20, with the τ axis not
marked or labeled. The vertical coordinate measures the length along the waveguides. All four power distributions are given by Eq. (7.1),
where α = 1 and ε = 0.1, while γ varies: (a) γ = 0.20, (b) γ = 0.30, (c) γ = 0.40, and (d) γ = 0.45. The transition occurs as γ is raised
through γ1 = 0.25.

Here α is an arbitrarily chosen mode number, 1 � α � N − 1.
With this choice, the right-hand side of Eq. (3.3) features two
resonant terms proportional to eiβαz and eiβN z, respectively.
Since βα is a repeated eigenvalue, the former term imposes
two solvability conditions. With the help of (4.5), we verify
that one of these is trivially satisfied. The other solvability
condition and the solvability constraint associated with the
propagation constant βN constitute the system (4.12). [The
derivation makes use of the identities (4.5) and (4.13).]

Like the distribution (7.1) before, the power density asso-
ciated with the pattern (7.6) has the form of a spiral:

|A2m−1|2 = 4|p|2 cos2

[
kαm + (βα − βN )z + θα − θN

2

]
,

|A2m|2 = 4|p|2 cos2

[
kαm + (βα − βN )z

2

]
. (7.7)

Here m = 1, 2, . . . , N and we have assumed a simple reduc-
tion of the system (4.12): p = q. [See Fig. 2(b).] A localized
pattern corresponds to the soliton solution of that system,
Eq. (4.14).

The self-contained form of the solution whose linear order
is given by Eq. (7.6), with p and q as in (4.14), is

�ψ = ε
�v(α)eiβαz + �v(N )eiβN z

√
3

eiε2zsech(ετ ) + O(ε3). (7.8)

This is another gyrating soliton, different from (7.5). An argu-
ment similar to the one in Sec. VII A shows that the solitons
(7.8) with α � N+1

2 are gyrating clockwise, while those with
α � N−1

2 are moving against the clock.
Figures 2(a) and 2(b) illustrate the difference between the

two types of gyrating solitons in the Hermitian necklace of
six waveguides. The period of revolution around the necklace
associated with the spiral pattern (7.7) is longer than that of
the pattern (7.1). By the time the soliton (7.8) completes just
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one round of its “waltz” around the necklace, its more agile
counterpart (7.5) will have “jived” around twice. For ease of
reference, we dub the gyrating solitons (7.5) and (7.8) the jiver
and the waltzer, respectively.

VIII. MULTIFLASH GYRATION

When the waveguides are linear and nondispersive, that
is, when the necklace is described by the system (2.1) with
neither cubic nor time-derivative terms included, any set of
coefficients p(α) and r (α) in (3.2) defines a pattern in the
necklace. However, only a handful of those patterns persist
after the addition of nonlinear and dispersive terms to (3.2).

In this section we identify two more spiral patterns as-
sociated with gyrating solitons. The patterns in question
generalize the two-mode combination (7.6). They involve
an eigenvector �v(α) associated with a repeated eigenvalue
βα (where 1 � α � N − 1), its mirror-reflected conterpart
�w(N−α) associated with the negative propagation constant
−βα , and the eigenvectors �v(N ) and �w(N ) corresponding to the
pair of single eigenvalues ±βN :

�A = p1�v(α)eiβαz + p2 �w(N−α)e−iβαz

+ q1�v(N )eiβN z + q2 �w(N )e−iβN z.

This time, the right-hand side of Eq. (3.3) has four reso-
nant terms proportional to e±iβαz and e±iβN z. Two of the six
solvability conditions are satisfied automatically while the
remaining four amount to the system (6.4).

Two nonequivalent solutions of the system (6.4) with all
components different from zero are given by Eqs. (6.7). The
power distribution associated with the solution �(A) has the
form

|A2m−1|2 = 4
3 | f |2[sin(βN z + θN )

+ sin(mkα + βαz + θα )]2,

|A2m|2 = 4
3 | f |2[cos(βN z) + cos(mkα + βαz)]2. (8.1)

Here m = 1, 2, . . . , N , and the slowly changing amplitude
f is given by (6.6). The power distribution (8.1) describes
several flashes of unequal brightness appearing in rapid suc-
cession. The string of pulses gyrates around the necklace as a
whole, with the ordering of bright and dim flashes changing
from one waveguide to another.

Figure 2(c) illustrates a multiflash string (8.1) in a necklace
of 2N = 6 guides. In this case the string comprises a bright
flash and one or two dim pulses appearing short distances
apart. In waveguides on one side of the necklace, the bright
flash comes before the dim signal and on the other side the
bright pulse follows the dim one.

The power distribution corresponding to the solution �(B)

is

|A2m−1|2 = 12
5 | f |2[cos2(βN z + θN )

+ sin2(mkα + βαz + θα )],

|A2m|2 = 12
5 | f |2[sin2(βN z) + cos2(mkα + βαz)]. (8.2)

Here m = 1, 2, . . . , N , and the coefficient function f is as
in (6.6). Like the power pattern (8.1), the distribution (8.2)
describes a multiflash string gyrating around the necklace [see
Fig. 2(d)].

Although the multiflash patterns have power distributions
more complex than those of the spirals (7.1) and (7.7), they
play an important role in the dynamics of the necklace.
Numerical simulations indicate that the multiflash gyrating
strings may emerge as products of the evolution of the un-
stable single-pulse gyrators (7.1). (See Sec. IX A below.)

For future reference, we reproduce the multiflash gyrating
solitons in a self-contained form:

�ψA = ε(�v(α)eiβαz + �w(N−α)e−iβαz + �v(N )eiβN z

+ �w(N )e−iβN z )
eiε2z

3
sech(ετ ) + O(ε3), (8.3)

�ψB = ε(�v(α)eiβαz + �w(N−α)e−iβαz + �v(N )eiβN z

− �w(N )e−iβN z )
eiε2z

√
5

sech(ετ ) + O(ε3). (8.4)

As the notation suggests, we call (8.3) and (8.4) the A- and
B-multiflash gyrator, respectively.

IX. SOLITON DYNAMICS

A. Stability and scattering of gyrating solitons

The comprehensive stability analysis of gyrating solitons
is beyond the scope of the present study. Here, we restrict
ourselves to a few sets of numerical simulations verifying
that these objects do not blow up, disperse, or transmute into
nongyrating localized structures within a short period of time.

All our computer simulations were carried out on the neck-
lace of six waveguides (N = 3). We considered the system
(2.1) in both the Hermitian (γ = 0) and the PT -symmetric
(γ �= 0) situation.

Our first series of simulations involved the “jiving” soliton,
Eq. (7.5) with α = 1 [Fig. 2(a)]. The jiver was found to be
weakly unstable, both for γ = 0 and γ �= 0. Choosing the
initial condition in the form (7.5) with ε = 0.1 or ε = 0.2, and
neglecting the O(ε3) terms, the resulting oscillatory solution
was seen to slowly evolve into the multiflash solution (8.3).
The pattern shown in Fig. 2(a) would gradually transform into
the density profile of Fig. 2(c).

By contrast, the “waltzing” soliton in the same system has
turned out to be stable for all values of γ that we examined,
including γ = 0. Random noise added to the initial condition
in the form (7.8), with α = 1 and ε = 0.1 or 0.2, did not pro-
duce any measurable growth of the perturbation. The pattern
shown in Fig. 2(b) would remain visibly unchanged.

It is instructive to compare the interaction of two jivers
to the scattering of two waltzing solitons. We note that the
system (2.1) has the Galilei invariance; namely, if ψn(τ, z) is
a solution, then so is

ψ̃n(τ, z) ≡ ei V
2 (τ− V

2 z)ψn(τ − V z, z).

In particular, if ψ is a quiescent, unmoving, soliton, then ψ̃

gives the pulse traveling with the velocity V .
Making use of the Galilei transformation we set up an

initial condition for the collision of two clockwise-gyrating
jivers with equal amplitudes and equal oppositely directed
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FIG. 4. Scattering of gyrating solitons in the necklace of 2N = 6 waveguides. Shown is |ψ2|2, the power density in the second waveguide.
(a, c) Collision of two “jiving” solitons with opposite sense of gyration. The initial condition is (9.2) with α = 1, ε = 0.2, and V = 0.6. Panel
(a) corresponds to γ = 0 and panel (c) to γ = 0.45. In either case, the products of collision constitute solitons with the modulated flashing
amplitude. (The modulation is manifested in the alternation of peaks of unequal height.) (b, d) Collision of two waltzers. The initial condition
is (9.3) with α = 1, ε = 0.2, and V = 0.6. Panels (b) and (d) depict the scattering process in the system (2.1) with γ = 0 and γ = 0.45,
respectively. In both cases the postcollision solitons restore their original shape.

velocities:

ψn = ε√
3

(
v(α)

n + w(N−α)
n

){
ei V

2 τ sech[ε(τ + τ0)]

+ e−i V
2 τ sech[ε(τ − τ0)]

}
, n = 1, . . . , 2N. (9.1)

The collision of a clockwise jiving soliton and its anti-
clockwise gyrating counterpart was simulated using an initial
condition of the form

ψn = ε√
3

{(
v(α)

n + w(N−α)
n

)
ei V

2 τ sech[ε(τ + τ0)]

+ (
v(N−α)

n + w(α)
n

)
e−i V

2 τ sech[ε(τ − τ0)]
}
, (9.2)

where n = 1, . . . , 2N .
Despite the jiver’s weak instability, the two solitons with

the same sense of gyration as well as the countergyrating soli-
ton pair emerged from the collision unscathed. In the case of
either initial condition, equation (9.1) or (9.2), the only effect
of interaction was an acquired modulation of each soliton’s
oscillation amplitude [Figs. 4(a) and 4(c)].

Turning to the collision of two waltzers, we set the initial
condition in the form

�ψ = ε√
3

(�v(α) + �v(N ) ){ei V
2 τ sech[ε(τ + τ0)]

+ e−i V
2 τ sech[ε(τ − τ0)]}. (9.3)

In this case, the scattering was seen to be elastic. The soli-
tons would emerge without any change in the amplitude, the
velocity, or the gyrating pattern [Figs. 4(b) and 4(d)].

B. Vector Schrödinger equations

The two-component amplitude equation (4.12) and its four-
component generalization (6.4) are worth commenting upon.

The vector nonlinear Schrödinger equation (4.12) has
appeared in a large number of contexts and a significant
wealth of knowledge about its solutions has been accumulated
[27–30]. Specifically, the soliton (4.14) was proved to be sta-
ble [27,29] and localized solutions with an arbitrary number
of humps were determined in addition to this fundamental
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soliton [30]. By contrast, references to the four-component
Schrödinger equation (6.4) seem to be lacking in the
literature.

An interesting property of equations (4.12) and (6.4) is
their conservativity. In particular, equation (6.4) represents a
Hamiltonian system with the Hamilton function

H =
∫

[| ṗ1|2 + | ṗ2|2 + |q̇1|2 + |q̇2|2

+ |p1|4 + |p2|4 + |q1|4 + |q2|4
− 2(|p1|2 + |p2|2 + |q1|2 + |q2|2)2

− 4(p1 p2q∗
1q∗

2 + p∗
1 p∗

2q1q2)]dT1,

where the overdot stands for ∂/∂T1. Equations (6.4) can be
written as

i
∂ pn

∂Z2
= δH

δp∗
n

, i
∂qn

∂Z2
= δH

δq∗
n

(n = 1, 2),

where p∗
1,2 are the momenta canonically conjugate to the

coordinates p1,2, and q∗
1,2 are the momenta conjugate to q1,2.

Thus, despite the presence of gain and loss, the small-
amplitude light pulses in the PT -symmetric necklace obey
Hamiltonian dynamics.

X. CONCLUDING REMARKS

A. Conclusions

When the coupled waveguides considered in this paper
are linear and nondispersive—that is, when the system is
modeled by the linear chain of 2N elements—the complex
modes are given by arbitrary linear combinations of eigen-
vectors of the 2N × 2N matrix (2.2). The addition of the
nonlinearity and dispersion imposes nonlinear constraints on
the coefficients of the admissible combinations. We have clas-
sified linear patterns that persist in the nonlinear dispersive
necklace.

One simple pattern arising in the necklace of 2N lin-
ear waveguides corresponds to z-independent illumination.
The pattern consists of a linear combination of �v(α) and
�v(N−α), two eigenvectors pertaining to the repeated eigen-
value βα (where α = 1, . . . , N − 1). A linear combination
of �v(α) and �w(α)—the eigenvectors associated with opposite
eigenvalues—describes a periodic power oscillation between
odd and even waveguides. (Here α may take any value from
1 to N .) An odd-even blinking regime with the maximum
waveguide power varying along the necklace is generated by
a combination of four eigenvectors: �v(α), �w(α), �v(N−α), and
�w(N−α) (α = 1, . . . , N − 1).

The most interesting types of structure result from com-
bining �v(α) with �w(N−α), or �v(α) with �v(N ). With either of these
choices, light propagates by switching from one guide to the
next in a corkscrew fashion. A more complex, multiflash spiral
is associated with a pattern comprising four eigenvectors: �v(α),
�w(N−α), �v(N ), and �w(N ) (α = 1, . . . , N − 1).

Our analysis of the nonlinear dispersive structures was
focused on short pulses of light. Turning on the dispersion
and nonlinearity, the configuration corresponding to the z-
independent illumination transforms into a constellation of
2N synchronized pulses. The corresponding amplitudes of
supermodes are given by the soliton solutions of the one- or

two-component nonlinear Schrödinger equations [Eqs. (4.6)
or (4.12), respectively]. On the other hand, the nonlinear
dispersive counterpart of the odd-even oscillation consists
of a string of flashes. In that case, the amplitudes of the
eigenvectors constituting a two-supermode pattern satisfy the
system (4.12), while in a four-supermode combination, the
amplitudes are solitons of the four-component equation (6.4).

The spiral patterns in the necklace of nondispersive linear
waveguides persist as gyrating solitons of its nonlinear dis-
persive counterpart. The gyrating soliton is a light pulse that
propagates along the fiber and circulates around the necklace
at the same time. The soliton amplitudes of the spiral pattern
combining two eigenvectors—�v(α) with �w(N−α), or �v(α) with
�v(N )—satisfy the system (4.12). The helical structure involv-
ing four supermodes gives rise to a multiflash gyrator: a string
of flashes with modulated brightness, revolving around the
necklace as a whole. The amplitudes of the four eigenvectors
�v(α), �w(N−α), �v(N ), and �w(N ). are given by the soliton solution
of the four-component nonlinear Schrödinger equation (6.4).

Our numerical simulations indicate that some of the gy-
rating solitons are stable while some other ones are weakly
unstable.

The optical necklace we considered in this paper was ei-
ther conservative (no gain no loss) or PT symmetric, where
lossy waveguides alternate with waveguides with gain. Our
perturbative construction of short-pulse solutions is equally
applicable to both arrangements—as long as the gain-loss
coefficient in the non-Hermitian necklace remains under the
PT -symmetry-breaking threshold.

The non-Hermitian necklace affords control opportunities
unavailable in conservative arrays. We have shown that by
varying the gain-loss coefficient one can change the length
of the pulse of light, its velocity, and its sense of gyration.

B. Relation to earlier studies

It is appropriate to place our results in the context of exist-
ing literature on revolving light patterns.

The authors of Ref. [2] studied spatial solitons in the non-
linear Hermitian necklace [Eq. (2.1) without the ∂2

τ ψn term
and with �n = 0]. The localized structures of Ref. [2] are
traveling solitons of the one-dimensional discrete Schrödinger
equation that were transplanted from an infinite chain to a ring
with a large but finite number of sites. Those structures are not
the gyrating solitons considered in this paper. The stationary
light beams of Ref. [2] are localized in n, whereas our gyrating
solitons are localized in the retarded time τ .

Another class of circular patterns extensively covered in
the literature comprises azimuthons in the planar nonlin-
ear Schrödinger equation [31]. Azimuthons are ring-shaped
complexes of two-dimensional solitons revolving around a
common center. Unlike the gyrating solitons which are pulses
traveling in waveguides, azimuthons are formed by station-
ary light beams in homogeneous media. Mathematically, the
difference is that the azimuthon is a ring of several coexisting
solitons involved in collective motion, whereas a gyrating soli-
ton is a lone pulse revolving around the necklace on its own.
The azimuthon is not constrained by any lattice, while the
gyrating soliton requires a ring-shaped necklace to circulate.

Finally, we note parallels between the Hermitian spi-
ral patterns of the present study and the rotary beams in

023532-10



GYRATING SOLITONS IN A NECKLACE OF OPTICAL … PHYSICAL REVIEW A 103, 023532 (2021)

circular arrays reported in Ref. [10]. The principal difference
between the system considered in Ref. [10] and our Eq. (2.1)
with γ = 0 is that the latter is nonlinear and takes into account
dispersion of pulses. These factors select particular spiral pat-
terns that may form trajectories of the gyrating solitons.
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