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On-chip experiment for chiral mode transfer without enclosing an exceptional point
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Adiabatically encircling an exceptional point (EP) in a two-dimensional parameter space usually leads to
the flip of instantaneous eigenstates. However, encircling dynamically the EP will arouse chiral modes transfer.
The obtained eigenstate is determined by the encircling direction. The effect is robust against the size of the
encircling loop in the parameter space once the EP is enclosed in the loop. It has been reported theoretically
that the effect can also be observed when the loop does not enclose EP but keeps it at a proper distance. Here
we experimentally validate the theoretical prediction by designing and fabricating a silicon-on-insulator based
subwavelength grating waveguides structure. The chiral modes transfer is achieved via motivating and detecting
the even and odd modes around the telecommunication wavelength. The results provide a more robust way for
studying the topological properties of the non-Hermitian system.
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I. INTRODUCTION

If an optical system contains open boundary or dissipa-
tion, the eigenvalues of the Hamiltonian are usually complex
and many unique properties have been discovered [1–8]. A
prominent example came from the degeneracy of the eigen-
values and eigenvectors. The degeneracy points are known
as exceptional points (EPs) [9,10]. Numerous phenomena
associated with EPs have been observed in waveguide and
cavity arrangements, for example, loss induced transparency
[11], unidirectional invisibility [12], sensor to perturbations
[13], and single-mode laser [14]. Besides, adiabatically or
dynamically encircling an EP has been also widely studied to
investigate the topological property of non-Hermitian systems
[15–18]. For adiabatic encircling, the instantaneous eigen-
states will transfer to another while gaining a geometric phase.
As the encircling becomes dynamic, the output eigenstate
depends on the encircling direction, leading to chiral modes
transfer [17–19].

The chiral modes transfer by encircling an EP has been
theoretically studied and experimentally realized in metallic
waveguides [20], optomechanical systems [21], ferromagnetic
waveguides [22], and silicon-on-insulator (SOI) optical plat-
forms [23–26]. The devices are designed to perform varying
structure parameters which form a closed loop enclosing an
EP. Actually, the effect still exists even without enclosing an
EP in a dynamic circle, which is just required to be in the
direct vicinity of EP [27,28]. It is because the nonadiabatic
transition in the vicinity of EP remains strong even if the
instantaneous eigenvalues do not intersect along the parameter
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loop. The condition expands the boundary of encircling loop
desired for chiral transfer processes.

In this work, we implement an experiment to demonstrate
the chiral modes transfer without encircling the EP. The struc-
ture is designed and fabricated based on silicon-on-insulator
(SOI) subwavelength grating (SWG) waveguides, which en-
able precise control of structure parameters. By adjusting the
parameters, the coupling strength and resonance detuning of
modes in individual waveguides can be flexibly modulated,
and form a closed loop without enclosing the EP. We nu-
merically calculate mode transfer efficiency influenced by the
distance between the loop and EP. Meanwhile, two eigen-
modes are separately motivated and detected in both ends of
the waveguides, providing experimental validation of theory.
The results show that chiral modes transfer is observed. Our
research may find practical applications in on-chip optical
devices such as mode converters, and the SWGs waveguide
offers a platform for the study of non-Hermitian dynamics.

II. THEORETICAL MODEL

We start from considering an optical waveguide structure
consisting of two SWG waveguides, as shown in Fig. 1(a).
The amplitudes of the transverse-electric-like modes in the
individual waveguides abide by the Schrödinger-type equation

i
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)
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(
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)(
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, (1)

where A1,2 stand for the mode amplitudes in the in-
dividual waveguides. α is the propagation constant, and
�α represents the amount of detuning. γ is the prop-
agation loss, and the coupling strength is denoted by
C. The model is slightly different than [27] which in-
troduced both loss and gain components in the system.
The difference takes no effect on the theoretical research.
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FIG. 1. (a) Schematic of the two SWG waveguides. Inset in the
dashed box depicts profiles of even and odd modes at both ends of the
waveguides. (b) Uniform and nonuniform distributions of fluctuation
amplitude δ along the propagation direction. (c) Trajectory of param-
eter loops enclosing (dotted curve) and not enclosing (solid curve)
the EP (red sphere). The terminal point of the loops is indicated by
the gray sphere. The incident wavelength is chosen as λ = 1550 nm.

By solving the Hamiltonian H, we obtain the eigenvalues
S± = (2α + �α + iγ )/2 ± [(�α–iγ )2 + 4C2]1/2/2 and the
eigenvectors [1, (S±–α–�α)/C]T. Once the parameters sat-
isfy �α = 0 and C = γ /2, both the eigenvalues and eigen-
vectors of the Hamiltonian coalesce, leading to the appearance
of an exceptional point (EP). The SWGs are fabricated based
on the SOI technique by using a 220-nm-thick Si layer with
a 3-μm-thick buried SiO2 substrate. There is only a funda-
mental TE mode in each SWG waveguide. The elements in
Hamiltonian H can be tailored by changing the geometric
parameters of the SWGs. Differing from Dirac points, the
degeneracy points in the Hermitian system, EPs exist in a
system with gain or loss. Here we introduce scattering loss
to the system by applying periodically fluctuated width to
one waveguide. The average width of the lossy waveguide
is w0 = 0.7 μm and the fluctuation amplitude of the SWG
strips is denoted by δ(z). Thus the propagation loss γ is
parametrized as γ (δ), and γ increases with the increase of δ.
The other waveguide is lossless and has varying width w(z).
g(z) denotes the gap distance between the lossy and lossless
waveguides. The period and filling factor of the SWGs are
separately fixed at � = 0.3 μm and f = 0.565. The operating
photon energy around λ = 1550 nm is far below the band gap
of the SWGs such that Bragg scattering is avoided [26].

In the proposed waveguide system, we construct a two-
dimensional parameter space by width w and gap distance g,
which determine the detuning �α and coupling strength C in
Hamiltonian H, respectively. The width and gap vary as

g(z) = g0 + �g sin(πz/L),

w(z) = w0 ± �w sin(2πz/L), (2)

where w0 = 0.7, �w = 0.1, and g0 = 0.1 μm. The sign +
(−) represents clockwise (anticlockwise) encircling direc-
tions. As the propagation distance increases from z = 0 to
L, the two parameters produce a closed loop in the (g, w)
plane with its size tuned by �g. The terminal point of the
loop locates at w0 = 0.7 and g0 = 0.1 μm where z = 0 or

L, corresponding to the ends of the waveguides. The profiles
of even and odd modes in the terminal point are illustrated
in the dashed box. According to the degeneracy condition,
an EP in the parameter space surely locates at wEP = w0 =
0.7 μm and gEP = gEP(δ). In the following, we first consider
uniform distribution of δ along the propagation direction. We
set δ(z) = 0.1 μm, as shown by the upper line in Fig. 1(b).
Through numerical simulation [26,29,30], a fixed EP is con-
firmed in the position of gEP = 0.52 μm, indicated by the red
sphere in Fig. 1(c). The solid loop without enclosing the EP
and dotted loop enclosing the EP are plotted according to
Eq. (2), in which �g < 0.42 μm and �g > 0.42 μm, respec-
tively. Then we consider a nonuniform distribution of δ, which
is set to be variable following a Gauss distribution δ(z) =
δ0exp[–(z–L/2)2ρ2/L2] with δ0 = 0.1 μm and ρ = 3.5. The
lower curve in Fig. 1(b) plots the nonuniform distribution of
δ. Loss decreases from the middle to both ends of the waveg-
uide gradually, leading to moving EPs in the system [26]. As
shown in Fig. 1(c), the EP is initially located in the position
implied by the blue sphere. With increasing the propagation
distance, the EP moves to the red sphere as z = L/2 and
finally returns to the original blue sphere. Our previous work
has shown that topological mode transfer still happens even
if the moving EP is enclosed transiently by the encircling
loop [26]. Specifically, the EP in z = L/2 should be enclosed
by the loop. Otherwise, the loop does not encircle the EP
and instantaneous mode transfer will not occur. Compared
to the fixed EP (ρ = 0), utilizing moving EPs (ρ = 3.5) can
significantly reduce the loss and length of the structure.

III. RESULTS AND DISCUSSION

A. Modes transfer efficiency influenced by gap distance

The evolution of modes in the designed waveguide struc-
ture is simulated by the finite-difference time-domain (FDTD)
method. The length of the waveguides is set to L = 69 μm
which is long enough to ensure adiabatic parameter evolution
[23–26]. The even and odd modes can be separately motivated
in one end and detected in the other end of the waveguides.
We employ Ti j (T ′

i j) as transmittance from mode i into mode j
for the clockwise (anticlockwise) encircling direction, where
i, j = 1 or 2 represents the even or odd mode. Figures 2(a)–
2(d) plot the simulated transmittance Ti j as a function of �g.
The vertical dashed line indicates the position where the loop
exactly goes through the EP in z = L/2, that is �g = gEP–g0.
As for T ′

i j , it can be obtained from the reciprocity relation of
T ′

i j = Tji in the system. Comparing the case of ρ = 0 with
ρ = 3.5, we find the former has significantly lower transmit-
tances because that mode evolution suffers less loss in the
waveguide structure with nonuniform fluctuation amplitude δ.

The transfer efficiency can be characterized by the power
ratio of output even mode. We denote ηe (η′

e) as the even-to-
total power ratio at the output for clockwise (anticlockwise)
encircling. As the even mode is incident, it is defined
as ηe = T11/(T11 + T12) for clockwise encircling and η′

e =
T ′

11/(T ′
11 + T ′

12) for anticlockwise encircling. As the odd
mode is incident, it is defined as ηe = T21/(T21 + T22) for
clockwise encircling and η′

e = T ′
21/(T ′

21 + T ′
22) for anti-

clockwise encircling. The simulated transfer efficiency as a
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FIG. 2. (a)–(d) Transmittance as a function of gap distance �g.
(e), (f) Transfer efficiency as a function of �g. The encircling direc-
tion is clockwise in (e) and anticlockwise in (f). (g) Difference of
transfer efficiency in the two directions. The thick and thin curves
denote incidence of even and odd modes, respectively. The solid and
dashed curves represent uniform and nonuniform loss distribution,
respectively. The vertical dashed lines indicate that the loop exactly
goes through the EP, �g = gEP–g0 = 0.42 μm.

function of �g is plotted in Figs. 2(e) and 2(f). The thick
and thin curves depict incidence of even and odd modes,
respectively. For uniform loss distribution (ρ = 0), the trans-
fer efficiency as a function of �g is plotted by the dashed
curves. As the loop is far away from the EP, �g � gEP–g0,
the transfer efficiencies are fairly low for odd mode incidence
and approach 100% for even mode incidence. It means that
the output is still the incident mode despite the encircling
directions. There is almost no mode transfer to occur. With
the increase of �g, the encircling loop gets closer to the
EP. For even mode incidence, the value of ηe decreases re-
markably in the clockwise direction and η′

e changes slightly
in the anticlockwise direction. For odd mode incidence, the
value of ηe changes slightly in the clockwise direction and
η′

e increases remarkably in the anticlockwise direction. The
difference of transfer efficiency in the two directions exceeds
η′

e − ηe = 0.8 as �g > 0.3 μm [Fig. 2(g)], signifying highly
asymmetric mode transfer. The output mode becomes the even
one in the anticlockwise direction and keeps the odd one in the
clockwise direction. Finally, the transfer efficiency remains
stable as �g is further increased to beyond gEP–g0. The results
show that asymmetric mode transfer still happens even if the
encircling loop does not enclose the EP but gets close to

FIG. 3. Numerically simulated Ex field distributions in the SWG
waveguides. The incident mode is injected from (a) the left side and
(b) the right side. The insets at both ends of the structure show the
computed field profile along the x direction at the input and output
ports. Here we set ρ = 3.5 and �g = 0.35 μm.

it. The main reason is the existence of strong nonadiabatic
transitions in the vicinity of EPs.

For nonuniform loss distribution (ρ = 3.5), the transfer
efficiency as a function of �g is plotted by the solid curves,
which share a similar trend as ρ = 0. The main difference
is the degree of asymmetry (ηe − η′

e) in the two encircling
directions, which is lower for ρ = 3.5. Even so, the difference
of transfer efficiency in the two directions still exceeds 0.7 as
�g > 0.3 μm [Fig. 2(g)], implying asymmetric mode transfer.
To sum up, asymmetric mode transfer occurs even if the
dynamic encircling loop does not enclose an EP, and modes
suffer less loss when adopting moving EPs or nonuniform loss
distribution.

The electric field distributions in the waveguides are given
in Fig. 3, which is obtained by FDTD simulations. The fields
are normalized in each propagation direction to evidently
reveal the mode transfer process. When the even and odd
modes are injected from the left, corresponding to clockwise
encircling, we always obtain the odd mode at the output,
as observed from the asymmetric distribution of the output
electric field (Ex) shown in Fig. 3(a). Alternatively, when the
even and odd modes are injected from the right, corresponding
to anticlockwise encircling, the even mode with a symmetric
field distribution is observed at the left output, as shown in
Fig. 3(b).

B. Measured and simulated spectra of transmittance

To validate the above results in experiment, we fabricate
the structure by using electron-beam lithography with reactive
ion etching on a commercial SOI platform. The amplitude
of the gap distance and the loss distribution factor are set
to �g = 0.35 μm and ρ = 3.5, respectively. Figure 4(a) il-
lustrates the scanning electron microscope images of part of
SWG waveguides and a mode converter [31–34]. On the chip,
two converters are connected to both ends of the waveguides
by gradually changing the waveguide geometry from a strip
to a SWG. Besides, the structure contains an ancillary cir-
cuit composed of mode multiplexer (demultiplexer) and input
(output) grating coupler [26]. The former is cascaded to re-
alize mode-division multiplexing of the two lowest order TE
modes, and the latter couples light in each output channel into
the single-mode fiber or vice versa. The experimental setup
used for mode motivation and measurement is schematically
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FIG. 4. (a) Scanning electron microscopy images of one con-
verter and part of the SWG waveguides. (b) Schematic of the
experimental setups. The structure on chip contains the SWG waveg-
uides and the ancillary optical circuits.

illustrated in Fig. 4(b). A wideband amplified spontaneous
emission (ASE) light source is used in our measurement. The
continuous-wave ASE light is passed through a polarization
controller to tune the polarization to TE. Then the light is cou-
pled into and out of the chip vertically with single-mode fibers
by the grating couplers. After the output fiber, a commercial
3-dB Y splitter is connected to split the output light into two
paths. One is linked to the optical power meter for monitoring
and tuning the alignment between the single-mode fibers and
the grating couplers. The other is connected to the optical
spectrum analyzer to measure the transmittance spectra for
every mode.

The measured transmittances are plotted by the dark col-
ored curves in Fig. 5 where the light colored curves depict
FDTD-simulated spectra. The simulated transmittances at
λ = 1550 nm are identical to those in Figs. 2(a)–2(d) as
�g = 0.35 μm and ρ = 3.5. The experimental results agree
well with the simulation over a wavelength range of 1545–
1565 nm. The range can be broadened by designing the
ancillary optical circuits operating in a wider bandwidth cen-
tered at 1550 nm. For the oscillation in the measured spectra,
it is caused by reflection from connections of the SWG
waveguides and converters [26]. As the even mode is incident
forwardly (clockwise encircling), we have T12–T11 ∼ 6 dB
meaning the output is mainly the odd mode. Most of the
even mode transfers to the odd. As the odd mode is incident
forwardly, one sees that T22–T21 ∼ 7 dB, which means that the
output is still dominated by the odd mode. On the other hand,
as the mode is incident backwardly (anticlockwise encircling),

FIG. 5. Experimentally measured (dark color) and FDTD sim-
ulated (light color) spectral responses for clockwise (a) and
anticlockwise (b) encircling direction. We set �g = 0.35 μm,
ρ = 3.5, and L = 69 μm.

the transmittances satisfy T ′
11 > T ′

12 and T ′
21 > T ′

22 for the in-
cidence of even and odd modes, respectively. The even mode
always dominates at the output. In consequence, the output
mode is determined by the encircling direction despite the
input mode.

IV. CONCLUSIONS

In conclusion, we have designed and fabricated a waveg-
uide structure to realize the chiral mode transfer by dy-
namically changing two parameters forming a closed loop.
With the increase of gap variation amplitude, the loop be-
comes larger and gets closer to the EP. As the loop does
not enclose the EP, the transfer efficiency can still remain
at a high level as long as the loop is in the vicinity of
the EP. Experimentally, the even and odd modes in both
ends of the waveguides are separately motivated and detected
by adopting additional circuits and setups. The measured
spectra of transmittance coincide with those obtained by
numerical simulation. The waveguide’s own compact size fa-
cilitates integration into other on-chip structures. The results
broaden the condition needed for chiral transfer, providing a
more robust way to study the topological properties of the
non-Hermitian system.
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