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Partially PT -symmetric lattice solitons in quadratic nonlinear media
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Partially parity-time-symmetric (pPT -symmetric) lattice solitons are explored in quadratic nonlinear media.
The solution of the model a nonlinear Schrödinger (NLS) equation with coupling to a mean term and an
additional external potential, is computed by modern numerical methods, and it is shown that pPT -symmetric
lattice solitons can exist in quadratic nonlinear media. The study concentrates on effects generated by the
variation of lattice depth and quadratic nonlinearity strength that specify characteristics of the model, and the
stability of the model is examined comprehensively by the nonlinear evolution and linear stability spectra of
the solitons. It is demonstrated that stable evolution of solitons in a quadratic nonlinear media is possible for
self-focusing pPT -symmetric lattices. Moreover, it is observed that, for the defocusing case of the lattice,
fundamental solitons decay into radiation modes, and the decay of these solitons can be delayed by a deeper
potential.
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I. INTRODUCTION

Solitons are localized waves that maintain their form and
velocity during propagation because of a delicate balance
between nonlinear and dispersive effects in the medium. Gen-
eration of solitons in nonlinear systems with real external
potentials (lattices) have drawn much attention over the last
two decades [1–12]. It is known that the external potential of
complex optical systems can be richer than a real lattice when
the optical system includes energy gain and loss, the potential
of the medium would be complex [13] and in such systems,
balanced gain and loss results in dissipative solitons [14–16].

In 1998, a novel theoretical approach was proposed by
Bender and Boettcher [17] to show that non-Hermitian Hamil-
tonians can produce entirely real spectra when they possess
parity-time (PT ) symmetry, where PT symmetry means that
a Hamiltonian is invariant under complex conjugation and
simultaneous reflection in all spatial directions [V ∗(x, y) =
V (−x,−y)] [13,18]. This pioneering exploration indicates the
possibility of stable pulse propagation in PT -symmetric opti-
cal systems [19] and triggered much research related to wave
dynamics in PT -symmetric potentials [20–30]. Furthermore,
it was demonstrated that PT -symmetric lattices can be real-
ized both theoretically [18,31,32] and experimentally [33–36].

More recently, it was shown that, when a potential invariant
under complex conjugation and reflection in a single spatial
direction [i.e., V ∗(x, y) = V (−x, y) or V ∗(x, y) = V (x,−y)],
the linear spectrum can still be all real [37,38]. This special
class of complex potentials is called “partially PT sym-
metric” (pPT symmetric). The existence and stability of
multidimensional solitons in such lattices have been demon-
strated by Yang [38]. Vortex solitons in pPT -symmetric
azimuthal potentials have been introduced in Ref. [39] and
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the existence and stability of gap solitons have been inves-
tigated in Ref. [40]. More importantly, symmetry breaking
of solitons, which is forbidden for PT -symmetric potentials,
have been demonstrated in a special class of one-dimensional
(1D) and two-dimensional (2D) pPT -symmetric potentials
[25,37]. Symmetry breaking can occur above a critical power,
and this power threshold is a bifurcation point where the
stability properties of the base branch is changed. On the
bifurcated branch non-PT -symmetric (asymmetric) solitons
can exist, and they exhibit interesting stability dynamics,
which are not observed in conservative systems, such as stable
non-PT -symmetric solitons (in 1D) and oscillatory instability
or nonreciprocal nonlinear evolutions by spatial mirror reflec-
tion (in 2D).

In the studies mentioned, pulse dynamics are governed by
nonlinear Schrödinger (NLS) type equations in cubic non-
linear media. However, it is known that, in many optical
applications, the leading order polarization effect is quadratic
[41–48]. In this study, the numerical existence of fundamental
solitons in quadratic nonlinear media with pPT -symmetric
lattices are demonstrated and a detailed stability analysis is
performed for the solitons obtained. The model for prop-
agation of light beams in quadratic nonlinear media with
a pPT -symmetric lattice is given by a NLS equation with
coupling to a mean term (denoted “NLSM systems”) and an
additional external potential.

The NLSM equations first obtained by Benney and Roskes
in 1969 [49] were for water of finite depth, and the evolution
of a three-dimensional (3D) wave packet in water of finite
depth was investigated by Davey and Stewartson [50] in 1974.
In 1975, the integrability of NLSM systems was studied by
Ablowitz and Haberman [51], and in 1997 Ablowitz et al.
[52–54] demonstrated that the evolution of the electromag-
netic field in quadratic nonlinear media can be described by
NLSM-type equations. Recently, wave collapse in the NLSM
system was studied in Ref. [55], and wave collapse in the
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NLSM system was arrested by self-rectification [56] and real
periodic external lattices [47]. The general NLSM system is
given by [53,54,56]

iuz + �u + |u|2u − ρuφ = 0, φxx + νφyy = (|u|2)xx, (1)

where u(x, y) is the normalized amplitude of the envelope
of the normalized static electric field propagating in the z
direction. �u ≡ uxx + uyy corresponds to diffraction, and the
cubic term in u originates from the nonlinear (Kerr) change
of the refractive index. The parameter ρ is a coupling con-
stant that comes from the combined optical rectification and
electro-optic effects modeled by the φ(x, y) field, and ν is the
coefficient that comes from the anisotropy of the material.

The paper is outlined as follows: In Sec. II, the governing
equations (model) for the quadratic nonlinear media with an
external potential is presented and pPT -symmetric lattice
solitons are obtained by numerical solution of the model. In
Sec. III, the stability of the lattice solitons is examined by the
nonlinear evolution and linear stability spectra of the model. A
brief summary of the numerical results is outlined in Sec. IV.

II. THE MODEL

Wave propagation in quadratically nonlinear media with an
external potential is characterized by the following (2 + 1)-
dimensional model

iuz + �u + |u|2u − ρuφ + V (x, y)u = 0,

φxx + νφyy = (|u|2)xx. (2)

V (x, y) is an external optical potential that is defined as fol-
lows for the model considered:

V (x, y) = V0
{
3
(
e−(x−x0 )2−(y−y0 )2 + e−(x+x0 )2−(y−y0 )2)

+ 2
(
e−(x−x0 )2−(y+y0 )2 + e−(x+x0 )2−(y+y0 )2)

+ iW0
[
2
(
e−(x−x0 )2−(y−y0 )2 − e−(x+x0 )2−(y−y0 )2)

+ (
e−(x−x0 )2−(y+y0 )2 − e−(x+x0 )2−(y+y0 )2)]}

, (3)

where V0 is the depth of the potential and W0 � 0 is the depth
of the potential’s imaginary part (gain-loss component) [38].
Distances between humps of the potential are determined by
x0 and y0 and are fixed to 1.5. The potential V (x, y) fulfills the
condition V ∗(x, y) = V (−x, y), so it is pPT symmetric. The
lattice potentials with the focusing nonlinearity (V0 > 0) and
the defocusing nonlinearity (V0 < 0) will be considered. The
top view and cross-sectional shape of the potential V (x, y) are
plotted in Fig. 1 for V0 = 1 and W0 = 0.1.

The optical systems with PT -symmetric lattices have a
phase-transition point where the linear spectrum is all real
below this threshold and partially complex above this thresh-
old. This threshold has been determined as W0 = 2.14 for
the potential (3) considered in Ref. [38]. Therefore, when
W0 < 2.14 the spectrum is all real, and if W0 exceeds 2.14, a
phase transition occurs and the spectrum includes eigenvalues
with nonzero imaginary parts.

A. Numerical solution for the model

The fundamental soliton solutions of model (2) is com-
puted by the spectral renormalization (SR) method, which was

FIG. 1. (a) Top view of the pPT -symmetric lattice. Cross sec-
tion along the x axis of (b) the real part, and (c) the imaginary part of
the lattice when V0 = 1 and W0 = 0.1.

developed by Ablowitz and Musslimani [57]. The SR method
is based on a fixed-point iteration scheme. The essence of the
method is to transform the governing equation into Fourier
space and find a nonlinear nonlocal integral equation coupled
to an algebraic equation.

The ansatz u(x, y, z) = f (x, y)eiμz is used to get a solution
of the NLSM model (2). Here, f (x, y) is a complex-valued
function and μ is the propagation constant (or eigenvalue).
Upon inserting the ansatz into the model (2), the following
eigen-equation is obtained:

−μ f + � f + | f |2 f − ρ f φ + V (x, y) f = 0,

φxx + νφyy = (| f |2)xx. (4)

Applying a Fourier transform to Eq. (4) gives

−μ f̂ − (
k2

x + k2
y

)
f̂ + F[| f |2 f − ρ f φ + V (x, y) f ] = 0,(

k2
x + νk2

y

)
φ̂ = k2

xF[| f |2], (5)

where F denotes the Fourier transform [F ( f ) = f̂ ] and �k =
(kx, ky) are Fourier variables. To circumvent a possible singu-
larity in the denominator when μ < 0, a term r f̂ is added to
and subtracted from the system (5),

[μ + |�k|2] f̂ + r f̂ − r f̂ = F[| f |2 f − ρ f φ + V (x, y) f ],(
k2

x + νk2
y

)
φ̂ = k2

xF[| f |2], (6)

where r is a positive constant and |�k|2 = k2
x + k2

y . After this

operation, f̂ and φ̂ can be calculated as follows:

f̂ = F[| f |2 f − ρ f φ + V (x, y) f + (r − μ) f ]

r + |�k|2
,

φ̂ = k2
x

k2
x + νk2

y

F[| f |2]. (7)

A new field variable f (x, y) = λw(x, y) is introduced to
avoid collapse (or blowup) of the solution’s amplitude under
iterations. λ �= 0 is a constant to be determined. Substituting
new field variables into the Eqs. (7) gives

ŵn+1 = F[|λn|2|wn|2wn−ρwnφn+ V (x, y)wn+ (r− μ)wn]

r+ |�k|2
,

φ̂n = k2
x

k2
x + νk2

y

|λn|2F[|wn|2]. (8)

Let φ̂n = |λn|2�̂n, then, multiplying the first equation in sys-
tem (8) by ŵ∗

n and integrating over the entire space (x, y), the
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renormalization parameter |λn| is determined as follows:

|λn|2 =

∞∫
−∞

∫ ∞
−∞ {(|�k|2 + μ)|ŵn|2 − F[V wn]ŵ∗

n}dkxdky

∫ ∞
−∞

∫ ∞
−∞{F[|wn|2wn − ρwn�n]ŵ∗

n}dkxdky
,

�n = F−1

[
k2

x

k2
x + νk2

y

F[|wn|2]

]
. (9)

The iteration continues until the relative error λerror =
|λn+1/λn − 1| < 10−10. It has been demonstrated that this
algorithm converges rapidly for a wide-range of nonlinear
partial differential equations [58–60]. Thus, the numerical
solutions (fundamental solitons) of the model (2) are obtained
from a convergent iterative scheme. The algorithm usually
converges to the solution within less than 100 iterations when
suitable parameter values are chosen for the model. The con-
stant r is chosen heuristically and in most of the cases it can
be selected from a wide interval such as any natural number
between 5 and 20. It should be noted that increasing the value
of r slows down the convergence of the algorithm. The initial
condition of the SR algorithm is a typical Gaussian given by

w0(x, y) = e−
[

(x−x0 )2+(y−y0 )2
]
, (10)

where x0 and y0 represent the location of the solution on the
lattice.

B. The fundamental solitons

Using the SR method, the numerical solution of the model
(2) is computed. The initial condition of the algorithm is
focused on the center of lattice by setting x0 = y0 = 0 in
Eq. (10), and this location is a local minimum of the pPT -
symmetric potential (see Fig. 1). Unless otherwise specified,
we set parameters in the model (2) as follows:

(ρ, ν,W0) = (0.1, 1, 0.1). (11)

With these parameters, the SR algorithm converges to a soli-
ton solution of the model (2) in both self-focusing (V0 = 1)
and defocusing (V0 = −1) regimes of PT -symmetric lattices.
The top view and diagonal cross sections of the real and
imaginary part of the fundamental soliton is shown in Fig. 2
for V0 = −1, μ = 1.7, and r = 15. Note that fundamental
solitons can be generated by the model (2) for 0 � ρ � 1.2
and 0 � ν when V0 = −1, W0 = 0.1. Similarly, for the self-
focusing (V0 > 0) case of the lattice, double-hump soliton
solutions can be obtained when V0 = 1 and W0 = 0.1 for
0 � ρ � 1.8, 0 � ν. Such a double-hump soliton is shown in
Fig. 3.

Furthermore, if the initial condition (10) is focused to any
local maximum of the lattice (i.e., x0 = ±1.5 and y0 = ±1.5),
the algorithm converges to double-hump stationary solutions
when V0 > 0, and when V0 < 0 the convergence cannot be sat-
isfied and the solution drifts away from the lattice maximum
to nearby lattice minima.

III. STABILITY ANALYSIS

The SR method is used to calculate soliton solutions of
the model (2). Once the solution is obtained, the stability of

FIG. 2. Fundamental soliton located at the center of the pPT -
symmetric lattice for the parameters given in Eq. (11). (a) Top view
(left) and diagonal cross section (right) for the real part of the soliton.
(b) Top view (left) and diagonal cross section (right) for imaginary
part of the soliton. (c) Top view (left) and diagonal cross-section
(right) of the coupled field φ.

solitons can be explored. The linear stability of solitons are
examined by the spectrum of linearization operator near the
fundamental soliton and the nonlinear stability of the solitons
are investigated by direct simulation of the nonlinear model.

A. Linear stability of the fundamental solitons

To examine linear stability of the model (2), we calculate
the spectrum of linearization of the model near the solitons

FIG. 3. Soliton solution of self-focusing pPT -symmetric lattice
when V0 = 1 and μ = 0.83. (a) Top view and (b) 3D view of the
double-hump soliton.
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that are obtained with the SR method. By denoting

U = eiμz[u0(x, y) + ũ(x, y, z)], (12)

where u0(x, y) is the fundamental soliton, μ is the propagation
constant and ũ � 1 is the infinitesimal perturbation. If the
perturbation ũ decays to zero, then the soliton is considered to
be linearly stable. Inserting the perturbed solution U into the
model (2), we get the linearized system for ũ by neglecting
small terms of second order [O(ũ2)]:

ũz = −iμũ + i�ũ + i
(
2|u0|2ũ + u2

0ũ∗) − iρφũ + iV ũ. (13)

Upon separating the fundamental soliton u0 and the perturba-
tion ũ into real and imaginary parts as follows:

u0 = a + ib, ũ = Reλz + iIeλz, (14)

we obtain ũz = λũ, where λ is the growth rate of disturbance.
Substituting u0 and ũ into the system (13) results in the eigen-
value problem

AV = λV, (15)

where

A =
(

FR GI

GR FI

)
, V =

(
R
I

)
.

The matrix coefficients of A are given by

FR = −2ab,

GI = −[� + (a2 + 3b2) − μ − ρφ + V ],

FI = 2ab,

GR = [� + (3a2 + b2) − μ − ρφ + V ]. (16)

The eigenvalues of A can be calculated numerically with
finite difference discretization of the spatial domain. If any
eigenvalue in the spectrum has a positive real part, the solution
is linearly unstable.

The power, which is defined by P = ∫∫ ∞
−∞ |u|2dxdy, plays

an important role in determining the stability properties of
the solitons. Therefore, the power-eigenvalue diagram of gap
solitons are investigated in detail by the variation of V0 and ρ

parameters in Fig. 4. Here, the linear stability (solid blue) and
instability (red dotted) regions are determined by computation
of eigenvalue spectra for each point on the power curves. It
is important to note that this analysis shows the first band-
gap boundaries for the considered parameter regimes in each
panel. For instance, when ρ = 0.1 and V0 = 1, the soliton so-
lutions can be obtained for μ ∈ [0.78, 0.1.74] within the gap
region [see Fig. 4(c)]. When V0 = 1, the solitons are linearly
stable below a critical power (Pc = 1.73) in both ρ = 0 and
ρ = 0.1 cases [see Figs. 4(a) and 4(c)], and the solitons are
stable for V0 = −1 and ρ = 0 when their power is greater than
11.38 [see Fig. 4(b)]. The solitons are unstable at each point
of the power curve when V0 = −1 and ρ = 0.1 [see Fig. 4(d)].

The solitons that are shown in Figs. 2 and 3 correspond to
points “d” and “c” in Figs. 4(d) and 4(c), respectively. This
fact reveals the linear stability of the soliton (at point c) when
μ = 0.83 and V0 = 1 and the linear instability of the soliton
(at point d) when μ = 1.7 and V0 = −1. Furthermore, when
V0 = 1, the solitons are found to be linearly stable for 0 �
ρ � 0.9 and 0 � ν, and it is observed that, as ρ increases, the

FIG. 4. The power diagram of solitons when (a) ρ = 0, V0 = 1;
(b) ρ = 0, V0 = −1; (c) ρ = 0.1, V0 = 1; and (d) ρ = 0.1, V0 = −1.
Solid blue and red dotted lines show stable and unstable regions for
the gap solitons, respectively.

soliton power increases, whereas the power decreases with the
increase of the parameters ν, V0, and W0.

B. Nonlinear evolution of the fundamental solitons

The nonlinear stability of fundamental solitons are inves-
tigated by direct simulation of the model (2) for long times.
A finite-difference discretization scheme is used in the spatial
domain and the solution is advanced in z with a fourth-order
Runge-Kutta method.

In Fig. 5, the linear spectrum (left panels) and nonlinear
evolution (right panels) of the solitons are displayed. Here,
the fundamental solitons, which are obtained at points “a,”
“b,” “c,” and “d” in Fig. 4, are used as the initial conditions
of the evolution in Figs. 5(a)–5(d), respectively. As can be
seen from Figs. 5(a)–5(c), the linear spectra of solitons that
are obtained at points a–c are purely imaginary (none of their
eigenvalues have a real part), and the peak amplitude of the
evolved solitons oscillates over relatively small amplitudes
during the propagation, thus stable evolution of the soliton
can be achieved for the considered parameter regimes. On
the other hand, the linear spectrum of the soliton, which is
obtained at point d, involves an eigenvalue with positive real
part, and peak amplitude of the evolved soliton decreases
significantly during the evolution, which indicates instability
of the examined soliton.

To see the effect of quadratic nonlinearity and of the depth
of the pPT -symmetric potential on the pulse stability, the
linear spectrum (left panels) and nonlinear evolution (right
panels) of unstable solitons are investigated for various ρ, ν,
V0, and W0 values in Fig. 6. Here, for the first case of nonlinear
evolution, the initial condition is chosen as the soliton at
point d (shown by solid blue line) and the maximum real part
of eigenvalues in the spectrum of this soliton [max(λRe) =
1.661] is marked by a red circle in each spectrum. The
evolution results show that, as the optical rectification
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FIG. 5. The linear spectrum (left panel) and peak amplitude
(right panel) of the evolved soliton from z = 0 to z = 300 (a) when
V0 = 1, ρ = 0, and μ = 0.83; (b) when V0 = −1, ρ = 0, and μ = 4;
(c) when V0 = 1, ρ = 0.1, and μ = 0.83; and (d) when V0 = −1,
ρ = 0.1, and μ = 1.7.

parameter ρ increases, the propagation distance of the soliton
decreases, and when ρ > 0, the solitons decay after a finite
distance of propagation in each case [see Fig. 6(a)]. On the
other hand, the increased anisotropy parameter ν and gain-loss
component W0 extend the propagation distance of the soliton
[see Figs. 6(b) and 6(d)]. Importantly, as can be seen from
Fig. 6(c), a deeper potential (V0 = 2) delays decay of the
soliton and extends the propagation distance. These results
are also demonstrated by linear spectra of the solitons (left
panels in Fig. 6). The spectral analysis shows that, when ρ

increases, the maximum real part of the eigenvalues increases
and none of the solitons are found to be linearly stable [see
Fig. 6(a)], whereas the maximum real part of the eigenvalues
is decreasing with increasing parameter ν [see Fig. 6(b)]. Al-
though the maximal real part of the eigenvalues is increasing
when potential depth |V0| increases from 0 to 1, beyond this
point (when |V0| > 1) it decreases (see Fig. 6(c)).

In light of the analysis, it is observed that the stability prop-
erties of the solitons are considerably altered by the coupling
parameter ρ and the potential depth |V0|, and the dynamics of

FIG. 6. The linear spectra (left panels) and peak amplitude of
the evolved solitons (right panels) in the defocusing pPT -symmetric
potential. The fundamental soliton is obtained (a) for varied values
of ρ when ν = 1, V0 = −1, and W0 = 0.1; (b) for varied values of
ν when ρ = 0.1, V0 = −1, and W0 = 0.1; (c) for varied values of V0

when ρ = 0.1, ν = 1, and W0 = 0.1; and (d) for varied values of W0

when ρ = 0.1, ν = 1, and V0 = −1.

the considered solitons are weakly effected by the variation
of the anisotropy parameter ν and the depth of imaginary part
W0.

It should be noted that, although fundamental solitons can
be generated when ν > 0 (in semi-infinite interval) and in-
creased values of ν extends the propagation distance of the
solitons, it cannot be considered as a collapse-arrest mecha-
nism since the parameters ρ and ν are fixed values that depend
on the type of optical materials.

IV. CONCLUSIONS

The numerical existence of pPT -symmetric lattice soli-
tons are demonstrated in the quadratic nonlinear media, and
stability properties in the lattices considered are explored by
examining the nonlinear evolution and linear stability spectra
of the solitons.
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Stability analysis shows that, if the quadratic nonlinear-
ity is absent (ρ = 0), solitons can be linearly stable in a
wide range of parameter values where linear spectra of soli-
tons include purely imaginary eigenvalues, and these solitons
can stay nonlinearly stable during the evolution for both
the self-focusing (V0 = 1) and defocusing (V0 = −1) case of
the potential. Similarly, when ρ > 0, the solitons can be stable
in the self-focusing potential (V0 = 1) for a wide range of the
parameters if their power is below a critical value. On the other
hand, when ρ > 0 and V0 = −1, the linear stability spectra
of the solitons include eigenvalues with positive real part and
none of the solitons can stay stable during nonlinear evolution
in defocusing potential.

For unstable solitons, as the quadratic nonlinearity coeffi-
cient ρ is increased, the propagation distance of the evolved
soliton is shortened, whereas the propagation distance of un-
stable solitons can be extended by increasing the potential
depth (|V0|).

In conclusion, the numerical results demonstrate that stable
pPT -symmetric lattice solitons can be obtained in quadratic
nonlinear media for a suitable range of parameters, and al-
though strong quadratic nonlinearity in the model impoverish
the stability properties of the solitons, the instability due to the
decay of the solitons’ amplitude can be delayed by a deeper
potential.
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