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The implementation of exceptional points (EPs), a special type of topological singularities, has emerged
as a new paradigm for engineering the quantum-inspired or wave-based photonic systems. Even though there
exists a range of investigations on EPs of order two and three (say, EP2s and EP3s, respectively), the hosting of
fourth-order EPs (EP4s) in any real system and the exploration of associated topological features are lacking.
Here we have designed a simple Fabry-Pérot type gain-loss-assisted open optical microcavity to host EPs up to
order four. The scattering-matrix formalism has been used to analyze the microcavity numerically. With the
appropriate modulation of the gain-loss profile in the same cavity geometry, we have encountered multiple
different orders of EPs by investigating the simultaneous interactions among four coupled cavity states via
level-repulsion phenomena. Besides affirming the second-order and third-order branch-point behaviors of the
embedded EP2s and EP3s, the fourth-order branch-point functionality of an EP4 has been manifested by
encircling three connecting EP2s simultaneously in the closed gain-loss parameter space. We have estab-
lished a unique successive state-switching phenomenon among four coupled states by implementing such an
EP4-encirclement scheme in the system’s parameter space. The proposed scheme indeed offers potential
applications in state-switching and control in quantum-inspired integrated photonic circuits, where the presence
of an EP4 serves as a new light manipulation tool.
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I. INTRODUCTION

The promising interplay of topology and non-Hermiticity
in an optical system has disclosed a new light manipulation
tool by hosting exceptional points (EPs) that were once con-
sidered as purely mathematical [1–3]. EPs are a special kind of
branch-point singularities, usually appearing in the parameter
space of various non-Hermitian (open or nonconservative)
systems. While a system encounters an EP, the coupled
complex eigenvalues and the corresponding eigenstates simul-
taneously coalesce, and hence the eigenspace dimensionality
of the underlying Hamiltonian is collapsed, referring to the EP
as a topological defect [1–7]. Moreover, a parity-time (PT )
symmetric system, exhibiting real eigenvalues, undergoes a
spontaneous phase transition from exact-PT phase to broken-
PT phase at an EP [3]. The order of an EP is dictated by the
number of coalescing states, i.e., an EP of order N (say, EPN)
analytically connects N number of coupled eigenstates, where
they coalesce simultaneously. However, (N − 1) number of
EPs of order 2 (say, EP2) are also able to connect N number
of coupled states analytically. It has been observed that the
presence of (N − 1) EP2s in the system’s parameter space
performs a similar topological branch-point functionality of
an EPN [8,9].

Over past two decades, extensive theoretical efforts have
been put forward to explore the fundamental features of
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second- and third-order EPs (EP2s and EP3s, respectively)
[5–15]. Moreover, exotic physical behaviors EP2s and EP3s
have comprehensively been investigated in various open sys-
tems such as optical waveguide [16–23] and microcavity
[24–27] arrangements, photonic crystals [28,29], laser sys-
tems [30–32], and also in some nonoptical systems, including
atomic [33,34] and molecular [35] spectra, microwave sys-
tems [36–38], Bose-Einstein [39,40] and Bose-Hubbard [41]
systems, and optomechanical cavities [42,43]. Especially in
the optics and photonics domain, recent advanced technolo-
gies to implement EPs in various photonic systems with
gain and loss have come up with a potential platform to
meet a wide range of astonishing applications associated with
the topological control of light-matter interactions [2] such
as asymmetric mode conversion or switching [16,17,22,23],
topological state flipping [24–27], control of lasing modes
and antilasing [31,32], resonance tunneling [44], light am-
plification by parametric instability [45], unidirectional light
propagation [46] including extremely enhanced nonreciprocal
effects [47–49], stopping of light [50], and ultra-enhancement
in optical sensing [51–54].

The presence of an EP2 is associated with the avoided
resonance crossing (ARC) phenomenon around a square-root
singularity between two coupled states with crossing or anti-
crossing of their energies and widths (essentially, the real and
imaginary parts of the corresponding eigenvalues) [5,22–25].
Now an EP3 can be encountered among three coupled states,
where each of them individually interact with the other two
states (keeping the third one as an observer) near two EP2s
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in two different regimes of the system’s parameter space. The
presence of such two connecting EP2s holds the signature of
the occurrence of a cube-root branch point, i.e., an EP3 in the
same parameter space [8,14,15,26]. The branch-point behav-
ior of the EPs can be established by encircling a particular
EP with a stroboscopic simultaneous variation of coupling
control parameters, which yields a successive state-transfer
phenomenon among the corresponding coupled states [15,
22–26,38]. Here the coupled eigenvalues adiabatically ex-
change their positions, besides accumulating an additional
Berry’s phase by one of the associated eigenstates [38]. Now,
if we consider time or length-scale dependent (dynamical)
parametric variation around an EP, then the system’s adiabatic
behavior breaks down, enabling nonadiabatic dynamics of
the coupled eigenstates with asymmetric population transfer
[55,56]. Here one of the states that evolves with lower av-
erage loss behaves adiabatically and its coupled counterparts
behave nonadiabatically. Such asymmetric state dynamics is
associated with the chiral property of the underlying system,
where irrespective of the inputs, the direction of the dynamical
EP encirclement process decides the expected output [55].
The effect of such a parametric encirclement process around
EP2s and EP3s and associated topological features have im-
mensely been investigated in various configurations of optical
microcavity [24–26] and waveguide [17,18,20–23] systems,
and also verified experimentally [16,19].

Now it has been observed that the order of EPs plays a
crucial role in the enhancement of the device performance.
Beyond the current fundamental limits, the orders of magni-
tude enhancement of light-matter interactions can be achieved
by hosting higher-order EPs. In this context the implementa-
tion of EP3s have attracted attention, owing to its cube-root
response which is extremely sensitive to the external per-
turbation in comparison to the square-root response of an
EP2 [51–53]. Thus it is expected that the fourth-root re-
sponse to the perturbation due to hosting a fourth-order EP
(EP4) can further enhance the performance of the underlying
device. However, the hosting of EPs of the order of more
than three and the corresponding analysis of the topological
features are lacking. In this context, the topology of higher
order EPs via emergence and coalescence of multiple EPs
in a four-level system was experimentally investigated by
using a coupled acoustic arrangement with asymmetric losses
[57], and a similar approach of the interaction of multiple
EPs induced by non-Hermitian coupling was numerically
explored in a closed-form four-waveguide system [58]. A
different approach of emergence and coalescence of multiple
EPs has been reported by considering a periodically mod-
ulated PT -symmetric quadrimer waveguide system, where
the interactions of multiple EPs and their collision and mer-
gence were induced by the periodic modulation, leading to
Floquet higher-order EPs [59]. Such investigations dealt with
a phase diagram featuring an exceptional point formation pat-
tern (EPFP) to represent the occurrence of higher-order EPs.
Beyond these few investigations, the direct observation of the
fourth-order branch-point behavior of an EP4 was analytically
established by considering a four-level Hamiltonian [60].
In contrast, implementing the branch-point behavior of an
EP4, the realization of successive state exchange mechanisms
among more than three states in any real photonic system

is yet to be explored. It was predicted that (N2 + N − 2)/2
parameters are required to manipulate an EPN [9]. Beyond
this prediction, a gain-loss-assisted microcavity system was
explored to host an EP3 by varying only two tunable parame-
ters [26]. However, the integration of higher-order EPs (of the
order of more than three) demands a comparably complicated
topology of the respective system. Thus from the application
point of view, a potential platform to manipulate light can be
explored by hosting different orders of EPs (up to order four)
in the same passive optical system with a minimum number of
tunable parameters. Thus, with a striking difference from the
previously reported systems, in this work, a possibly simplest
form of optical microcavity has been investigated to host EPs
up to the order four.

In this paper we have reported a Fabry-Pérot type tri-
layer optical microcavity with a spatially unbalanced gain-loss
profile to host EPs up to order four. The mutual coupling
among four chosen cavity states have been investigated to
encounter different orders of EPs by modulating the gain-
loss profile based on only two tunable parameters. For the
proposed microcavity configuration we have shown that only
two control parameters, which is the minimum number of
required parameters to manipulate an EP2, are sufficient
to host up to fourth-order EPs. Here the scattering-matrix
(S-matrix) formalism has been exploited to analyze the mi-
crocavity numerically. With the simultaneous variation of two
chosen control parameters, at least three connecting EP2s
have been identified among four coupled cavity states. Here
multiple EP3s have been realized by enclosing different pairs
of connecting EP2s inside the gain-loss parameter space. The
second-order and third-order branch-point behaviors of the
embedded EP2s and EP3s have been examined by considering
adiabatic closed gain-loss variation around them. Now we
have encountered an EP4 and presented a successive topolog-
ical state conversion scheme among the four coupled states
by considering an adiabatic encirclement scheme enclosing
all the identified EP2s in the 2D gain-loss parameter plane.
Such a unique microcavity configuration has been proposed to
explore the topological features of EPs up to order four. The
proposed scheme would indeed open up a state manipulation
technique for state-of-the-art integrated devices.

II. FOUR-LEVEL STATE INTERACTION SCHEME: AN
ANALYTICAL MODEL

Here we illustrate an interaction scheme among four cou-
pled states using the framework of a four-level open system,
which can be characterized by a 4 × 4 non-Hermitian Hamil-
tonian H having the form H0 + λHp. Such a Hamiltonian has
been written as

H = [ε j]
4×4
diagonal + λ[ωi j]

4×4
nondiagonal, {i, j} ∈ {1, 2, 3, 4}.

(1)

The passive Hamiltonian H0 represents a diagonal matrix with
of four passive eigenvalues ε j . The perturbation Hp represents
a nondiagonal matrix having the elements ωi j (i.e., ωi j = 0
for i = j). The parameter λ signifies the perturbation strength
over Hp. Here we can conveniently introduce a tunable pa-
rameter, say η, to interconnect the coupling terms ωi j , as
ωi j = ±ηω ji. Such a parameter dependent perturbation can

023526-2



SUCCESSIVE SWITCHING AMONG FOUR STATES IN A … PHYSICAL REVIEW A 103, 023526 (2021)

be analogous to optical gain-loss, while implementing a real
system. Now the eigenvalue equation |H(λ) − EI| = 0 (I rep-
resents a 4 × 4 identity matrix) gives a quartic equation of
E , where the four corresponding roots, say Ej ( j = 1, 2, 3, 4)
express the four eigenvalues of H(λ).

Now, to describe the simultaneous interaction among four
eigenvalues Ej ( j = 1, 2, 3, 4) in the vicinity of a fourth-root
branch point, we consider a specific point λc, where four
eigenvalues are analytically connected. To ensure such ana-
lytical connection of Ej at λ = λc, the set of equations given
below is to be simultaneously satisfied:

dm

dEm
det |H(λ) − EI| = 0 with m = 0, 1, 2, 3. (2)

Now, considering a critical eigenvalue Ec at λ = λc, the valid-
ity of Eq. (2) entitles the only possible form of Ej in terms of
λc and Ec as

Ej (λ) = Ec +
∞∑

u=1

au(λ − λc)u/4. (3)

Here au are some real constants. For distinguishing four eigen-
value levels (with j = 1, 2, 3, 4), Eq. (3) can be written more
explicitly as

Ej (λ) = Ec +
∞∑

u=1

au(λ − λc)u/4

× exp

[
i × u{arg(λ − λc) + 2π ( j − 1)}

4

]
. (4)

According to Eq. (4), four eigenvalue levels are defined by
the quantity (λ − λc)1/4 on first, second, third, and fourth Rie-
mann surfaces in the λ plane. These four eigenvalue surfaces
are connected through λc, where the associated fourth-root
dependency of Ej (λ), as can be seen in Eqs. (3) and (4),
indicates the presence of a fourth-root branch point, i.e., an
EP4. Now the structure of eigenfunctions in the presence of
an EP4 can be written as

|ψ j (λ)〉 = |ψc〉 +
∞∑

u=1

(λ − λc)u/4|φu〉, (5)

where the |ψc〉 has been considered as the critical eigen-
function at λ = λc. Now, considering the Riemann surfaces
associated with Ej ( j = 1, 2, 3, 4), the corresponding eigen-
functions can be written more explicitly as

|ψ j (λ)〉 = |ψc〉 +
∞∑

u=1

(λ − λc)u/4
∣∣φ j

u

〉
with

∣∣φ j
u

〉 = exp

[
i × u{arg(λ − λc) + 2π ( j − 1)}

4

]
|φu〉. (6)

Now, for all λ �= λc, the possible pairs of eigenfunctions given
by Eq. (6) form the usual biorthogonal complete system by
validating the conditions

〈ψ̃i(λ)|ψ j (λ)〉 = Nj (λ)δi j, (7a)∑
j

|ψ j (λ)〉〈ψ̃ j (λ)|
〈ψ̃ j (λ)|ψ j (λ)〉 = I. (7b)

In Eq. (7), ψ̃ and ψ represent the left and right
eigenvectors. Now, considering the operation 〈ψ̃i(λ)|H(λ) −
H(λc)|ψ j (λ)〉, it can be shown that the scalar product given
by Eq. (7a) vanishes as

Nj (λ) ∼ p(λ − λc)3/4 for λ → λc, (8)

which reveals

〈ψ̃i(λ)|ψc〉 ∼ q(λ − λc)3/4 for λ → λc (9)

after replacing one of the eigenvectors of the product [given
on the left-hand side of Eq. (7a)] with |ψc〉. Here p and q are
some constants. Thus, the consideration of λ → λc yields

〈ψ̃c|ψc〉 = 0 along with 〈ψ̃c|φ1〉 = 0 (10)

even for i �= j. |φ1〉 represents the first-order term in Eq. (3)
corresponding to the first power of (λ − λc)1/4. Equation (10)
establishes analytic connection of four coupled states of H
[given by Eq. (1)] in the vicinity of a fourth-root branch
point, i.e., an EP4. Moreover, with appropriate settings of the
coupling parameters, the presence of multiple EP2s and EP3s
can be also be realized. In general, in the presence of an EP
of order N , the eigenvalue levels are defined by the quantity
(λ − λc)1/N on N number of Riemann surfaces in the λ plane.

Now we implement the above scenario by designing a sim-
ple fabrication feasible gain-loss-assisted optical microcavity,
which can host EPs up to order four. Accordingly, as a four-
level passive system (analogous to H0), we have to choose four
passive cavity states within a certain frequency range, which
would be coupled with the onset of perturbation in terms of
an unbalanced gain-loss profile (analogous to Hp). Here the
gain-loss can be modulated with an appropriate choice of
two tunable parameters (analogous to λ and η), which can
control the overall interaction mechanism among the chosen
cavity states.

III. DESIGN OF A FABRY-PÉROT TYPE
OPTICAL MICROCAVITY

A. Cavity configuration with the operating parameters

We design a 1D Fabry-Pérot type trilayer open optical
microcavity of length L = 12 μm, where a layer of high
refractive indexed (say, nc) material of the width of 9 μm
has been sandwiched between two thin layers of the same low
refractive indexed (say, ng) materials of the width of 1.5 μm
each. Here we choose nc = 2.65 and ng = 1.5. Figure 1(a)
represents a schematic diagram of the microcavity. Beyond
the PT -symmetric constraints, the cavity has partially been
pumped by integrating non-Hermiticity in terms of optical
gain-loss (which is considered as the imaginary part of the
refractive index). An unbalanced bilayer gain-loss profile has
been introduced in both thin low-indexed regions, whereas
in the intermediate high-indexed layer there is no gain-loss.
The introduced gain-loss profile has been characterized by
two tunable control parameters: gain coefficient (say, γ ) and
fractional loss-to-gain ratio (say, τ ). Along the the length
scale of the microcavity, the overall nonuniform distribution
of the complex refractive index profile within 0 � x � L (total

023526-3



LAHA, BENIWAL, AND GHOSH PHYSICAL REVIEW A 103, 023526 (2021)

56.353.3 Re(k)
-0.13

-0.06
Im

( k
)

0 6 12
1

3

R
e(
n)

-0.2

0.25

Im
(n

)

x ( m)

P1

P2P3

P4

(a)

)c()b(

FIG. 1. (a) Schematic diagram of the proposed trilayer optical
microcavity, occupying the region 0 � x � L with ng = 1.5, nc =
2.65, L = 12 μm, L1 = 0.5 μm, L2 = 1.5 μm, L3 = 10.5 μm, and
L4 = 11.5 μm. {�+

L , �−
R } represents the set of incident waves from

both sides, whereas {�−
L ,�+

R } represents the set scattered waves.
(b) Complex refractive index profile [as given in Eq. (11)] along x di-
rection, where the dotted red line represents the Re[n(x)] (associated
with the left y axis) and the solid blue line represents the [Imn(x)]
(associated with the right y axis). (c) Initial positions of four chosen
poles, say, P1, P2, P3, and P4 within the chosen frequency (k) range
[3.35, 3.65] (in μm−1).

length) can be written as

n(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ng − iγ : 0 � x � L1 and L3 � x � L4,

ng + iτγ : L1 � x � L2 and L4 � x � L,

nc : L2 � x � L3,

1 : otherwise.
(11)

with L1 = 0.5 μm, L2 = 1.5 μm, L3 = 10.5 μm, and L4 =
11.5 μm. The complex profile of n(x) has been shown in
Fig. 1(b), where the dotted red and solid blue lines represent
Re(n) (corresponding to the left y axis) and Im(n) (corre-
sponding to the right y axis), respectively. A similar scalable
prototype microcavity can be realized with a combination of
glass-based materials with silicon carbide (SiC) based materi-
als, where the customized gain-loss profile can be integrated
via a controlled nonuniform pumping scheme or by dop-
ing of lossy and gain elements using a standard lithography
technique.

B. Scattering matrix formalism: Calculation of cavity states

We adopt the scattering matrix (S-matrix) formalism
method [61] to calculate the cavity states numerically. In
this method the resonance states of the a real system are
calculated in terms of the poles of the associated S matrix.
Using the electromagnetic scattering theory, a 2 × 2 S matrix
can be constructed to relate the input and output fields of the
proposed 1D microcavity followed by [�output] = [S][�input].
Now if we consider {�+

L ,�−
R } and {�−

L ,�+
R } are the inci-

dent and scattered waves from both sides of the microcavity,
as shown in Fig. 1(a), then the S-matrix equation can be

written as [
�−

L0

�+
R0

]
= [S{n(x), k}]

[
�+

L0

�−
R0

]
, (12)

where {�+
L0,�

−
R0} and {�−

L0,�
+
R0} represent the associated

amplitudes. The matrix elements have been calculated as a
function of cavity parameters and frequency (k). The poles of
the defined S matrix has been calculated by solving

1

max
∣∣eig[S{n(x), k}]∣∣ = 0. (13)

We use numerical root finding method to solve Eq. (13).
To obey the conservation and causality conditions, only the

solutions (poles) of Eq. (13), which appeared in the fourth
quadrant of the complex k plane, are physically acceptable
to represent the resonance states of the designed microcavity.
In the passive cavity, the Re(k) of the poles of the associated
S matrix can be calculated as Re(k) = mπ/nR(x)L (with m =
0, 1, 2, . . . ), where m defines the order of the poles and nR(x)
is the real part of n(x) [62]. Now, investigating the ARC type
interactions among the distributed poles over a wide k range
with the onset of pumping (gain-loss), we judiciously choose
four particular poles within a specific k range [3.35, 3.65] (in
μm−1). The circular markers of different colors in Fig. 1(c)
show the initial positions of four chosen poles in the complex
k plane. In the presence of gain-loss, the nonlinear initial
distribution of Pj ( j = 1, 2, 3, 4), as can be seen in Fig. 1(c),
enables the mutual coupling among them with one-to-many
coupling restrictions. Such nonlinear distribution of S-matrix
poles can entirely be controlled by the choice of nonuniform
nR(x) [24].

IV. RESULTS AND DISCUSSION

A. ARCs among the chosen poles:
Toward encounter of multiple EP2s

The mutual interactions among the chosen poles
Pj ( j = 1, 2, 3, 4) with the introduction of gain-loss have
been investigated via special avoided resonance crossing
(ARC) phenomena by tuning two coupling control parameters
γ and τ within a judiciously chosen interaction regime. While
varying γ within 0 � γ � 0.5, the trajectories of Pj in the
complex k plane for different choices of τ have been shown
in Fig. 2. The trajectories of Pj have been shown by dotted
green, red, black, and blue curves for j = 1, 2, 3, and 4,
respectively (such color variations are maintained throughout
the paper for representing all the results). While investigating
the trajectories of the chosen poles for different τ values,
we observe that P2 and P3 interact strongly and approach an
ARC near τ = 0.62, where P1 and P4 behave as observers.
Two different types of ARCs between P2 and P3 along with
the presence of an EP2 have been shown in Fig. 2(a). For
τ = 0.0622, P2 and P3 exhibit an ARC with the increasing
γ followed by an anticrossing in Re(k) with a simultaneous
crossing in Im(k), as shown in Figs. 2(a.1) and 2(a.2),
respectively. Now, while setting a slightly higher value of τ

such as τ = 0.623, P2 and P3 exhibit a different kind of ARC
with the increasing γ , where we observe an exactly opposite
behavior of Re(k) and Im(k). Here Re(k) of P2 and P3 undergo
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FIG. 2. Trajectories of Re(k) and Im(k) associated with Pj ( j =
1, 2, 3, 4) for different τ values, while varying γ within [0, 0.5].
Here the dotted green, red, black, and blue curves represent the
trajectories of P1, P2, P3, and P4, respectively. (a) P2 and P3 exhibit
ARC (unaffecting P1 and P4) with (a.1) an anticrossing in Re(k) and
(a.2) a simultaneous crossing in Im(k) for τ = 0.622, and (a.3) a
crossing in Re(k) and (a.4) a simultaneous anticrossing in Im(k) for
τ = 0.623; (a.5) P2 and P3 coalesce at γ ≈ 0.083 for τ = 0.6288,
referring to the encounter of EP2(2,3). (b) P2 and P4 exhibit ARC
(unaffecting P1 and P3) with (b.1) an anticrossing in Re(k) and
(b.2) a simultaneous crossing in Im(k) for τ = 0.8825, and (b.3) a
crossing in Re(k) and (b.4) a simultaneous anticrossing in Im(k) for
τ = 0.883; (b.5) P2 and P4 coalesce at γ ≈ 0.389 for τ = 0.8827,
referring to the encounter of EP2(2,4). (c) P1 and P2 exhibit ARC
(unaffecting P3 and P4) with (c.1) an anticrossing in Re(k) and (c.2) a
simultaneous crossing in Im(k) for τ = 2.786, and (c.3) a crossing in
Re(k) and (c.4) a simultaneous anticrossing in Im(k) for τ = 2.787;
(c.5) P1 and P2 coalesce at γ ≈ 0.332 for τ = 2.7866, referring to the
encounter of EP2(1,2). In (a.5), (b.5), and (c.5), only the trajectories of
the coalescing states have been shown for a clear visualization. (The
unit of k: μm−1.)

a crossing, whereas the corresponding Im(k) experience a si-
multaneous crossing, as can be seen in Figs. 2(a.3) and 2(a.4),

respectively. However, it has been observed that for both τ

values P1 and P4 remain away from the ARC regime of P2 and
P3. Such two topologically dissimilar ARCs for two different
τ values indicate the presence of an EP2 for an intermediate
τ . In Fig. 2(a.5) we choose τ = 0.6228, for which P2 and P3

coalesce near γ ≈ 0.083, referring to the presence of an EP2,
say EP2(2,3), at ∼(0.083,0.6228) in the (γ , τ ) plane.

In a similar way we further encounter two other EP2s
associated with the pairs {P2, P4} and {P1, P2} at two different
locations in the (γ , τ ) plane. A strong level repulsion between
P2 and P4 has been observed near τ = 0.88, where P1 and P3

behave as observers. On the other hand, P1 and P2 interact
strongly and approach ARC, keeping P3 and P4 as observers,
near τ = 2.78. The type of interactions between the poles
from the pairs {P2, P4} and {P1, P2} for different τ values
have been shown in Figs. 2(b) and 2(c), and also summarized
in Table I (including the interactions for the pair {P2, P3},
as already described). Thus, only modulating two coupling
control parameters γ and τ , we encounter three such cases,
where three different pairs from four chosen poles interact
around three connecting EP2s, keeping the rest as observers.
The locations of three EP2s have also been given in Table I.
Here the pole P2 behaves as a common state and is allowed to
interact with the rest of the three states via three identified
EP2s. Within a chosen interaction regime, such a situation
reveals the presence of higher-order EPs even up to order four
(as there are three connecting EP2s), which connect all four
chosen poles (cavity states) analytically.

Now the topological features associated with different or-
ders of branch-point behaviors can be observed by encircling
single or multiple EP2s in the system parameter space. To
carry out an encirclement process in the system’s parameter
space, we consider the parametric equation:

γ (α) = γ0 sin
(α

2

)
and τ (α) = τ0 + a sin(α), (14)

which governs the simultaneous closed variations of γ and
τ over the tunable angle α ∈ [0, 2π ]. (γ0, τ0) and a are the
characteristics parameters, where γ0 must be greater than the
γ value associated with the respective EP2, which is to be en-
circled (for encircling multiple EP2s simultaneously, we have
to consider comparably higher γ value). For 0 � α � 2π ,
a > 0 enables the clockwise parametric variation, whereas
a > 0 enables the anticlockwise parametric variation along a
specific loop. The choice of such a specific type of parametric
equation allows us to consider a closed loop with γ = 0 at
both the starting and end point, which would be suitable to
track the dynamics of the chosen poles from their passive
locations. This is indeed suitable for device implementation
of the proposed scheme.

Here the second-order branch-point features can be ex-
plored by encircling each of the identified EP2s, individually
in the (γ , τ ) plane. Whereas the third-order branch-point
behavior associated with an EP3 can be observed by en-
closing two connecting EP2s (associated with three coupled
states) inside the parametric loop. Here a maximum of three
EP3s can be identified by simultaneously encircling differ-
ent pairs among three EP2s. Furthermore, the simultaneous
parametric encirclement enclosing all three connecting EP2s
identified among four chosen poles can reveal the fourth-order
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TABLE I. Interaction schemes associated with the pairs {P2, P3}, {P2, P4}, and {P1, P2} for different τ values, while varying γ in between
[0, 0.5]. The locations of three corresponding EP2s in the (γ , τ ) plane are also given in this table.

Strongly interacting τvalues
Type of interactions Locations of EP2s

states exhibiting ARC Re(k) Im(k) γEP τEP EP2

0.622 Anticrossing [Fig. 2(a.1)] Crossing [Fig. 2(a.2)]
P2 and P3 0.623 Crossing [Fig. 2(a.3)] Anticrossing [Fig. 2(a.4)] 0.083 0.6228 EP2(2,3)

0.6288 Coalescence [Fig. 2(a.5)]

0.8825 Anticrossing [Fig. 2(b.1)] Crossing [Fig. 2(b.2)]
P2 and P4 0.883 Crossing [Fig. 2(b.3)] Anticrossing [Fig. 2(b.4)] 0.389 0.8827 EP2(2,4)

0.8827 Coalescence [Fig. 2(b.5)]

2.786 Anticrossing [Fig. 2(c.1)] Crossing [Fig. 2(c.2)]
P1 and P2 2.787 Crossing [Fig. 2(c.3)] Anticrossing [Fig. 2(c.4)] 0.332 2.7866 EP2(1,2)

2.7866 Coalescence [Fig. 2(c.5)]

branch-point feature, which has been explored by implement-
ing any real optical system. With judicious choices of (γ0, τ0)
and a, we can consider different encirclement processes to en-
close single or multiple EP2s. Such parametric encirclement
schemes can lead to different type of state-flipping applica-
tions, which has been explored in the following sections.

B. Encircling the EP2s individually in the system parameter
space: Toward state flipping between two states

Here we study the effect of stroboscopic encirclement
around individual EP2s in the system’s parameter plane on
the dynamics of four chosen poles in the complex k plane.
To encircle each of the EP2s individually in the (γ , τ )
plane, we consider three different parametric loops [following
Eq. (14)], which have been shown in Fig. 3(a); where Loop-1,
Loop-2, and Loop-3 individually encircles EP2(1,2), EP2(2,3),

and EP2(2,4), respectively. The characteristics parameters, i.e.,
γ0, τ0, and a, associated with these three loops have been
given in Table II. Three crosses in Fig. 3(a) represent the
locations of three EP2s. Here, to perform a particular encir-
clement process, the parameters γ and τ have been varied very
slowly in the clockwise direction along a particular loop. In
Figs. 3(b)–3(d) we show the trajectories of four coupled
poles Pj ( j = 1, 2, 3, 4) in the complex k plane follow-
ing three separate parametric encirclement processes along
Loop-1, Lopp-2, and Loop-3, respectively. Here the dotted
green, red, black, and blue curves represents the evolu-
tions Pj (for j = 1, 2, 3, and 4, respectively) from their
passive locations (i.e., while initializing the encirclement
process; the passive locations are highlighted by the circu-
lar markers of respective colors) in the complex k plane,
following each point evolution along a particular loop in
the (γ , τ ) plane.

FIG. 3. (a) Three parametric loops in the
(γ , τ ) plane [following Eq. (14)] to encircle
the identified EP2s individually, where Loop-1,
Loop-2, and Loop-3 individually enclose
EP2(1,2), EP2(2,3), and EP2(2,4), respectively.
Here we consider the clockwise encirclement
direction. Three crosses indicate the location
of three EP2s. (b) The trajectories of
Pj ( j = 1, 2, 3, 4) following the parametric
encirclement process along Loop-1, exhibiting
an adiabatic state-flipping P1 → P2 → P1,
unaffecting P3 (→ P3) and P4 (→ P4).
(c) Similar trajectories of Pj ( j = 1, 2, 3, 4)
following the parametric encirclement process
along Loop-2, exhibiting an adiabatic
state-flipping P2 → P3 → P2, unaffecting
P1 (→ P1) and P4 (→ P4). (d) Similar
trajectories following the parametric
encirclement process along Loop-3, exhibiting
an adiabatic state-flipping P2 → P4 → P2,
unaffecting P1 (→ P1) and P3 (→ P3). In (b) and
(c) the circular markers of respective colors
indicate the passive locations of Pj , i.e., while
initializing the encirclement from γ = 0.
Arrows of respective colors indicate their
progression directions. (The unit of k: μm−1.)
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FIG. 4. Three parametric loops in
the (γ , τ ) plane [following Eq. (14)],
where each loop individually encloses at
least two connecting EP2s among three
identified EP2s. Here Loop-4, Loop-5,
and Loop-6 individually enclose the pairs
{EP2(1,2), EP2(2,3)}, {EP2(2,3), EP2(2,4)}, and
{EP2(1,2), EP2(2,4)}, respectively. (b) The
trajectories of Pj ( j = 1, 2, 3, 4) following
the clockwise parametric encirclement process
along Loop-4, exhibiting an adiabatic successive
state-switching process P1 → P2 → P3 → P1,
unaffecting P4 (→ P4). (c) Similar trajectories
of Pj ( j = 1, 2, 3, 4) following the parametric
encirclement process along Loop-5, exhibiting
an adiabatic successive state-switching
process P2 → P3 → P4 → P2, unaffecting
P1 (→ P1). (d) Similar trajectories following
the parametric encirclement process along
Loop-6, exhibiting an adiabatic successive
state-switching process P1 → P2 → P4 → P1,
unaffecting P3 (→ P3). The notations and colors
bear the same meaning as we have already
described in the caption of Fig. 3. (The unit
of k: μm−1.)

Now, following the encirclement process along Loop-1,
which encircles only EP2(1,2), keeping EP2(2,3) and EP2(2,4)

outside, we track the trajectories of four chosen poles in
Fig. 3(b). Here it has been shown that only poles P1 and P2,
which are analytically connected by EP2(1,2), are adiabatically
swapping their initial positions with the closed variation of γ

and τ along Loop-1, and perform a complete state-switching
process in the complex k plane followed by P1 → P2 → P1

with the completion of the encirclement process in the (γ , τ )
plane. However, the encirclement process along Loop-1 does
not affect P3 and P4. They follow two individual closed trajec-
tories in the complex k plane and remain in the same states at
the end of the encirclement process. Here the adiabatic state
flipping between P1 and P2 confirms the second-order branch-
point behavior of EP2(1,2). In a similar way, the second-order
branch-point behaviors of EP2(2,3) and EP2(2,4) have been
verified in Figs. 3(c) and 3(d). In Fig. 3(c), the trajectories of
Pj have been shown for a complete parametric encirclement
process along Loop-2, which encloses only EP2(2,3), whereas
it keeps EP2(1,2) and EP2(2,4) outside. Accordingly, in the
complex k plane, a complete adiabatic permutation between
P2 and P3 has been observed following the sequence P2 →
P3 → P2, where P1 and P4 remain unaffected and make in-
dividual loops. Now, for a complete parametric cycle along
Loop-3, which encloses only EP2(2,4) among three identified
EP2s, the similar trajectories have been shown in Fig. 3(d).
Such an encirclement process yields an adiabatic state flipping
between P2 and P4 (P2 → P4 → P2) in the complex k plane,
unaffecting the trajectories of P1 and P3. Thus the individual
encirclement process around each of the identified EP2s in
(γ , τ ) plane allows the adiabatic flipping between two as-
sociated coupled states in the complex k plane even in the
presence of two nearby states. During the exhibition of the
trajectories of Pj in the complex k plane, we additionally plot

the variation of γ along the z axis for clarity. Moreover, we
use arrows of respective colors to highlight the trajectories
of Pj .

C. Parametric encirclement schemes to enclose
two EP2s simultaneously: Toward successive state

switching among three states

Here we consider three pairs among three identi-
fied EP2s viz. {EP2(1,2), EP2(2,3)}, {EP2(2,3), EP2(2,4)}, and
{EP2(1,2), EP2(2,4)}, where the EP2s of each pair have
been encircled simultaneously in the (γ , τ ) plane. Accord-
ingly, we consider such three parametric loops following
Eq. (14), which have been shown in Fig. 4(a). Here Loop-4
encloses EP2(1,2) and EP2(2,3) simultaneously, whereas it
keeps EP2(2,4) outside. Similarly, Loop-5 and Loop-6 have
been considered to encircle only the EP2s from the pairs
{EP2(2,3), EP2(2,4)} and {EP2(1,2), EP2(2,4)}, respectively.
The values of γ0, τ0, and a associated with these three loops
have been given in Table II. The notation and colors bear the
exact same meaning, as we have already discussed. Now, such
an encirclement process around two connecting EP2s can lead
the functionality of a cube-root branch point, i.e., an EP3.
Now the trajectories of Pj following the encirclement pro-
cesses along Loop-4, Loop-5, and Loop-6 have been shown
in Figs. 4(b)–4(d).

In Fig. 4(b) we exhibit the trajectories of Pj following
the stroboscopic parametric variation along Loop-4 (enclos-
ing only EP2(1,2) and EP2(2,3)). Here we observe that poles
P1, P2, and P3, which are analytically connected via two
connecting EP2s (i.e., EP2(1,2) and EP2(2,3); encircled by
Loop-4), are exchanging their identities. After completing the
encirclement process in the (γ , τ ) plane, they switch adia-
batically in a successive manner P1 → P2 → P3 → P1 in the
complex k plane and make a complete loop. However, this
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encirclement process does not affect E4, which remain in the
same state at the end of the encirclement process. Such a
successive states switching phenomenon firmly reflects the
third-order branch-point feature associated with the presence
of an EP3 in the same parameter space, where P1, P2, and P3

are analytically connected. Now, if we consider the parametric
cycle along Loop-5 (enclosing only EP2(2,3) and EP2(2,4)),
then we observe a successive and adiabatic switching among
the associated connected states P2, P3, and P4 followed by
P2 → P3 → P4 → P2 in Fig. 4(c), where P1 remains unaf-
fected. Thus we can confirm the presence of another EP3
to connect P2, P3, and P4. Similarly, the parametric variation
along Loop-6 (enclosing only EP2(1,2) and EP2(2,4)) results
in the adiabatic switching P1 → P2 → P4 → P1 in a succes-
sive manner, unaffecting P3, as can be seen in Fig. 4(d),
which reflects the presence of an EP3 to connect P1, P2, and
P4 analytically. Thus, we host three EP3s in the presence
of three connecting EP2s among four coupled poles, where
considering the stroboscopic encirclement process around the
embedded EP3s, immutable successive state-switching appli-
cations among three associated states have been manifested
even in the presence of a nearby fourth state.

D. Parametrically encircling three EP2s simultaneously:
Toward successive state switching among four states

Now we perform a quasistatic parametric encirclement
process to enclose three connecting EP2s simultaneously in
the (γ , τ ) plane and investigate the associated topology by
tracing the trajectories of Pj ( j = 1, 2, 3, 4) in the complex
k plane. Figure 5 shows the corresponding results includ-
ing the structure of Riemann surfaces within the interaction
regime. With appropriate choice of γ0, τ0, and a (as given in
Table II), we consider a suitable parametric loop, say Loop-7,
following Eq. (14) to encircle all three connecting EP2s, i.e.,
EP2(1,2), EP2(2,3), and EP2(2,4), which have been shown by
the brown loop in the inset of Fig. 5(a) (where three crosses
represent the locations of three EP2s). Here the brown arrows
represent the clockwise parametric variation along Loop-7.
Here we explore that all the coupled poles Pj are exchang-
ing their identities with the stroboscopic parametric variation
along Loop-7. Interestingly, with the completion of this encir-
clement process, all the four consecutive chosen poles carry
out a successive state switching process followed by P1 →
P2 → P3 → P4 → P1, adiabatically to make a complete loop
in the k plane. Such a successive state switching process is
evident from the trajectories shown in Fig. 5(a).

The formation of the Riemann surfaces corresponding to
Pj ( j = 1, 2, 3, 4) concerning the simultaneous variations of
the coupling parameters γ and τ within the interaction regime
have been shown in Fig. 5(b), where the distributions of
Re(k) and Im(k) are exhibited separately in Figs. 5(b.1) and
5(b.1), respectively. The simultaneous interaction among the
four chosen poles can easily be understood from the associ-
ated Riemann sheet distribution. The successive state transfer
process following the parametric variation along Loop-7 has
also been shown by mapping the trajectories of Pj on their
respective Riemann surfaces. Here the successive switching
phenomenon among the coupled poles Pj from their respective
surfaces is clearly evident.

0
0

0.4

Im(k) 3.6Re(k)3.2-1 2.8

0 0.4
-1

3

P1
P2
P3
P4

Loop-7
(a)

(b)

R
e(
k)

Im
(k

)

)2.b()1.b(

P1P2P3P4

FIG. 5. (a) The trajectories of Pj ( j = 1, 2, 3, 4) in the
complex k plane, following a clockwise encirclement process along
Loop-7 (as shown in the inset), which encloses all three identified
EP2s (i.e., EP2(1,2), EP2(2,3), and EP2(2,4) ) simultaneously. Here they
execute a successive state-switching process following the manner
P1 → P2 → P3 → P4 → P1 with the completion of the encirclement
process. (b) The formation of the Riemann surfaces corresponding
to Pj as a function of γ and τ with the overall variation of (b.1)
Re(k) and (b.2) Im(k) within the interaction regime. The trajectories
of Pj following the parametric encirclement process along Loop-7
have been mapped on their respective Riemann sheets for a clear
understanding of the successive state transfer mechanism among
four coupled poles from their corresponding surfaces. The notations
and colors bear the same meaning as we have already described in
the caption of Fig. 3. (The unit of k: μm−1.)

Such unconventional topology of four coupled poles
around their three connecting EP2s certainly conveys the
fourth-order branch-point feature with the presence of a
fourth-root singularity, i.e., an EP4 in the same parameter
space. Here four complete encirclement process in a row
along the same parametric loop is required to regain the initial
locations of Pj . Such an EP4-aided topological state-switching
process has also been examined for an anticlockwise para-
metric variation along Loop-7, where it has been observed
that four coupled poles switch their identities following the
manner P1 → P4 → P3 → P2 → P1, which is opposite to the
sequence, as can be seen for the clockwise parametric encir-
clement process.

Thus, using the same framework of a simple optical
microcavity with an unbalanced gain-loss profile, we have
investigated the hosting EPs up to order four and explored the
successive state switching schemes up to among four coupled
cavity states with an appropriate choice of a stroboscopic
EP-encirclement process in the system’s 2D parameter space.
Without using any complex system with many controlling
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TABLE II. The characteristics of all the chosen parametric loops (Loop-1–Loop-7), including the values of γ0, τ0, and a [following Eq. (14)]
for each loop and the overall device performance in the context of topological state-switching applications.

Parametric loops
Characteristics parameters

EPs inside the loop Topological state switching
γ0 τ0 a

Loop-1 P1 → P2 → P10.38 1.6 1.6 EP2(1,2)

[Fig. 3(a), blue curve] P3 → P3, P4 → P4 [Fig. 3(b)]
Loop-2 P2 → P3 → P20.25 0.6 0.5 EP2(2,3)

[Fig. 3(a), green curve] P1 → P1, P4 → P4 [Fig. 3(c)]
Loop-3 P2 → P4 → P20.42 1.1 0.8 EP2(2,4)

[Fig. 3(a), black curve] P1 → P1, P3 → P3 [Fig. 3(c)]

Loop-4 P1 → P2 → P3 → P10.38 1.22 2 EP2(1,2) and EP2(2,3)

[Fig. 4(a), red curve] P4 → P4 [Fig. 4(b)]
Loop-5 P2 → P3 → P4 → P20.395 0.92 1.5 EP2(2,3) and EP2(2,4)

[Fig. 4(a), gray curve] P1 → P1 [Fig. 4(c)]
Loop-6 P1 → P2 → P4 → P10.41 1.5 1.64 EP2(1,2) and EP2(2,4)

[Fig. 4(a), violet curve] P3 → P3 [Fig. 4(d)]

Loop-7 P1 → P2 → P3 → P4 → P10.395 0.95 2.2 EP2(1,2), EP2(2,3), and EP2(2,4)

[Fig. 5(a), inset] (Fig. 5)

parameters, we have considered only two tunable parameters
associated with the gain-loss profile to host higher-order EPs.
The overall device performance for all the chosen parametric
loops have been summarized in Table II, where the branch-
point features of EPs up to order four have been revealed.

In this context, if we consider the time dependence in the
parametric variation during the encirclement of single or mul-
tiple EPs, then the breakdown of the adiabatic theorem in the
system’s dynamics can be observed [55,56], which has a direct
implication on the time-asymmetric and nonadiabatic evolu-
tion of the coupled states. Such nonadiabatic state dynamics
can be observed in any length-dependent guided-wave system
hosting a dynamical EP encirclement scheme, where the time
evolution of coupling control parameters can analogically be
realized by mapping the parameter space along the length
axis [16,17,20–23,49]. However, in the proposed 1D Fabry-
Pérot type microcavity, we have computed the resonance
states associated with the longitudinal modes by analyzing
the S matrix, where there is no additional propagation axis.
In this framework, the dynamical EP encirclement schemes to
study the time or length-scale dependent model propagation
are impossible to implement directly. Here the trajectories of
cavity states in terms of S-matrix poles have straightforwardly
been analyzed by considering various quasistatic encirclement
processes in the cavity-parameter plane, for which only the
adiabatic evolutions and the corresponding state-switching
phenomenon are evident.

From our comprehensive investigation to reach the fourth-
order branch-point behavior of an EP4 even with the
simultaneous presence of multiple connecting EP2s and EP3s,
it is evident that the proposed scheme of the hosting of a
different order of EPs in a particular optical system cer-
tainly enhances the degrees of freedom to manipulate the
states via light-matter interactions and indeed boost the
device performance in the context of state-switching applica-
tions. The proposed scheme can also be implemented in any
guided-wave systems to further investigate the nonadiabatic

correlations and corresponding chiral aspects associated with
the dynamical (time dependent) encirclement process around
an EP4. Such investigations indeed opens up a fertile platform
to realize a new class of higher-order mode conversion device
which would be suitable for various optical pumping scheme
through higher-order modes, high-power delivery through
higher-order modes, and may also open up future platform
towards mode-multiplexing processes. Moreover, in the pres-
ence of nonlinearities, the proposed EP4-aided successive
state conversion scheme can potentially be explored to design
all-optical circulators and isolators for state-of-the-art inte-
grated (on-chip) photonic circuits for future communication
systems and signal processing. The experimental realization
of EP4-aided state dynamics would be feasible by exploiting
the proposed scheme in any suitable guided-wave system. The
proposed design philosophy along with the customized optical
system will certainly open up an avenue to host EPs of the
order of more than four, such as EP5 and EP6.

V. SUMMARY

In summary, we have reported a configuration of a sim-
ple fabrication feasible gain-loss-assisted Fabry-Pérot type
trilayer optical microcavity to host EPs up to order four.
Estimating the cavity states in terms of the S-matrix poles,
we have chosen to study the simultaneous interactions among
four cavity states with an appropriate modulation of an unbal-
anced gain-loss profile. We have encountered three connecting
EP2s among four coupled states by tuning the gain-loss pro-
file of a thin (in comparison to the total microcavity length)
bilayer at both sides of the microcavity based on only two
coupling control parameters. Now, encircling at least two
connecting EP2s (among three) inside a closed contour in
the gain-loss plane, we have achieved the functionality of a
cube-root branch point with encounter of an EP3, and ac-
cordingly we have embedded a total of three EP3s in the
system’s parameter space. Furthermore, we have exclusively
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reported the hosting of an EP4 by enclosing all the three
connecting EP2s inside a gain-loss parameter space. Besides
the verification of second-order and third-order branch-point
behaviors of embedded EP2s and EP3s in terms of adiabatic
state-flipping applications between two states, and successive
state-switching applications among three states, respectively,
we have established an exclusive EP4-aided topological state-
switching phenomena among four coupled states in a row.
Thus, a specific design of a real optical system hosting an
EP4 has exclusively been reported, where in addition to EP4,
one can host multiple connecting EP2s and EP3s. Besides
the strong impact in the fundamental physics of EP singulari-

ties, the proposed cavity configuration along with the scheme
of the hosting of different orders of EPs has a potential to
boost the technologies for growth of advanced optical ele-
ments for high-performance integrated (or on-chip) devices.
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