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Engineering optomechanical entanglement via dual-mode cooling with a single reservoir
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We study reservoir-engineered entanglement for a cascaded bosonic system consisting of three modes, where
the adjacent pairs couple to each other via both the beam-splitter interaction and the coherent parametric inter-
action with the interaction strengths being tunable. We focus on an optomechanical realization of the model by
combining a nondegenerate parametric amplifier and an auxiliary cavity. A great steady-state cavity-mechanical
entanglement can be achieved by optimizing the ratio of the interaction strengths, where the optomechanical
cavity enacts the cold reservoir, simultaneously laser cooling the pair of hybrid modes delocalized over the
auxiliary cavity and the mechanical oscillator. In comparison with the case of cooling a single delocalized mode,
the dual-mode cooling approach allows one to obtain a greater amount of entanglement with higher cooling
efficiencies and to explore strong entanglement in much broader parameter regions, where the rotating-wave
approximation fails for the single-mode cooling case. Moreover, we show that the steady-state cavity-mechanical
entanglement is robust to the mechanical thermal noise of the high temperature. The improved reservoir
engineering approach can potentially be generalized to other bosonic systems with asymmetric beam-splitter
and parametric interactions.
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I. INTRODUCTION

Quantum entanglement has been demonstrated for quan-
tum optical systems involving bosonic modes, such as those
involving photons, phonons with atomic (or artificial) spins,
and trapped ions. In the past decade, much progress has been
made in directly coupled bosonic systems [1] and particu-
larly in microwave and optomechanical devices [2], where the
radiation-pressure-force induced coupling between the cav-
ity field and the mechanical resonator enables one to study
continuous variable entanglement even for macroscopic-scale
objects [3–6]. Moreover, experimental progress in fabrication
of arrays of nanomechanical or electromechanical resonators
has also shown that multiple light and vibrational modes
can be coupled [7,8], with the multi-mode coupling being
precisely controlled, e.g., in Refs. [9,10]. Entanglement in
coupled multimode bosonic systems furthermore allows one
to increase the sensitivity of measurement [11] (e.g., high-
precision measurements in displacement [12]) and can be
used as a key resource for quantum information processing
and tests of the fundamental limits of quantum mechan-
ics [13–15]. Thus, the creation and verification of large
entanglement for continuous variables, e.g., optomechanical
entanglement between light and macroscopic mechanical ob-
jects, has been an outstanding goal.

Optomechanical entanglement is normally vulnerable to
environmental noises [16–24], which can lead to strong
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dissipation in both the cavity field and the mechanical object.
However, it has recently attracted wide interest in effectively
modifying the dissipation by reservoir engineering, which can
be realized with an appropriately engineered coupling to a
strongly dissipative cold reservoir usually formed by one of
the bosonic modes. Dissipation engineering has been proved
to be a very promising avenue for obtaining a large degree of
entanglement in the context of cavity QED systems [25–29].
By introducing the reservoir engineering approach to three-
mode optomechanical systems under a two-tone or four-tone
laser driving, people have proposed schemes for genera-
tion of strongly squeezed output light and entangled light
beams from an optomechanical cavity by engineering the
mechanical oscillator cooled close to its ground state into
a cold dissipative reservoir [30–34], generation of mechani-
cal squeezing [35], and remote mechanical entanglement by
engineering a cold reservoir formed by the electromagnetic
field [36]. Very recently, people have experimentally demon-
strated engineered macroscopic entanglement between the
two mechanical oscillators by explicitly using the dissipative
nature of the microwave resonator [37,38]. The steady-state
entanglement (between light fields and mechanical objects or
between an electromagnetic field and a mechanical mode)
achievable via reservoir engineering can surpass the limit of
entanglement created by the coherent parametric interaction,
which is imposed by the stability condition of the multi-
mode system [16,18,24]. However, we note that the previous
reservoir-engineering schemes have mainly focused on the
single-mode cooling regime [30–34], i.e., only one of the
delocalized target modes is exposed to the cold reservoir, or
have been limited by the counterrotating interactions so even
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FIG. 1. Sketch of the theoretical model for three bosonic modes
interacting via both a beam-splitter interaction and a parametric am-
plification. The modes c1 and c2 are subjected to the two interaction
processes with equal weights, while the interaction strengths for the
two processes are asymmetric for the modes c2 and c3. The mode c2

is far more dissipative than the other modes and is able to enact as a
cold reservoir.

two-mode cooling can potentially be implemented [36,39].
Thus, the schemes have to work in the regime where the
rotating-wave approximation is well maintained.

In this paper, we study cavity-mechanical entanglement by
reservoir engineering for a generic model consisting of three
bosonic modes, as shown in Fig. 1. The couplings between
the c1 and c2 modes and the c2 and c3 modes both involve
two interaction mechanisms, i.e., a beam-splitter interaction
and a two-mode parametric amplification. The strengths of
the two processes are identical for the c1 and c2 modes and
are unequal for the c2 and c3 modes. To mimic the theo-
retical model, we conceive a hybrid optomechanical setup
with a nondegenerate parametric amplifier shared by two cou-
pled cavities: one of which is an auxiliary cavity, and the
other is an optomechanical cavity. We find strong and stable
steady-state entanglement between the auxiliary cavity field
and the mechanical mode by using the optomechanical cavity
as a cold dissipative reservoir and by simultaneously cooling
the hybridized modes delocalized over both target modes. In
contrast to previous reservoir-engineering schemes [30,34],
where there exists a dark mode, both the delocalized modes
are bright in our model due to the asymmetric weights of the
two interaction processes and are only subject to beam-splitter
interactions with the optomechanical cavity for a suitable
ratio of the weights. As a result, the delocalized modes
are simultaneously cooled by the cold dissipative reservoir
with different cooling rates, which enables one to generate
stronger entanglement between the target modes with higher
efficiency in broad parameter regions, which are supposed
to have system instability in previous schemes for realizing
reservoir-engineered entanglement. In particular, we find that
great steady-state entanglement over the bound allowed by
a coherent two-mode squeezing interaction can be achieved
in the regime far beyond the regular rotating-wave approxi-
mation (RWA) condition, thanks to the nonresonant coupling
between the reservoir and the target modes. Moreover, the

cavity-mechanical entanglement is robust against mechanical
thermal noise at high temperature for a large mechanical qual-
ity factor. While we focus on the optomechanical realization
with the assistance of a nondegenerate parametric ampli-
fier (NDPA), the model may be applied to other three-mode
bosonic systems with symmetry breaking interactions.

The paper is arranged as follows. In Sec. II we give a
description of our physical model and derive the linearized
Hamiltonian for the system. In Sec. III we discuss the
reservoir-engineered entanglement between the mechanical
oscillator and the auxiliary cavity under the RWA. In Sec. IV,
we propose the improved reservoir-engineered method with
two-mode cooling and show the strong steady-state cavity-
mechanical entanglement without the RWA. Finally, the
conclusion is presented in Sec. V.

II. MODEL

We consider a model involving three bosonic modes as
shown in Fig. 1(a), which couple to each other via the effective
Hamiltonian

H = 1

2

∑
i

Eic
†
i ci + λ12(c†

1c2 + c1c2)

+ λ23c†
2c3 + λ′

23c†
2c†

3 + H.c., (1)

where λ jkc†
j ck + H.c. ( j �= k) give rise to coherent state (pop-

ulation) transfer between the modes and λ
(′)
jk c jck + H.c. are

nondegenerate parametric amplification processes. The modes
c1 and c2 have equal weights λ12 for the state transfer and
the parametric process, which for the modes c2 and c3 are
asymmetric. The model is closely related to multimode opto-
and nanomechanical systems [13,40–43], which have recently
attracted wide interest for studying the generation of non-
classical states [44,45], nonreciprocal light transmission and
amplification [46–49], topological phase transition [50–52],
and dynamical synchronization [53–57].

As an example, we envision a hybrid optomechanical
setup, which includes a NDPA shared by an auxiliary cavity
and an optomechanical cavity with a membrane inside. The
NDPA is pumped by a laser at frequency ωp with the gain �,
giving rise to pairs of down-converted nondegenerate photons,
whose frequencies are resonant with the membrane-free op-
tomechanical cavity and the auxiliary cavity, respectively. The
two cavity modes couple with each other via photon hopping
with the rate J . While the optomechanical cavity is driven by
an external laser with frequency ωl and driving strength ε, the
system Hamiltonian is given by (h̄ = 1)

H = H0 + Hom + Hd + Ha1a2 + HNDPA, (2)

with

H0 = ω1a†
1a1 + ω2a†

2a2 + ωmb†b,

Hom = ga†
1a1(b† + b),

Hd = iε(a†
1e−iωl t − a1eiωl t ),

Ha1a2 = J (a†
1a2 + a1a†

2),

HNDPA = �(a†
1a†

2e−iωpt + a1a2eiωpt ), (3)
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where H0 includes the free energy of the optomechanical cav-
ity mode a1, the auxiliary cavity a2, and the mechanical mode
b, which jointly construct the three-mode system described in
Eq. (1); Hom represents the interaction between the optome-
chanical cavity and the mechanical membrane induced by the
radiation pressure with the single-photon coupling strength g;
and Hd describes the longitudinal cavity driving. Assume that
the pumping laser has the frequency twice that of the longitu-
dinal driving, i.e., ωp = 2ωl , then the Hamiltonian (3), in the
rotating frame with respect to the laser driving frequency ωl ,
can be written as

H ′ = �′
1a†

1a1 + �2a†
2a2 + ωmb†b + ga†

1a1(b† + b)

+ iε(a†
1 − a1) + �(a†

1a†
2 + a1a2) + J (a†

1a2 + a1a†
2),

(4)
where �′

1 = ω1 − ωl and �2 = ω2 − ωl are the detunings
of the optomechanical and auxiliary cavity frequencies to
the driving laser frequency, respectively. When the dissipa-
tion and input noises induced by a Markovian environment
are considered, the system dynamics can be studied by the
Langevin equation of motion [2],

ȧ1 = −i�′
1a1 − iga1(b + b†) + ε − i�a†

2

− iJa2 − κ1

2
a1 + √

κ1ain
1 ,

ȧ2 = −i�2a2 − i�a†
1 − iJa1 − κ2

2
a2 + √

κ2ain
2 ,

ḃ = −iωmb − iga†
1a1 − γm

2
b + √

γmbin, (5)

here κ j ( j = 1 and 2) are the cavity decay rates and
γm is the mechanical damping rate. ain

j and bin are input
noise operators for the optical modes (at the vacuum) and
the mechanical mode (at thermal temperature T ), whose
nonzero correlation functions are 〈ain

j (t )ain†
j (t ′)〉 = δ(t −

t ′), 〈bin†(t )bin(t ′)〉 = n̄bδ(t − t ′), and 〈bin(t )bin†(t ′)〉 = (n̄b +
1)δ(t − t ′) [58,59], where n̄b = [exp(h̄ωm/kBT ) − 1]−1 is the
mean thermal phonon number of the mechanical mode and kB

is the Boltzmann constant.
In the presence of strong coherent driving, we can rewrite

the Heisenberg operators as a j = α j + δa j and b = β + δb,
where δaj and δb are the quantum fluctuation operators with
〈δa j〉 = 〈δb〉 = 0 around the classical mean values α j and
β, respectively, with |α j |, |β| � 1. Applying the standard
linearization technique to Eq. (5), we then have

α̇1 = −i�1α1 − i�α∗
2 − iJα2 + ε − κ1

2
α1,

α̇2 = −i�2α2 − i�α∗
1 − iJα1 − κ2

2
α2,

β̇ = −iωmβ − ig|α1|2 − γm

2
β, (6)

where �1 = �′
1 + g(β + β∗) is the effective detuning of the

optomechanical cavity to the cavity driving laser, which is
modified by the mechanical motion. When the system is in
the steady state, the classical mean values are solved as

α1 = (ξ ∗ − i2η)|u2|2
4η2 − |ξ |2 ε, α2 = �α∗

1 + Jα1

−iu2
, β = g|α1|2

−ium
,

(7)

where u1 = i�1 + κ1/2, u2 = i�2 + κ2/2, um = iωm +
γm/2, η = �J�2, ξ = u2�

2 − u∗
2J2 − u1|u2|2, and we have

assumed � and J are real numbers. Without the NDPA and the
auxiliary cavity, one recovers the results α1 = ε/(i�1 + κ1/2)
and β = −ig|α1|2/(iωm + γm/2) obtained in the standard
optomechanical system [16].

Furthermore, by neglecting the higher-order nonlinear
terms, the quantum fluctuation operators follow the Langevin
equations,

δȧ1 = −i�1δa1 − igα1(δb + δb†) − i�δa†
2

− iJδa2 − κ1

2
δa1 + √

κ1ain
1 ,

δȧ2 = −i�2δa2 − i�δa†
1 − iJδa1 − κ2

2
δa2 + √

κ2ain
2 ,

δḃ = −iωmδb − ig(α∗
1δa1 + α1δa†

1) − γm

2
δb + √

γmbin,

(8)

from which we can readily find the linearized Hamiltonian for
the quantum fluctuation operators

Hlin =
∑
j=1,2

� jδa†
jδa j + ωmδb†δb + [G(δa†

1δb + δa1δb)

+(�δa1δa2 + Jδa1δa†
2) + H.c.], (9)

where G = gα1 is the cavity-enhanced optomechanical cou-
pling and assumed to be real for simplicity. Now we have
constructed the effective Hamiltonian proposed in Eq. (1). The
standard optomechanical interaction (i.e., the third term) only
leads to symmetric weights for the state transfer and the para-
metric processes, while the optomechanical-interaction-like
Hamiltonian with asymmetric weights is realized by introduc-
ing the NDPA and the auxiliary cavity. The Hamiltonian (9)
may also be constructed by considering a superconducting cir-
cuit realization, where the asymmetric weights can be realized
with coupled microwave superconducting cavities with their
coupling being modulated by interfacing a superconducting
qubit between them [60]. We next show that, by introducing
the adjustable weights, the system can be more stable, which
remarkably benefits the preparation of steady-state optome-
chanical entanglement.

III. DISSIPATION-INDUCED OPTOMECHANICAL
ENTANGLEMENT UNDER THE RWA

The model can be applied to realize strong optome-
chanical entanglement between the cavity mode δa2 and
the mechanical mode δb based on the reservoir engi-
neering approach [30,34]. To see the insight, we first
set �1 = −�2 = ωm and J ≈ �, and then we recover
the three-mode Hamiltonian Hlin = ωm(δa†

1δa1 + β
†
1β1 −

β
†
2β2) + ge(β1δa†

1 + β
†
1δa†

1 + H.c.) by introducing the delo-
calized Bogoliubov modes β1 = δb cosh r + δa†

2 sinh r and
β2 = δa2 cosh r + δb† sinh r, with r = arctanh(�/G) and
ge = √

G2 − �2 being the effective coupling strength be-
tween the cavity mode δa1 and the delocalized mode β1.
Furthermore, we assume that G, J 
 2ωm and the paramet-
ric gain is less than the optomechanical coupling � < G,
which allows us to make the RWA and rewrite the linearized
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FIG. 2. The steady-state cavity-mechanical entanglement EN be-
tween δb and δa2 versus the effective optomechanical coupling G/ωm

for �/G = 0.9 (blue, upper lines) and �/G = 0.6 (green, lower
lines). The results showing in the solid and dashed lines are simulated
by Hamiltonians (9) and (10), respectively. The other parameters
are J = �, �1 = −�2 = ωm, κ1/ωm = 0.9, and κ2/ωm = γm/ωm =
0.01. The lines are cut off after the onset of the system instability,
as indicated by the black arrow. The mechanical thermal noise is
not taken into account so far (i.e., n̄b = 0); however, it can be detri-
mental for the optomechanical entanglement; see Sec. IV for further
discussions.

Hamiltonian (9) as [30]

H (R)
lin = ge(β1δa†

1 + β
†
1δa1). (10)

Since the hybridized mode β2 only dispersively interacts with
the optical mode δa1 for |J − �| 
 ωm, one can adiabatically
eliminate β2 under the RWA condition.

The beam-splitter Hamiltonian H (R)
lin describes the coherent

population transfer between the optical mode δa1 and the
hybridized mode β1, which cannot generate steady-state en-
tanglement between the two modes β1 and δa1, but allows one
to effectively realize laser cooling of the hybridized mode β1

if the optical mode δa1 is far more dissipative. Since the two-
mode squeezed vacuum state exp[r(δa2δb − δa†

2δb†)]|0a2 , 0b〉
is the vacuum for both the delocalized modes β1 and β2, thus,
when either of the delocalized modes β1 or β2 is cooled down
to the ground state by the optical mode δa1 (naturally in its
ground state at the room temperature), one can achieve great
steady-state entanglement between the cavity mode δa2 and
mechanical mode δb far beyond the bound imposed by using
the coherent two-mode squeezing (TMS) interaction Hamil-
tonian ĤTMS = ξδa2δb + H.c., which leads to the steady-state
entanglement E (TMS)

N = ln(1 + 2ξ/κ ) � ln2 limited by the
stability condition for κ2 = γm = κ and zero temperature
baths, as has been discussed in Refs. [30,34]. Note that strong
optomechanical entanglement can be obtained with the state
of the hybridized mode β2 being not at the vacuum [30,34];
see the figures and further discussions in Sec. IV.

By only considering the reduced Hamiltonian (10) and
using the logarithmic negativity EN to measure the two-
mode entanglement (see Appendix A), we numerically show
in Fig. 2 (the dashed curves) that the steady-state cavity-
mechanical entanglement under the case of κ2 = γm and

zero-temperature thermal bath will monotonously increase as
G/ωm varies from 0 to 1 and can saturate at values much
larger than the maximum steady-state entanglement E (TMS)

N ∼
ln2 achievable with a coherent two-mode squeezing interac-
tion [30,34]. The steady-state entanglement can be improved
by increasing the squeezing parameter r, corresponding to the
increase of the ratio �/G. However, it should be remembered
that H (R)

lin is effective only when G 
 2ωm is satisfied, and
the full Hamiltonian with counterrotating terms should be
considered for G � 2ωm. For the typical example with J = �,
the steady-state entanglement in this case may decline as
G/ωm dissatisfies the RWA condition, instead of saturation
to some values, and the system may become unstable for a
larger optomechanical coupling G/ωm (see the solid curves in
Fig. 2).

IV. STRONG AND STABLE OPTOMECHANICAL
ENTANGLEMENT BEYOND THE RWA WITH

DUAL-MODE COOLING

While great cavity-mechanical entanglement EN can be
obtained by reservoir engineering the delocalized mode β1,
we show that EN can be modulated and further enhanced by
additionally reservoir engineering the “dark” mode β2. To see
the physical insight, we rewrite the full linearized Hamilto-
nian (9) in terms of the delocalized Bogoliubov modes β1 and
β2 and have

Hlin = ωm(δa†
1δa1 + β

†
1β1 − β

†
2β2) + ge(β1δa†

1 + β
†
1δa1)

+ [ge − (J − �) sinh r](β†
1δa†

1 + β1δa1)

+ (J − �) cosh r(β†
2δa1 + β2δa†

1), (11)

which for J = � reduces to ge(β1δa†
1 + β1δa1) + H.c. For a

generic case without making the RWA, the cavity mode δa1

couples to both β1 and β2 due to the asymmetric parametric
and beam-splitter interactions between the cavity modes δa1

and δa2.
The parametric amplification process for δa1 and β1 now

has a strength g′
e ≡ ge − (J − �) sinh r, which relies on the

difference between the NDPA gain and the photon tunneling
rate. When J < �, the parametric process becomes stronger
than the effective laser cooling process for g′

e > ge, where
the system will easily go unstable when the RWA condition
g′

e 
 ωm is not well satisfied. In contrast, for � < J , there
exists an interesting regime where the parametric process can
be completely eliminated by setting J = G2/� (i.e., g′

e = 0),
and the interaction Hamiltonian between δa1 and β1 remains
only the beam-splitter type (10), which leads to fast cooling of
the mode β1 for its resonant coupling with a strong dissipative
cavity δa1.

On the other hand, the asymmetric weights (J �= �) addi-
tionally introduce a nonresonant beam-splitter-like interaction
g′′

e(β†
2δa1 + β2δa†

1), with g′′
e ≡ (J − �) cosh r and, however,

no parametric interaction to the modes δa1 and β2. The co-
herent population transfer from the mode β2 to the mode
δa1 additionally give rise to ground-state cooling of the hy-
brid mode β2 with the cooling rate slower than that of the
mode β1 due to the nonresonant energy gap 2ωm. In general,
the simultaneous cooling of the hybrid modes β1 and β2 by
coupling to a joint “reservoir” δa1 leads to further
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(a)

(b)

FIG. 3. The steady-state cavity-mechanical entanglement EN

versus the effective optomechanical coupling G/ωm. The blue solid
(J = G2/�), green solid (J = �) and orange dash-dotted (J =
0.9�) lines are simulated by considering the Hamiltonian (9), and the
red dashed line is plotted based on the Hamiltonian (10). (b) Steady-
state occupancies of the Bogoliubov modes 〈β†

1 β1〉 (blue lines) and
〈β†

2β2〉 (green lines) versus G/ωm for J = G2/� (solid lines) and
J = � (dashed lines). Other parameters are the same as those in
Fig. 2. The black arrows indicate the unstable regime.

enhancement of the cavity-mechanical entanglement between
δa2 and δb. Remarkably, no counterrotating terms are dropped
in our case, and therefore it may allow one to prepare strong
and stable cavity-mechanical entanglement beyond the RWA
(see further discussion later).

In Fig. 3(a), we show the steady-state cavity-mechanical
entanglement EN between the modes δa2 and δb with �/G =
0.9 as a function of the effective optomechanical coupling
G/ωm for J = 0.9� (orange dash-dotted line), J = � (green
solid line), and J = G2/� (blue solid line), respectively, and
compare them with the case under the RWA (red dashed).
For J = �, we can see that the system starts entering into
the unstable regime at G/ωm ∼ 1.3. In comparison, by set-
ting J = 0.9�, the system tends to go unstable at a smaller
G/ωm ∼ 1 as expected for the case of J < �. Both the two
cases generate less cavity-mechanical entanglement than that
with the RWA. However, it becomes remarkable when we
choose J = G2/�, where the system remains stable even for
G/ωm ∼ 2, and meanwhile, the entanglement achievable is
stronger than that under the RWA due to the extra contribu-
tion by (Gge/�)(δa1β

†
2 + δa†

1β2) and thus the simultaneous
cooling of the hybrid modes β1 and β2.

Assuming that all the localized modes are initially in the
vacuum states, and considering the cooling regime κ2, γm 

κ1, the steady-state occupancies of the hybrid modes 〈β†

1β1〉

and 〈β†
2β2〉 for J = G2/� are shown in Fig. 3(b) and are

explicitly given by

〈β†
1β1〉 = cosh2 r〈δb†δb〉 + sinh2 r〈δa2δa†

2〉
+ cosh r sinh r〈δa†

2δb† + δa2δb〉,

≈ sinh2r
C′2C + [(C + 1) + C′C]ξ 2 + 4(C′ + 1)ξ 4

2C′2C + (C + 1)2ξ 2 + 4(C + 1)ξ 4
,

(12)

〈β†
2β2〉 = cosh2 r〈δa†

2δa2〉 + sinh2 r〈δbδb†〉
+ cosh r sinh r〈δa†

2δb† + δa2δb〉,

≈ sinh2r
C′2C + [(C + 1) − C′C]ξ 2 + 4(C + 1)ξ 4

2C′2C + (C + 1)2ξ 2 + 4(C + 1)ξ 4
,

(13)

with

C = 4g2
e

κ1κ2
, C′ = 4g2

e

κ2
1

, ξ = 2ωm

κ1
,

where we have assumed ge ≈ g′′
e and κ2 = γm for simplicity,

which are good approximations for the parameter regime in
Fig. 3. Considering J = � (the green lines) for comparison,
the nonvanishing parametric process ge(β†

1δa†
1 + β1δa1) gives

rise to the exponential growth of 〈β†
1β1〉 near the critical

point of the system instability, and 〈β†
2β2〉 is invariant since

β2 uncouples to the cavity mode δa1. While for J = G2/�,
the occupancies of the two hybrid modes β1(2) with G/ωm

approaching the regime C � 1 and C′ → 1 are

〈β†
1β1〉 = sinh2r

C′2 + (1 + C′)ξ 2 + 4(C′ + 1)C−1ξ 4

2C′2 + ξ 2(C + 4ξ 2)
, (14)

〈β†
2β2〉 = sinh2r

C′2 + (1 − C′)ξ 2 + 4ξ 4

2C′2 + ξ 2(C + 4ξ 2)
, (15)

which are first cooled down towards the vacuum due to the
coherent population transfer to the “reservoir” mode δa1,
and therefore the cavity-mechanical entanglement increases
monotonically as G/ωm increases to 2 [see Fig. 3(a)]. Note
that β1(2) could be heated again as G/ωm further increases,
and the occupancies 〈β†

1(2)β1(2)〉 will saturate at 〈β†
1β1〉 =

〈β†
2β2〉 = sinh2r/2 for C, C′ → ∞.

Moreover, the inequality of the NDPA gain � and the
photon tunneling rate J allows the system to generate cavity-
mechanical entanglement in the parameter region where the
RWA (i.e., ge 
 ωm) breaks down. In Fig. 4, we show the
density plot of EN versus the effective optomechanical cou-
pling G/ωm and the ratio �/G. Again we first set J = �.
In this case, the system with G ∼ 2ωm can stay in the stable
regime only when �/G → 1, such that the effective coupling
ge = G

√
1 − (�/G)2 between the modes δa1 and β1 safely

meets the RWA condition and the parametric amplification
for these two modes is well suppressed. In addition, as can
be seen in Fig. 4(a), a strong EN can only be achieved in
the vicinity of the unstable region and can thus be sensitive
to parametrical fluctuations. In comparison, the stable region
of the system with J = G2/� expands to the full map of the
parameter regime under consideration [see Fig. 4(b)], which
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(a)

(b)

FIG. 4. The steady-state cavity-mechanical entanglement EN as
functions of the effective optomechanical coupling G/ωm and the ra-
tio �/G for (a) J = � and (b) J = G2/�. The white region in panel
(a) corresponds to the instability of the system. Other parameters are
the same as those in Fig. 2.

implies that the strong cavity-mechanical entanglement can
be fully controlled for 0 < ge/G < 1 even if the strict RWA
conditions (i.e., G/2ωm < 1 and J/2ωm < 1) are no longer
fulfilled.

So far, our discussion has taken κ2 = γm and zero tem-
perature, corresponding to the generic model (1) with the
bosonic modes c1 and c3 being completely the same. In this
case, the steady-state entanglement EN for the system being
in the stable regime can be improved by simply increasing
the ratio κ1/κ2, as shown in Fig. 5(a). Here we also find
that, by eliminating the heating process g′

eβ
†
1δa†

1 + H.c. (i.e.,
setting J = G2/�), the cooling efficiency for the Bogoliubov
modes is further accelerated compared with that for the case
of J = � [19,30], as demonstrated in Fig. 5(b), and a greater
steady-state entanglement EN can be reached.

When a nonzero temperature thermal bath and a different
quality factor for the mechanical oscillator are considered,
we show the steady-state entanglement with J = G2/� as
a function of the mean thermal occupancy n̄b of the me-
chanical mode b in Fig. 6. It is found that the steady-state
entanglement EN can survive at a high thermal temperature
(T ∼ n̄bh̄ωm) for a mechanical resonator with a high-quality
factor, e.g., for Q−1

m ≡ γm/ωm = 10−4, the cavity-mechanical
entanglement is robust against a thermal occupation as large

(a)

(b)

FIG. 5. (a) The steady-state cavity-mechanical entanglement EN

and (b) the occupancies 〈β†
1 β1〉 and 〈β†

2β2〉 as functions of the decay
ratio κ1/κ2 for J = � and J = G2/�, respectively. Other parameters
are G/ωm = 1.5, κ1/ωm = 0.9, γm/κ2 = 1, and �/G = 0.95.

as n̄b ∼ 103. For a practical set of experimental parameters
with ωm/2π = 5 MHz, Q = 104, m = 50 ng, F1 = 1.7 × 104,
F2 = 1.5 × 106, L = 1 mm, and the driving laser of the power
P � 75 mW and the wavelength λ = 1064 nm [38,61–63],
the cavity-mechanical entanglement can reach EN = 3.2 and
can survive even at the thermal temperature T � 0.96 K,
corresponding to the blue (top) curve in Fig. 6.

Finally, we give a brief discussion on the experimen-
tal detection of the cavity-mechanical entanglement. Instead
of direct reconstruction of the entire covariance matrix for

FIG. 6. The steady-state entanglement EN versus the mean ther-
mal phonon n̄b of the mechanical mode for γ /ωm = 10−2, γ /ωm =
10−3, and γ /ωm = 10−4, respectively. Other parameters are G/ωm =
1.5, �/G = 0.95, J = G2/�, κ1/ωm = 0.9, and κ2/ωm = 0.01.
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calculating EN , one can first seek the signature of the steady-
state cavity-mechanical entanglement (i.e., 〈β†

j β j〉 < sinh2r,
j = 1 and 2) in the cavity output spectra based on the
Duan’s inseparability criterion (see Appendix B) [64]. Con-
sidering the strong cavity cooling regime (i.e., κ1 � κ2, γm)
with κ2 = γm for simplicity, and supposing that both the
optical and the mechanical baths are at the zero tempera-
ture [30], we can derive the output spectral density S(1)

out[ω] =∫
dteiωt 〈δa†

1,out(t )δa1,out(0)〉 of the strong dissipative cavity
mode δa1 in the adiabatic limit, where β1 and β2 are de-
coupled under the condition 2ωm � (J − �)G|χ1(ωm)| with
χ1(ωm) = (iωm + κ1/2)−1. It follows that

S(1)
out[ωm] = C−1

[
κ2〈β†

1β1〉
κ2 + g2

eκ1|χ1(ωm)|2 + sinh2r

]
(16)

and

S(1)
out[−ωm] = C−1

[
γm�2〈β†

2β2〉
G2γm + J2κ1|χ1(ωm)|2 + sinh2r

]
. (17)

Thus, the output spectrum S(1)
out[ωm] at the cavity resonance and

S(1)
out[−ωm] at the frequency detuned by 2ωm can tell the gener-

ation of entanglement. To obtain the degree of entanglement
given by the logarithmic negativity, one has to first deter-
mine all of the related entries of the covariance matrix. As
suggested in Refs. [16,65–67], the quadratures of the cavity
mode δa2 can be directly measured by homodyning the cavity
output using a local oscillator, while the mechanical dynam-
ics δq and δp can be measured by resorting to an additional
“probe” cavity and observing the output light of it. Thus, by
measuring the correlations between the cavity mode and the
“probe” cavity, one can in principle obtain all of the entries of
the covariance matrix V (t ) used to calculate the logarithmic
negativity.

V. CONCLUSION

In summary, we have considered a hybrid optomechani-
cal setup with a NDPA and an auxiliary coupled cavity for
mimicking a three-mode bosonic system with asymmetric
beam-splitter and parametric interactions. By optimizing the
parametric gain � and the effective optomechanical coupling

J such that J = G2/�, one can efficiently generate the strong
steady-state entanglement between the auxiliary cavity and
the mechanical oscillator via reservoir engineering, where the
optomechanical cavity (i.e., the cold reservoir) is used for
effectively laser cooling both the Bogoliubov modes delo-
calized over the target modes at different cooling rates. The
dual-cooling mechanism is applied to engineer the steady-
state entanglement in interesting parameter regimes where
the RWA is no longer available for a large optomechanical
coupling and the system with symmetric beam-splitter and
parametric interactions is supposed to be unstable. Our nu-
merical results show that the cavity-mechanical entanglement
obtained by the dual-mode cooling can be further improved
by increasing the ratio of the dissipation rate for the optome-
chanical cavity to that for the target modes, and it is robust
against the mechanical thermal noise. The improved reservoir
engineering scheme can potentially be generalized to speed
up cooling and enhance squeezing for multimode bosonic
systems with asymmetric couplings.
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APPENDIX A

To take numerical simulations to verify the strong
cavity-mechanical entanglement generated by the reservoir
engineering approach, we introduce the position operator
δq = (δb + δb†)/

√
2 and the momentum operator δp = (δb −

δb†)/i
√

2 of the mechanical mode, and the amplitude quadra-
ture δx j = (δa j + δa†

j )/
√

2 and the phase quadrature δy j =
(δa j − δa†

j )/i
√

2 of the cavity mode. Using a vector u =
[δq, δp, δx1, δy1, δx2, δy2]T to include all the quantum fluc-
tuations, Eq. (8) can be expressed as

U̇ = MU + N, (A1)

with

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− γm

2 ωm 0 0 0 0

−ωm − γm

2 −2G 0 0 0

0 0 − κ1
2 �1 0 −� + J

−2G 0 −�1 − κ1
2 −� − J 0

0 0 0 −� + J − κ2
2 �2

0 0 −� − J 0 −�2 − κ2
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where N = [
√

γmδqin,
√

γmδpin,
√

κ1δxin
1 ,

√
κ1δyin

1 ,√
κ2δxin

2 ,
√

κ2δyin
2 ] represents the thermal noise

source of the system with δqin = (δbin + δbin†)/
√

2,

δpin = (δbin − δbin†)/i
√

2, δxin
j = (δain

j + δain†
j )/

√
2, and

δyin
j = (δain

j − δain†
j )/i

√
2. The stability condition of the

system requires that all eigenvalues of M have negative
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real parts, which are associated with the Routh-Hurwitz
criterion [68]. Since the input quantum noises are Gaussian,
the linearized Hamiltonian can ensure the system is always
in the Gaussian state, and the information-related properties
can be fully characterized by its 6 × 6 covariance matrix σ

with the matrix elements defined as σ jk = 〈UjUk + UkUj〉/2.

When the system is in the steady state, σ will be governed by
the following Lyapunov equation:

Mσ + σMT = −D, (A2)

where D is a diagonal matrix,

D = diag[γm(2nm + 1), γm(2nm + 1), κ1, κ1, κ2, κ2]/2,

(A3)

which is derived by

Djkδ(t − t ′) = 〈Nj (t )Nk (t ′) + Nk (t ′)Nj (t )〉/2. (A4)

The entanglement between any pair of bosonic modes can
be calculated from the reduced 4 × 4 covariance matrix σ̃ ,
which is extracted from the full 6 × 6 covariance matrix σ

by keeping the components of the corresponding rows and
columns [6]. For example, if we intend to calculate the cavity-
mechanical entanglement between the cavity mode δa2 and
the mechanical mode δb as in the main text, we simply take
out all the elements in the jth rows and the kth columns ( j, k ∈
{1, 2, 5, 6}) and construct the bipartite covariance matrix σ̃ in
the following form:

σ̃ =
(

S1 S3

ST
3 S2

)
, (A5)

where S1, S2, and S3 are 2 × 2 subblock matrices. The loga-
rithmic negativity EN used to quantify the cavity-mechanical
entanglement is then given by [16,69]

EN = max[0,− ln(2η−)], (A6)

where η− ≡ 2−1/2{Σ − [Σ2 − 4 det σ̃ ]1/2}1/2, with Σ =
det S1 + det S2 − 2 det S3.

In Fig. 7, we plot steady-state entanglement between any
pair of the bosonic modes as the function of �/G. With-
out NDPA (� = 0) and the auxiliary cavity (J = 0), and
when the standard optomechanical cavity is resonant with the
anti-Stokes sideband of the driving laser (i.e., �1/ωm = 1),
the off-resonant down-conversion process leads to the finite
entanglement between the optomechanical cavity and the me-
chanical mode, i.e., E (a1,b)

N �= 0 and E (a1,a2 )
N = E (a2,b)

N = 0. As
� and J gradually increase, the photon tunneling (J �= 0)
from the fast dissipative cavity a1 to the less dissipative
cavity a2 gives rise to the rise of E (a2,b)

N . Although the para-
metric interaction �(a†

1a†
2 + a1a2) can generate a transient

cavity-cavity entanglement, E (a1,a2 )
N , and we may expect the

coexistence of all bipartite entanglement between pairs of
the modes [70], the steady-state cavity-cavity entanglement
E (a1,a2 )

N is, however, inhibited by the great imbalanced cavity
ring-down rates. Moreover, E (a1,b)

N vanishes for �/G ∼ 0.53,
and only the cavity-mechanical entanglement E (a2,b)

N survives
and is remarkably strong, which is associated with the reser-
voir engineering regime and is studied in detail in the main
text.

FIG. 7. The steady-state bipartite entanglement E (a1,b)
N , E (a2,b)

N ,
and E (a1,a2 )

N in the three-mode (i.e., a1, a2, and b) system as the
function of the ratio �/G for κ2/ωm = 0.1 (solid line) and κ2/ωm =
0.01 (labeled), simulated by the full Hamiltonian Eq. (9). Parameters
are ωm = 1, �1 = −�2 = ωm, G/ωm = 0.5, J = �, κ1/ωm = 0.9,
γm = κ2, and n̄b = 0.

APPENDIX B

From the perspective of experiment, the Duan’ s in-
separability criterion can provide a simpler method to
determine whether there exists entanglement between the two
continuous-variable modes δb and δa2 [64]. In our case, the
Duan’ s inseparability criterion is expressed as [30]

D ≡
〈(

aδq + 1

a
δx2

)2〉
+

〈(
aδp − 1

a
δy2

)2〉

= a2V11 + 1

a2
V22 + C12 + C∗

12 � 1

a2
+ a2, (B1)

with V11 ≡ 〈{δb†, δb}〉, V22 ≡ 〈{δa†
2, δa2}〉, and C12 =

〈{δa2, δb}〉, where {· · · } denotes the anticommutator. The
inequality (B1) is violated when the cavity mode δa2 and the
mechanical mode δb are entangled. Considering the delocal-
ized modes β1 and β2 and setting a2 = coshr/sinhr = G/�,
we then have

〈{β†
1 , β1}〉 ≡ 1 + 2〈β†

1β1〉

= sinh 2r

2

(
V11a2 + V22

1

a2
+ C12 + C∗

12

)
, (B2)

〈{β†
2 , β2}〉 = 1 + 2〈β†

2β2〉

= sinh 2r

2

(
1

a2
V11 + a2V22 + C12 + C∗

12

)
. (B3)

By applying the Duan’ s inseparability criterion, we therefore
conclude that either 〈β†

1β1〉 < sinh2r or 〈β†
2β2〉 < sinh2r; the

two modes δb and δa2 are entangled.
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