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Quantum electrodynamics predicts that the vacuum must behave as a nonlinear optical medium: the speed of
light should be modified when the vacuum is stressed by intense electromagnetic fields. This optical phenomenon
has not yet been observed. The DeLLight (deflection of light by light) experiment aims to observe the optically
induced index change of vacuum, a nonlinear effect which has never been explored. The experiment is installed
in the LASERIX facility at IJCLab, which delivers ultrashort intense laser pulses (2.5 J per pulse, each of 30 fs
duration, with a 10 Hz repetition rate). The proposal is to measure the refraction of a probe laser pulse when
crossing a transverse vacuum index gradient, produced by a very intense pump pulse. The refraction induces a
transverse shift in the intensity profile of the probe, whose signal is amplified by a Sagnac interferometer. In
this article we describe the experimental method and setup, and present the complete theoretical calculations
for the expected signal. With a minimum waist at focus of 5 μm (corresponding to a maximum intensity of
∼3 × 1020 W/cm2), and with the nonlinear vacuum index derived from QED, the expected refraction angle
is 0.13 prad. First results of the interferometer prototype are presented. It is shown that an extinction factor
F = 0.4 × 10−5 (corresponding to a signal amplification factor of 250) and a spatial resolution σy = 10 nm are
achievable. The expected signal is then about 15 pm, and could be observed at a 5-sigma confidence level with
about one month of collected data.
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I. INTRODUCTION

The classical electromagnetic vacuum is described as a
linear optical medium. The speed of light in vacuum c, and the
related vacuum permeability μ0 and permittivity ε0 are univer-
sal constants. The Maxwell equations for the electromagnetic
fields are linear and the vacuum constants c, μ0, and ε0 do
not depend on externally applied fields. In media, however,
the dependence of the optical index on the electromagnetic
fields has been known since the 19th century, with Faraday’s
discovery of circular birefringence induced by an external
magnetic field in the direction of propagation (Faraday effect)
[1], and Kerr’s discovery of linear birefringence induced by a
transverse electric field (Kerr effect) [2]. Both effects can be
interpreted as polarization-dependent changes of the refractive
index, and while the former is linear in the field strength B,
the latter is proportional to the intensity I ∝ E2. The optical
Kerr effect, in which the electric field responsible for the index
change is due to light itself, has been extensively studied and
measured thanks to the availability of high-intensity lasers in
the last 20 years [3].

By analogy with the situation in media, we may ask
whether the vacuum is also a nonlinear optical medium, i.e.,
whether the vacuum index is enhanced when the vacuum is
stressed by intense externally applied fields. Born and Infeld
[4] were the first to introduce nonlinear electrodynamics terms
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in vacuum by assuming an absolute maximum of the electric
field in order to regularize the electromagnetic field of a point
charge, and thus to obtain a finite electromagnetic mass of
the electron equal to its observed mass. Soon after, Euler,
Kockel, and Heisenberg [5] derived an effective nonlinear
electromagnetic field theory with nonlinear terms induced by
the coupling of the fields with the electron-positron virtual
pairs in vacuum. This is described by the so-called Euler-
Heisenberg nonlinear Lagrangian, and was later reformulated
as photon-photon scattering (four-waves interactions) in quan-
tum electrodynamics (QED).

The first observation of photon-photon scattering was ob-
tained at the Stanford Linear Accelerator Center (SLAC) by
measuring the collision and fusion between a high energy
(GeV) gamma and several laser photons [6] to produce an
electron-positron pair (multiphoton Breit-Wheeler reaction).
More recently, high energy gamma-gamma pair emission
from virtual gamma-gamma scattering in ultraperipheral Pb-
Pb collisions has been observed by the ATLAS and CMS
detectors at the Large Hadron Collider (LHC) [7,8]. Both
cases involve inelastic high-energy photon-photon scattering,
described by a four-photons Feynman diagram. The vacuum
appears in the exchange of an electron-positron virtual pair,
which can even become real in the case of the Breit-Wheeler
process. However, in these scattering processes, there is no
modification of the optical properties of the vacuum, i.e., no
modification of the vacuum electromagnetic constants c, ε0,
and μ0.

Another approach is to search for a direct manifestation of
a nonlinear optical effect in vacuum, a coherent phenomenon
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corresponding to a pure undulatory process at large scale and
treated classically in the long-wavelength limit. This effect
differs drastically from the inelastic photon-photon scattering
since it corresponds to a nonlinear modification of the fun-
damental level of the electromagnetic vacuum, with a change
of the vacuum speed of light at macroscopic scale. Experi-
mental efforts have mainly involved testing vacuum magnetic
birefringence in the presence of an external magnetic field of
2–30 T [9–12]. This process is predicted by Euler-Heisenberg
and often referred to as the Cotton-Mouton effect (in vacuum).
As yet, no signal has been observed, and the experimental un-
certainty is about one order of magnitude above the predicted
QED value [9]. Several theoretical works have considered the
possibility of using high-intensity laser pulses to increase the
strength of the field [13–17]. However, it is important to note
that this approach is insensitive to Born-Infeld type models,
since these predict no vacuum birefringence.

Alternatively, one can adopt a complementary approach
that is independent of the occurrence of birefringence, by
directly exploiting the change in the refractive index induced
by the nonlinearity. One then expects refraction of a light
beam in response to this index change. A test of refraction
due to nonlinear electrodynamical effects was last performed
in 1960 by Jones [18,19], who looked for the deviation of a
light beam passing through a transverse static magnetic field
of about 1 T. Results indicated that the deflection of the light
beam was less than 0.5 prad, while the deflection angle pre-
dicted by the Euler-Heisenberg model was almost 10 orders
of magnitude below this limit. As for birefringence-based
experiments, there are several theoretical works considering
the use of high-intensity laser pulses to achieve larger index
changes; such proposals include the emission of Cherenkov
radiation by a charged particle [20–22] and nonlinear wave
propagation [23,24].

The DeLLight (deflection of light by light) project pro-
poses a similar test to that of Jones, using the much stronger
electromagnetic field contained in high-intensity and ultra-
short focused laser pulses. It proposes to test the nonlinear
nature of vacuum by measuring the refraction of a probe pulse
crossing an index gradient engendered by an energetic (Joule)
and ultrashort (femtosecond) laser pulse. This is formally
similar to the induction of an index change by the optical Kerr
effect in a medium. The DeLLight idea was first proposed in
[25] using a simplified theoretical model to calculate the ex-
pected signal and a simplified experimental model to roughly
estimate the sensitivity.

In this article we propose an experimental setup, described
in Sec. II, and we present in Sec. III the complete theoretical
and numerical calculations for the expected signal. We then
present in Sec. IV preliminary results of the experimental
performances achieved with the DeLLight prototypes.

II. DESCRIPTION OF THE PROPOSED DELLIGHT
EXPERIMENTAL METHOD

In this section we describe the main concepts involved in
the DeLLight project. We then give a detailed description of
the experimental setup.

The DeLLight experiment is installed in the LASERIX
facility (at IJCLab, Orsay), which delivers ultrahigh intense

laser pulses with a repetition rate of 10 Hz. The current energy
is 1.5 J per pulse with a duration of T0 = 40 fs (FWHM in
intensity). The laser will be upgraded in the coming years
to reach 2.5 J per pulse with a duration of T0 = 30 fs, cor-
responding to a maximum intensity of 3 × 1020 W/cm2 (or
a maximum B ∼ 105 T, with E = cB) for a minimum waist
at focus of 5 μm. The DeLLight principle, illustrated by the
schema in Fig. 1, is to cross two counterpropagating ultrashort
laser pulses at their focus point. One pulse is very intense
and is called the pump; the other is of much lower intensity
and is called the probe. The pump engenders a propagating
refractive index profile which, by analogy with the optical
Kerr effect in a medium, can be written as δn = n2Ipump, where
Ipump is its intensity (averaged over the rapid oscillations of the
carrier wave) and where, in a Lorentz-invariant model with
local photon-photon interactions, the nonlinear index n2 is
given by [26]

n2 = n2,max rpol cos4

(
θtilt

2

)
. (1)

In the Euler-Heisenberg model derived from QED, the opti-
mum value of the nonlinear index is

n2,max = n2,QED = 56

45
α2 h̄3

m4
ec6

= 1.55 × 10−33 cm2/W, (2)

where α ≈ 1/137 is the fine structure constant and me is the
mass of the electron. The factor rpol ∈ [ 4

7 , 1] accounts for the
birefringence of the model and its dependence on the polar-
ization state of the pump. We shall here assume the optimized
case rpol = 1, which occurs when the pump and probe are
each linearly polarized, with their electric (or magnetic) fields
orthogonal to each other. Finally, θtilt is the tilt angle between
the propagation directions of pump and probe, defined to be
zero when they are exactly counterpropagating (i.e., when the
collision is “head-on”). The expected Euler-Heisenberg value
of the vacuum nonlinear index n2,QED is orders of magnitude
smaller than the Kerr index values measured in silica,
�2 × 10−16 cm2/W [27] and in air � 3 × 10−19 cm2/W [28].

Consider now the weak probe wave crossing the pump
pulse. It will “see” and react to the refractive index profile
just described. In particular, in the interaction area where
the pump intensity is rather highly concentrated (as can be
achieved by strong focusing), the index profile will have a
significant gradient in the transverse directions, and this will
tend to bend the rays of the probe towards regions of higher
index/intensity. The wave fronts of the probe pulse are rotated
(refracted), as illustrated in Fig. 1.

As will be shown in Sec. III, for pump parameters achiev-
able with the LASERIX facility, the expected deflection angle
is ≈0.1 prad. This deflection is challengingly small, so the
experimental setup is designed such as to amplify the sig-
nal, bringing the deflection into an observable range. This
is the Sagnac interferometer, in which an initial probe wave
is incident on a 50/50 beamsplitter, generating two daughter
pulses, named Sagnac pulses, which propagate along a com-
mon path in opposite directions and are then recombined at
the same beamsplitter. One of the outputs of the beamsplitter
is a “dark port” where the two Sagnac pulses have nearly equal
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FIG. 1. Schematic view of the interaction between the probe pulse (in blue) and the counterpropagating pump pulse (in red). The lines
inside the probe pulse correspond to the wave fronts, which are gradually rotated by the vacuum index gradient induced by the pump. (Left)
Side-view: The axis of the pump beam is vertically (y axis) shifted with respect to the axis of the probe beam, thus engendering an impact
parameter b so that the perturbation of the probe is asymmetric and the mean deflection is nonzero along the vertical y axis. (Right) Top-view:
In the horizontal plane (corresponding to the Sagnac interferometer x-z plane), the axis of the pump beam is tilted by an angle θtilt with respect
to the axis of the probe beam. The perturbation of the probe is symmetric and the mean deflection is zero along the horizontal x axis.

amplitude and a relative phase close to π , so that they interfere
destructively. The degree of alignment is characterized by the
extinction factor F , defined as F = Iout/Iin, where Iin is the
incident intensity and Iout is the intensity in the dark output of
the interferometer. A perfectly aligned Sagnac interferometer
thus has F = 0. What makes this useful is that any perturba-
tion of one Sagnac pulse with respect to the other during their
propagation around the common path of the interferometer
will in turn perturb the destructive interference at the dark
port, and the smaller is the value of F , the larger (relatively
speaking) will be the change observed in the output at the
dark port. This is the principle behind the amplification by
the Sagnac interferometer. Measurements of the deflection of
a laser beam through amplification with a Sagnac interferom-
eter have already been developed with continuous laser beams
in the search for gravitational anomalies at short distance,
and angular deflections of a mirror down to the subpicora-
dian scale have been measured with this technique [29,30].
However, no refraction measurement has yet been performed
in femtosecond pulsed mode with a Sagnac interferometer.

The proposed experimental setup of the DeLLight project
is shown in Fig. 2. The pump pulse, with a polarization s,
is focused by an off-axis parabolic mirror (OAP) in the in-
teraction area. A much weaker pulse (few tens of μJ), with
a perpendicular polarization p, is sent into a Sagnac inter-
ferometer via a 50/50 beamsplitter (BS-2), generating two
daughter pulses (Probe and Ref) that circulate in opposite
directions around the interferometer. The interferometer is
in a right-angled isosceles triangle configuration, formed by
the beamsplitter and two mirrors (M1 and M2). The length
of the longest interferometer arm between M1 and M2 is
about 1 m. Both counterpropagating pulses are focused in
the interaction area via two optical lenses (L1 and L2) of
focal length f inserted in the interferometer between the two
mirrors. One pulse (Probe) refers to the probe pulse that is
counterpropagating with respect to the pump, and a delay
stage ensures the time coincidence of the arrival of this probe

pulse with that of the pump pulse in the interaction area. The
second pulse (Ref) is not in time coincidence and does not
overlap with the pump. This pulse is therefore unaffected by
the pump and refers to the reference pulse. The focus axis
of the pump is transversally (vertically) shifted with respect
to the focus axis of the probe, thus engendering an impact
parameter b so that the perturbation of the probe is asym-
metric and the mean deflection is nonzero. In the absence of
the pump, the two counterpropagating probe and reference
pulses are phase shifted by π in the dark output of the in-
terferometer, where a CCD camera measures the transverse
position of the residual intensity profile. When the pump
pulse is present and interacts with the probe pulse, the wave
fronts of the probe are refracted by the induced vacuum index
gradient, while those of the reference pulse are unaffected.
After recollimation, the refracted probe pulse is transversally
(vertically) shifted with respect to the unrefracted reference
pulse by an average distance 〈δy〉direct = 〈δθ〉 f , where 〈δθ〉 is
the average deflection angle of the refracted probe pulse. The
interference of the probe and reference pulses in the output of
the interferometer produces a transverse vertical displacement
〈δy〉Sagnac of the barycenter ȳ of the residual intensity profile,
which is measured by the CCD camera. As mentioned above,
the advantage of the proposed interferometric method is an
amplification of the measured signal 〈δy〉Sagnac, as compared
to the would-be signal 〈δy〉direct when using a standard direct
pointing method. We will see that the amplification factor,
defined as A = 〈δy〉Sagnac/〈δy〉direct, scales as F−1/2.

The presence of beam pointing fluctuations between suc-
cessive laser pulses induces fluctuations of the position of
the intensity profile in the output of the interferometer of
typical magnitude much larger than the expected displace-
ment signal 〈δy〉Sagnac. However, as illustrated in Fig. 3, an
essential advantage of the Sagnac interferometer is that the
interference pattern and the extinction factor in the dark output
are unmodified in the presence of beam pointing fluctuations,
assuming the phase noise defined in Sec. IV C 2 is negligible.
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FIG. 2. Schematic view of the DeLLight experimental setup (see text for details).

Fluctuations of the beam pointing produce a simple translation
of the intensity profile on the CCD camera, which can be
measured and suppressed by monitoring the position of the
intensity profile with respect to the back-reflections from the
rear side of the beamsplitter. This is discussed in detail in
Sec. IV C 2.

III. EXPECTED SIGNAL AND SENSITIVITY

In this section we present the results of analytical calcu-
lations concerning the interaction between pump and probe,
and the resulting deflection of the barycenter of the intensity
profile.

A. Deflection of probe rays by the effective δn

As mentioned in Sec. II, when the weak probe pulse
collides with the pump pulse, it engenders a vacuum index
gradient which tends to bend the rays of the probe towards
regions of higher index/intensity. This is a direct consequence
of Fermat’s principle: taking z as the propagation direction of

the probe, and x and y as the transverse directions, the optical
path length associated with a ray of the probe is

∫
(1 + δn)ds =

∫
(1 + δn)

√
dx2 + dy2 + dz2

≈
∫ (

1 + δn + (x′)2 + (y′)2

2

)
dz, (3)

where the prime denotes differentiation with respect to z along
the ray trajectory, and where in the second line we have as-
sumed both δn 
 1 and (x′)2 + (y′)2 
 1 so that higher-order
terms can be neglected. This integral is minimized by the
actual trajectory, and the problem is formally equivalent to a
variational problem in classical mechanics, with z playing the
role of time, [(x′)2 + (y′)2]/2 the kinetic energy, and −δn the
potential energy. Since we assume the deflections to be small,
x′ and y′ are the angles θx and θy between the tangent vector
of the trajectory and the z axis. Therefore, the corresponding

FIG. 3. The extinction in the dark output of the Sagnac interferometer is insensitive to the beam pointing fluctuations. (Left) The incident
beam is tilted by a small angle. (Right) The beam, or equivalently a mirror, is transversally shifted in the horizontal plane. In both cases, the
extinction in the dark output of the interferometer is maintained. Only the position of the intensity profile is transversally shifted. This shift is
measured and suppressed by monitoring online the same shift of the back-reflections from the rear side of the beamsplitter.
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Euler-Lagrange equations can be written as

d�θ
dz

= ∇⊥(δn), where �θ = (θx, θy) =
(

dx

dz
,

dy

dz

)
. (4)

This allows us to determine the expected scaling of the
accumulated deflection angle with the parameters character-
izing the pump pulse. We assume an axisymmetric pulse
characterized by two scales: the transverse width W0 and the
duration T0. The index perturbation δn = n2 Ipump will scale
as n2 E/T0/(πW 2

0 ), where E is the energy of the pump pulse.
The transverse gradient of δn, equal to ∂ (δn)/∂y, will scale
as n2 Ipump/W0 ∼ n2 E/T0/(πW 3

0 ), and Eq. (4) tells us that this
is equal to the deflection rate in the propagation direction z.
Integrating over z, and noting that the longitudinal size of the
pump pulse is of order c T0, we find

δθ ∼ n2 c
E

πW 3
0

. (5)

This is a rough estimate; it does not account for the nonuni-
formity of ∂ (δn)/∂y within the pump pulse, nor the spatial
extent of the probe, which will itself be a beam rather than an
individual ray. But it does allow us to extract an expected order
of magnitude for the deflection angle: letting n2 = n2,max =
1.55 × 10−33 cm2/W, E = 2.5 J, and W0 = 5 μm, we find
δθ ∼ 0.3 × 10−12 rad = 0.3 prad. Since this approximates
the probe as a ray of infinitesimal width, we can expect the
average deflection of a spatially extended probe pulse to be
smaller, so that this value must be an overestimate. Indeed,
we shall see below that taking the finite extension of the probe
into account tends to reduce this estimate.

B. Mean deflection using Gaussian pulses

The finite spatial extent of both the pump and the probe
are taken into account to get a more accurate prediction. For
simplicity here, we assume the pulses to be exactly counter-
propagating (i.e., θtilt = 0). The general case, in which the tilt
angle θtilt is nonzero, is presented in the Appendix.

For definiteness and simplicity, let us assume that the
probe and pump intensity profiles are separable into transverse
F⊥(x, y) and longitudinal Gz(z) Gaussian profiles:

I (x, y, z) = F⊥(x, y) Gz(z), (6)

with Gz(z) = e
− 4 ln 2

T 2
0

z2

and

F⊥(x, y) =
{

i⊥(x, y) = Iin e
− 2

w2
0

(x2+y2 )
for probe,

I⊥(x, y) = I0 e
− 2

W 2
0

[x2+(y−b)2]
for pump.

(7)
Here T0 is the duration of the pulse (FWHM), while the length
scales W0 and w0 are the standardly defined waists at focus of
the pump and probe, respectively. We have included an impact
parameter b between the trajectories of the pump and probe
pulses. As mentioned in Sec. II, this is required because a
nonzero deflection of the barycenter requires some asymmetry
in the response of the probe to the presence of the pump,
whereas it will be exactly symmetrical if b = 0. We can also
justify a nonzero impact parameter by noting [see Eq. (4)]
that the rate of deflection is equal to the gradient of δn in the

transverse directions, so we wish for the probe to be centered
on a region where the pump intensity is strongly varying.

We can also consider the pulses to be collimated in the
interaction region. Indeed, for a Gaussian beam propagation,
the beam width varies longitudinally from the focus point as
w(z) = w0

√
1 + (z/zR)2, where z is the longitudinal position

along the beam measured from the focus, and zR = πw2
0/λ is

the Rayleigh length. For a pulse duration T0 = 30 fs, the lon-
gitudinal size of the interaction region is of order zl = c T0 =
9 μm. For a waist at focus w0 = 5 μm and a wavelength
λ = 800 nm, the Rayleigh length is zR � 100 μm. Thus, the
relative variation of the beam width during the interaction is
[w(z = c T0) − w0]/w0 � (zl/zR)2/2 = 4 × 10−3, so the ap-
proximation of collimated pulses in the interaction region is
valid.

The fact that the total deflection is an integrated effect
means that gz(z) drops out of the result, and to each trans-
verse position (x, y) we may assign a local deflection angle
δθy(x, y). Note that, since the focus axes of pump and probe
are considered to be shifted along y, the probe sees a symmet-
ric δn in x, so the mean of δθx will vanish; it is for this reason
we restrict our attention to δθy. As per Eq. (4), the deflection is
found by integrating ∂y(δn) over z: δθy = ∂y(

∫
dz δn). Writing

δn = n2,maxIpump = n2,maxI⊥ Gz and integrating over z, we find
the local deflection angle δθy(x, y) to be

δθy(x, y) = ∂y

[
1

π
c n2,max

E
W 2

0

e
− 2

W 2
0

[x2+(y−b)2]
]
. (8)

Here E is the total energy of the pump pulse.
The mean deflection 〈δθy〉 is found by averaging δθy(x, y)

over x and y, the transverse form of the probe intensity acting
as a weight function:

〈δθy〉 =
∫∫

dx dy δθy(x, y) i⊥(x, y)∫∫
dx dy i⊥(x, y)

. (9)

Substituting (8) into (9), we find

〈δθy〉 = 〈δθy〉max
b

bopt
e

1
2 [1−( b

bopt
)2]

, (10)

where we have defined

bopt = 1
2

√
w2

0 + W 2
0 (11)

and

〈δθy〉max = A
E

b3
opt

, A = c n2,max

4π
√

e
= 2.25 prad μm3/J.

(12)

bopt is the value of the impact parameter b at which 〈δθy〉 is op-
timized. This optimal value is 〈δθy〉max, the maximum possible
barycenter shift given the pump energy and the pulse widths.
For achievable pump energy E = 2.5 J with the LASERIX
facility, and with a minimum waist at focus w0 = W0 = 5 μm
for both the probe and the pump pulses, the average deflec-
tion angle is 〈δθy〉max = 0.13 prad. Note that its functional
form corresponds closely to that predicted in Eq. (5) from
purely dimensional considerations. In this analysis, only the
value A is model dependent; the value given here is for the
Euler-Heisenberg model derived from QED (with orthogonal
polarizations for the pump and probe).
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FIG. 4. On the left is shown the mean angular deflection of the barycenter 〈δθy〉 as a function of the impact parameter b giving the shift
between the focus axes of pump and probe. The pulses are assumed orthogonally polarized, and each has a minimum waist of 5 μm and a
duration 
tFWHM = 30 fs, while the total energy of the pump pulse is 2.5 J. The black curve corresponds to a “head-on” collision θtilt = 0,
while the red curve corresponds to θtilt = 30◦. On the right is shown the correction factor rtilt , for three different tilt angles, as a function of the
dimensionless ratio R which characterizes the elongation of the pulses [see Eq. (14)].

An example of the mean deflection 〈δθy〉 is shown, in solid
black, in the left panel of Fig. 4, as a function of b at fixed
E = 2.5 J and W0 = w0 = 5 μm.

Experimental constraints dictate that the tilt angle θtilt

cannot be exactly zero. Analytical calculations (see the Ap-
pendix) show that the effect of the tilt angle is to introduce
an overall correction factor rtilt to the expression (10) for the
deflection angle:

〈δθy〉 = 〈δθy〉max
b

bopt
e

1
2 [1−( b

bopt
)2]

rtilt, (13)

with

rtilt = cos3(θtilt/2)√
1 + (R2 − 1) sin2(θtilt/2)

, R2 = w2
z + W 2

z

w2
0 + W 2

0

. (14)

Here Wz (wz) is the longitudinal size of the pump (probe)
pulse, defined analogously to the waist (i.e., the electric field
amplitude is proportional to e−z2/w2

z ). The parameter R mea-
sures the ratio of the longitudinal to transverse sizes of the
pulses. It is the only parameter that depends on their longi-
tudinal size. To understand the form of the numerator of rtilt ,
consider two spherically symmetric pulses, so that R = 1 and
the denominator is also just 1. In this case, the rotation of the
pulse profiles is trivial, and the value of rtilt comes from a
combination of two factors: the refractive index change δn is
proportional to cos4(θtilt/2) [see Eq. (1)], while the interaction
time during which the refractive index profile is able to act on
the pulse is proportional to 1/cos(θtilt/2). Turning to values
achievable with the LASERIX facility, taking a duration T0 =
30 fs, which corresponds to a longitudinal size wz = Wz =
7.6 μm, and a minimum waist at focus w0 = W0 = 5 μm, we
find R = 1.5. Examples of rtilt , as a function of R for several
fixed values of θtilt , are shown in the right panel of Fig. 4.
Also shown in the left panel, in solid red, is the theoretical
prediction for the mean deflection 〈δθy〉 as a function of b
with a tilt angle of 30◦ and a pulse duration (FWHM) of
30 fs. For the optimal impact parameter bopt, the deflection
is 〈δθy〉max = 0.11 prad, representing only a slight reduction
with respect to the case of a head-on collision.

As well as a deflection, the perturbed probe will also be
characterized by a delay, on account of the slower wave speed
due to the δn induced by the pump. For θtilt = 0, the delay
accumulated at any point within the probe is δt = (

∫
dz δn)/c,

and is thus proportional to the bracketed expression in Eq. (8).
The mean delay 〈δt〉 is defined analogously to the mean de-
flection of Eq. (9), and is found to be

〈δt〉 = n2,max

4π

E
b2

opt

e
− 1

2 ( b
bopt

)2

. (15)

This leads to a phase delay 〈δψ〉 = ω0 〈δt〉, where ω0 is the
carrier frequency of the probe. At a wavelength of 800 nm,
and for b = bopt (so that the deflection 〈δθy〉 is optimized),
this yields an average phase delay of

〈δψ〉 = (17.4 prad μm2/J)
E

b2
opt

. (16)

Therefore, with E on the order of 1 J and bopt on the order
of a few μm, the mean phase delay is on the order of a
few picoradians, and is thus of the same order as the mean
deflection angle.

C. Amplification by the Sagnac interferometer

In this section we shall illustrate how the Sagnac inter-
ferometer yields an amplification of the barycenter shift in
the measured intensity profile, considering a true imperfect
interferometer.

1. Description of scattering at a beamsplitter

Let us consider a plane beamsplitter which is symmetrical
with respect to translations and rotations within the plane.
Assuming it is lossless, the relation between the amplitudes
of the incident and outgoing waves is given by a unitary
scattering matrix S: [

Aout
1

Aout
2

]
= S

[
Ain

1

Ain
2

]
. (17)
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FIG. 5. Scattering at a lossless beamsplitter. The amplitudes of the ingoing and outgoing waves are related by the scattering matrix S [see
Eq. (18)]. Neglecting the overall phase 
0 accumulated by all outgoing waves, as well as the reflection of rays from the antireflective coating
(which is shown here in dashed line), the amplitudes of the outgoing waves must have the form shown here. The two panels correspond to the
scattering of rays incident on the beamsplitter from opposite sides. These two scattering processes are characterized by the same amplitudes
and phases, with some relative signs.

The two waves with amplitudes Ain
1 and Ain

2 are incident from
opposite sides with respect to the plane of the beamsplitter
(see Fig. 5), and similarly for the outgoing waves.

The most general 2 × 2 unitary matrix can be written in the
following form:

S = ei
0

[
t eiφt r e−iφr

−r eiφr t e−iφt

]
, t2 + r2 = 1, (18)

where the parameters t , r, φt , φr , and 
0 are all real. t2 and
r2 are the fractions of the incident energy that are fed into
the transmitted and reflected channels, respectively, and the
losslessness of the beamsplitter is encoded in the unitarity
relation t2 + r2 = 1.

The form of Eq. (18) is very general, and thus independent
of the internal structure of the beamsplitter. However, it can
prove useful to keep this internal structure in mind. It is
shown explicitly in Fig. 5. The beamsplitter consists of a sil-
ica substrate, one surface being a 50/50 reflector/transmitter,
the other having an antireflective coating so that, to a good
approximation, rays are purely transmitted across it. Each of
the two surfaces separately can be described by a matrix of the
form (18). For now we assume that, at the antireflective rear
surface rAR = 0; corrections in powers of rAR will be included
in Sec. III C 4 below, describing those rays which are reflected
at this surface.

The meaning of the matrix S is the following (and illus-
trated in Fig. 5). When a ray is incident on the beamsplitter
from one side, the transmitted and reflected rays pick up
amplitudes t and r, and phases 
0 + φt and 
0 + φr +
π , respectively. When the ray is incident from the other
side, the transmitted and reflected rays again pick up ampli-
tudes t and r, but now with phases 
0 − φt and 
0 − φr ,

respectively.1 The assumed translation and rotational sym-
metry of the beamsplitter means that these amplitudes and
phases are independent of the point of incidence of the ray
and of the direction (i.e., the azimuthal angle) from which it
is incident. We are mainly interested in beams which follow
the same optical path, and since their interference will depend
only on their relative phase, both the optical path length and
the constant phase 
0 drop out of the final result. It is for
this reason that 
0 is not included in the scattering amplitudes
shown in Fig. 5.

2. Beamsplitter requirements for a Sagnac interferometer

As discussed in Sec. II, the Sagnac interferometer makes
use of a single beamsplitter twice: first by splitting the incident
probe pulse into two daughter pulses, which propagate around
the same path in opposite directions; and then recombining
these pulses at the output of the interferometer. This situation
is described by a double application of the scattering matrix
S. The ideal Sagnac interferometer has complete destructive
interference at the so-called “dark port” of the beamsplitter.
This imposes strict conditions on some of the parameters
entering the scattering matrix: as shown in Fig. 6 (by applying
the scattering amplitudes shown in Fig. 5), the vanishing of the
amplitude of the wave at the dark port requires t2e2iφt − r2 =

1Mathematically, the inclusion of a phase difference of π for re-
flection from one side and not from the other simply accounts for
the relative minus sign between the off-diagonal components of the
S matrix in Eq. (18). In the current context, it can be understood
physically as being due to the fact that, from one side, there is
reflection at an interface where the refractive index decreases, while
from the other side, the reflection is at an interface where the index
increases (see Fig. 5).
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FIG. 6. Scattering at the beamsplitter in a Sagnac interferometer. In the first stage, a single incident wave is split into transmitted and
reflected parts, exactly as in the left panel of Fig. 5. In the second stage, these two parts are recombined at the same beamsplitter, this being
described by a linear combination of the two panels of Fig. 5 (and recalling that the beamsplitter is symmetric under rotations in its plane, so
that the same scattering amplitudes apply even though the directions of the waves have been reversed). Assuming the initial wave has amplitude
1, the amplitudes of the various waves are shown. (Again, the overall phase 
0 accumulated at each interaction with the beamsplitter has been
suppressed for simplicity, and reflections at the antireflective coating have been neglected).

0 or, equivalently,

t2 = r2 = 1
2 , e2iφt = 1. (19)

The first condition is simply that the beamsplitter should be as
close to 50/50 as possible, so that the two waves contributing
to the output at the dark port have exactly the same amplitude.
The second condition is required to ensure that the two waves
at the output are exactly out of phase, so that their interference
is perfectly destructive. Note that it is only φt that enters the
second condition: 
0 does not enter because it is only the
relative phase between the two beams that is needed, while
the fact that the reflected pulse reflects once from each side of
the beamsplitter cancels out the phase φr .

In reality, the beamsplitter will be imperfect: the transmis-
sion and reflection coefficients t2 and r2 will not be exactly
1/2, and the phase φt will not be exactly null (either be-
cause of an intrinsic asymmetry within the beamsplitter, or
because of other systematics that affect the relative optical
path length). We parametrize the difference by introducing the
small quantities δa and δφ:

t2 = 1
2 (1 + δa), r2 = 1

2 (1 − δa),

e2iφt = e2i δφ ≈ 1 + 2i δφ. (20)

Then, neglecting terms of second order and higher in δa and
δφ, the amplitude Adark of the outgoing wave at the dark
port, relative to the incident amplitude A0 entering inside the
interferometer, is

Adark/A0 = t2e2iφt − r2 ≈ δa + i δφ, (21)

The extinction factor F , defined as the ratio of the outgoing
intensity at the dark port to the input intensity, is then

F = (δa)2 + (δφ)2. (22)

3. Intensity profile of the interference in the dark output:
Amplification of the barycenter shift

At focus in the interaction area, the probe field is refracted
by the pump through an average deflection angle 〈δθy〉 given
by Eq. (10), and is delayed by an average phase delay 〈δψ〉
given by Eq. (16). After recollimation, the deflection angle
becomes a transverse displacement of the probe field, whose
magnitude depends also on the focal length f of the lenses
used to focus the probe. Assuming b = bopt, we have simply

〈δy〉direct = f 〈δθy〉max . (23)

We call this the “direct” (or “bare”) deflection, since it is the
shift in the barycenter of the intensity that would be measured
if the probe were detected directly, without interfering with
the unperturbed probe. As will be shown now, the interference
of the probe pulse with the unperturbed reference pulse in the
dark output of the Sagnac interferometer allows this transverse
displacement to be amplified.

We denote by Epr and Ere the slowly varying envelopes
of, respectively, the perturbed probe electric field, and the
unperturbed reference electric field, in the dark output of the
Sagnac interferometer. The full electric fields include a rapidly
oscillating carrier wave: Efull = Re{E ei(k0z−ω0t )}. Denoting by
E0 the incident field entering the interferometer, we have

Ere(x, y) = t2 e2iδφE0(x, y),

Epr (x, y) = r2 e−iδψE0(x, y − 〈δy〉direct ), (24)

where we have approximated the perturbation as being fully
characterized by 〈δy〉 and 〈δψ〉 (so that the profile of the field
is otherwise unaffected). In the dark output, the two fields
interfere destructively and the resultant field is

Edark = Ere − Epr, (25)
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with corresponding intensity

Idark = c

2
ε0 |Edark|2. (26)

The data are images obtained after integrating the intensity
over the pulse duration. Since both pulses cross the same
amount of material in the beamsplitter, they are equally
distorted by dispersive effects, so the integrated intensity con-
tains all relevant information. Up to negligible higher order
terms, Idark reads

Idark = c

8
ε0|(1 + δa)(1 + 2iδφ)E0(x, y)

− (1 − δa)(1 − i〈δψ〉)E0(x, y − 〈δy〉direct )|2, (27)

which gives, after reordering,

Idark = δa2 I0

(
x, y + 〈δy〉direct

2δa

)

+ δφ2 I0(x, y)

(
1 + 〈δψ〉

δφ

)
, (28)

where I0(x, y) = 1
2 cε0E2

0 (x, y) is the intensity profile of the
incident pulse.

Equation (28) is the generalization of Eq. (22) in the
presence of a pump crossing effect. The measured intensity
profile in the dark output depends linearly on both the average
phase delay and the average deflection induced by the pump
pulse on the probe pulse. The direct lateral shift 〈δy〉direct is
amplified by a factor of 1/(2δa), but δφ adds an unshifted
intensity component. Since 〈δψ〉 
 δφ, the combination of
both components shifts the barycenter of the output signal by

〈δy〉Sagnac = δa/2

(δa)2 + (δφ)2
〈δy〉direct = δa

2F 〈δy〉direct. (29)

It is clear that being able to extract the vacuum index perturba-
tion from the output intensity profile requires knowledge not
just of the extinction factor F = (δa)2 + (δφ)2 but also of the
values of δa and δφ separately.

The main contribution to δφ comes from understood opti-
cal defects; these will be explained in more detail in Sec. IV B.
There are two other expected physical contributions to δφ:
the phase asymmetry intrinsic to the beamsplitter, and the
Sagnac phase shift arising from the rotation of the Earth, on
the order of 3 × 10−6 rad for a 1 m Sagnac arm length. Both
of these additional contributions turns out to be negligible
with respect to the reflection/transmission asymmetry δa of
the beamsplitter, which in the DeLLight prototype is on the
order of 10−3 (see Sec. IV B).

The target specification of the final design is to achieve an
extinction factor F consistently dominated by δa, i.e., with
negligible phase asymmetry δφ compared to δa. In this case,
Eq. (29) becomes

〈δy〉Sagnac = 1

2 δa
〈δy〉direct = 1

2
√
F

〈δy〉direct (30)

and the amplification factor multiplying the lateral shift is
simply equal to 1/(2

√
F ).

We also note that the second term in (28) gives access to
another way to search for a vacuum index modification, since

it is sensitive to 〈δψ〉 thanks to a linear effect on the total in-
tensity. In this case 1/δφ amplifies the sensitivity. In principle,
one might optimize a setup aiming at a 〈δψ〉 measurement, but
sensitivity estimates show this is out of reach of the LASERIX
facility.

4. Corrections due to reflection at the antireflective surface

We now consider corrections due to rays which reflect from
the antireflective rear surface of the beamsplitter as illustrated
in Fig. 7. The rays which reflect once from this surface do
not overlap with the main signal described above; instead,
they are separated from the main signal by a distance that
depends on the thickness of the substrate of the beamsplitter.
These back-reflections are useful in following, and correcting
for, the beam pointing fluctuations of the laser beams; this is
described in Sec. IV C 2 below. However, when considering
rays that reflect twice from the antireflective rear surface, there
is one such ray that overlaps both spatially and temporally
with the main signal (in the sense that it follows the same
optical path length when traversing the interferometer), with
an amplitude at the dark port equal to −t2 r2

AR ≈ −r2
AR/2.

The total amplitude at the dark port is therefore given by
(neglecting terms in r2

ARδa and r2
ARδφ)

Adark/A0 ≈ δa − 1
2 r2

AR + i δφ, (31)

and the extinction factor is now

F ≈ (
δa − 1

2 r2
AR

)2 + (δφ)2. (32)

Therefore, an antireflectivity coating with r2
AR 
 δa is re-

quired to avoid any contribution of the back-reflections to the
extinction factor of the interferometer.

D. Expected sensitivity

To account for inevitable low-frequency variations of the
measured position of the unperturbed probe, we propose
to alternate shots with and without interaction between the
pump and probe pulses, which we respectively label as “ON”
and “OFF” measurements. We extract the barycenters of the
intensity profile measured in the dark output of the interfer-
ometer for successive ON and OFF measurements, which we
name ȳON(i) and ȳOFF(i), respectively. The signal δy(i) of
the ith “ON-OFF” measurement, corresponding to a shift of
the barycenter due to the interaction with the pump, is then
defined as

δy(i) = ȳON(i) − ȳOFF(i). (33)

The measured δy(i) will have a certain distribution charac-
terized by its mean value 〈δy〉 and its standard deviation σy

(which we shall henceforth refer to as the spatial resolution).
Collecting N such measurements, the statistical error (one
standard deviation) of the observed mean 〈δy〉 is equal to
σy/

√
N .

Since classical electromagnetism predicts no light-by-light
refraction (and hence δy = 0), we wish to measure a signal
whose difference from zero is statistically significant, i.e., for
which the measured mean 〈δy〉 is a few standard deviations
σy/

√
N away from zero. Assuming that the average signal

〈δy〉 is equal to 〈δy〉Sagnac = 〈δy〉direct/(2
√
F ) of Eq. (29),
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×

FIG. 7. Ray tracing of the main back-reflections on the rear side of the beamsplitter BS-2 (see Fig. 2). In blue, an odd number of reflections
(from a low to a high index) corresponding to an extra phase π ; in green, an even number of reflections equivalent to a null phase.

the sensitivity of the experiment, in terms of the number of
standard deviations Nsd, is

Nsd = 〈δy〉Sagnac

σy/
√

N
= 〈δy〉direct/

(
2
√
F

)
σy/

√
N

. (34)

Using Eqs. (11), (12), and (23), the number of stan-
dard deviation of the signal, in terms of the experimental
parameters, is

Nsd = c n2,max

π
√

e

E f rtilt (θtilt )
√

N(
w2

0 + W 2
0

)3/2√Fσy

, (35)

where f is the focal length of the lenses used to focus the
probe and reference pulses inside the Sagnac interferom-
eter, and rtilt is the correction factor defined in Eq. (14).
The number of ON-OFF measurements is related to the
repetition rate frep of the laser shots and to the the total du-
ration of the experiment Tobs(days), given in number of days:
N = 86 400 frep(Hz)Tobs(days). With experimental parameters
given in local units, and for the expected QED signal (n2,max =
n2,QED), we get

Nsd = 0.6
√

frep(Hz)E (J)
√

Tobs(days)

× f (mm)rtilt (θtilt )[
w2

0 (μm) + W 2
0 (μm)

]3/2√F/10−5σy(nm)
. (36)

As detailed in Sec. IV, preliminary experimental tests
show that an extinction factor of the Sagnac interferome-
ter F = 0.4 × 10−5 [corresponding to an amplification factor
1/(2

√
F ) = 250] and a spatial resolution σy = 10 nm can be

achieved. A waist at focus W0 = 5 μm for the pump beam is
a standard value reachable with intense pulses. A same waist
at focus w0 = 5 μm for the probe beam can be obtained by
requiring a waist w � 25 mm for the collimated probe beam
in the interferometer (before focus) and by using optical lenses

with focal lengths f = 500 mm. A conservative tilt angle of
30◦ yields to a correction factor rtilt ≈ 0.9. With an energy of
the pump pulse of 2.5 J as delivered by the LASERIX facility,
the expected signal in the dark output of the interferometer2

is 〈δy〉Sagnac = 15 pm. With the relatively high repetition rate
of LASERIX frep = 10 Hz, we get Nsd = 0.95

√
Tobs(days),

which means that the sensitivity of the expected QED signal
at 1 standard deviation (1-sigma) is obtained after 1.1 days
of collected data, or a 5-sigma observation after about one
month.

E. Contribution of residual gas

The optical Kerr effect in the residual gas is at first sight a
nonlinear effect much stronger than the corresponding effect
in vacuum. For instance, the Kerr index in air at atmospheric
pressure (n2 � 3 × 10−19 cm2/W) is 2 × 1014 times larger
than the expected nonlinear index n2,QED of vacuum. Since
this value is proportional to the pressure, setting n2 to lie an
order of magnitude below n2,QED requires a residual pressure
of ∼10−12 mbar. However this results is true only if the
pump-probe interaction volume V is large enough to contain
a few atoms. For the DeLLight experiment, the interaction
volume is very small, of the order of V � w2

0
tc � 225 μm3.
The vacuum chamber of the DeLLight experiment is designed
to ensure a nominal pressure for the full chamber below
10−6 mbar and a local pressure in the interaction area below
10−8 mbar. At this local pressure, there is on average only
0.1 residual atom inside the pump-probe interaction volume
V . Therefore, at achievable pressures, we are already in a
regime far below that of the coherence required for a possible

2The direct signal, using a direct pointing method at a distance f =
500 mm without interferometer, would be only 〈δy〉direct = 60 fm.
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FIG. 8. Schematic view of the DeLLight prototypes. Two different Sagnac interferometers have been developed and tested: on the left,
a rectangular interferometer composed of three mirrors, without any focus inside the interferometer; on the right, a triangular configuration
composed of two mirrors and two optical lenses so as to focus the laser pulses at the midpoint (see text for details).

refraction effect, and where the notion of refractive index for
air can no longer be defined.

Moreover, in our setup using the LASERIX facility, the
intensity of the pump in the interaction area is of the order of
1020 W/cm2. At this intensity, the residual gas is completely
ionized by the pump, all the electrons being removed from
the atoms. We thus have an electromagnetic wave crossing
a pure relativistic plasma. Investigating the dynamics of this
system will require numerical simulations, but its effect on
the DeLLight signal is expected to be negligible. Indeed the
plasma density and the plasma index is transversally uniform
in the pump-probe interaction area, so that the perturbation
of the probe phase is symmetric and the mean deflection (the
signal) is zero.

Experimental tests are feasible that could distinguish be-
tween a possible artifact induced by the residual gas and the
vacuum signal. First, by decreasing the intensity of the pump
by a factor of 10, the vacuum signal should be reduced by the
same factor, while any artifact due to the plasma should be
constant (the intensity still being high enough to completely
ionize the atoms). Also, by inverting the propagation direc-
tions of the probe and reference pulses (i.e., moving from a
counterpropagating pump-probe test to a copropagating test),
any plasma signal should remain while the vacuum signal
must be suppressed according to the rtilt factor of Eq. (14).

Finally we add that the Kerr effect in air will be used
to calibrate and validate the DeLLight method. The mea-
surement will be carried out with a relatively low intensity
(∼1011 W/cm2) in order to avoid generating a plasma via ion-
ization of air molecules, and the Kerr effect will be measured
as a function of the pressure. More generally, the use of the
Kerr or plasma signals can be used to monitor and control the
spatial and temporal overlap of the pump and probe pulses in
the interaction area.

IV. PRELIMINARY RESULTS OF THE DELLIGHT
PROTOTYPE

A prototype of the experiment has been developed in order
to study and measure two critical experimental parameters:
the extinction factor of the Sagnac interferometer F and the
spatial resolution σy.

A. Description of the prototype

Two different Sagnac interferometers have been devel-
oped and tested: First, a rectangular Sagnac interferometer
composed of three mirrors, without any focus inside the in-
terferometer; then a triangular configuration composed of two
mirrors and two optical lenses so as to focus the laser pulses
at the midpoint of the interferometer. Both geometries are in-
sensitive to beam pointing fluctuations in angle and transverse
position.

The optical setups are shown in Fig. 8. The incident laser
pulses are delivered by the LASERIX beam with a repetition
rate of 10 Hz. The energy per pulse is about 20 μJ, and the
pulse duration is 50 fs. The central wavelength is λ0 = 815 nm
with a spectral width 
λ = 40 nm (FWHM). A spatial filter
composed of two spherical lenses and a pinhole located in
the focal point of the telescope produces a smooth transverse
intensity profile that is close to Gaussian. An initial beam-
splitter (BS-1) provides two distinct beams: the probe beam,
used here only to study the performance of the interferometer,
and the pump beam which will be used in a second step to
validate the DeLLight technique by measuring the Kerr effect
in a medium. For the measurements presented in this article,
the pump beam is stopped. Results of the measurements of the
Kerr effect in a medium will be presented in a future article.

Before entering inside the interferometer, a polarizer se-
lects the horizontally polarized (p-pol.) component and a
neutral density filter sets the suitable intensity of the incident
probe pulse. The width w of the intensity profile of the probe
pulse is w ≈ 1 mm (FWHM).

The beamsplitter BS-2 of the Sagnac interferometer is
a 50/50 commercial femtosecond p-pol beamsplitter (Sem-
rock FS01-BSTiS-5050P-25.5). Its coating is produced by
the ion beam sputtering technique which delivers uniform
atomic layers. The expected theoretical values of the reflec-
tion and transmission coefficients r2 and t2 vary in a range
r2 = t2 = 50 ± 0.2% over a broad spectrum between 650
and 1100 nm. Using Eq. (22), a deviation of 0.2% (equiv-
alent to δa = 4 × 10−3) corresponds to an extinction factor
F = (δa)2 = 1.6 × 10−5. The phase factor φ of the beam-
splitter [Eq. (20)] is not characterized by the producer. The
thickness of the beamsplitter is 3 mm and the group delay
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FIG. 9. Intensity profile recorded by the CCD camera in the dark output of the interferometer at the maximum of extinction. The observed
intensity has been normalized by the maximum intensity of the input pulse. The interference signal is located in the central part, delimited by
the dotted white circle. The two opposite lateral spots correspond to the back-reflections on the rear side of the beamsplitter BS-2 (see Fig. 8).
On the right, same image shown with a higher sensitivity scale of the display in order to observe the residual phase noise of the interference
signal with an extinction factor at worst equal to 2 × 10−5.

dispersion (GDD) is less than 30 fs2 for both reflection and
transmission. An antireflection coating has been deposited on
the rear side of the beamsplitter with a reflectivity coefficient
r2

AR = 0.1% at 800 nm. The mirrors inside the interferom-
eter are standard femtosecond dielectric mirrors with a low
GDD value (typically less than 50 fs2) and standard laser
grade surface qualities: a flatness peak-to-valley <λ/10 at
633 nm, a quality 20-10 Scratch-Dig, and a roughness with
typical RMS < 5 Å. The beamsplitter and one of the mirrors
are controlled by kinematic mirror mounts with two static
piezoelectric adjusters for horizontal and vertical alignment
with an angular resolution of 0.5 μrad for a 0.1 V step. The
lateral position of one mirror is controlled by a micromet-
ric translation stage. For the triangular configuration of the
Sagnac interferometer, the beam is focused using two best
form optical lenses L1 and L2, placed between the two mirrors
M1 and M2. The lenses have equal focal length f = 100 mm,
and are separated from each other by a distance 2 f . One lens
is mounted on a 3-axis piezoelectric adjuster. The length of
the longest interferometer arm between the two mirrors M1
and M2 is about 40 cm.

The dark output of the interferometer is read by a CCD
camera (Basler acA1300-60gm) containing 1024 × 1280 pix-
els. The pixel dimension is 5.3 × 5.3 μm2 and the maximum
charge storage capacity before saturation (full well capacity)
is 104 electrons per pixel. An interferential multilayer dielec-
tric filter 
λ = 3 nm centered at 808 nm is placed in front
of the CCD camera. Rotation of the incident angle of the
filter allows us to select a wavelength from 808 to 800 nm
and thereby optimize the extinction factor by minimizing the
deviation coefficient δa of the beamsplitter. Since r2 and t2

depend also on the polarization of the incident beam, the
deviation coefficient δa is also minimized by rotating the

incident polarization with a half-wave plate WP installed just
after the polarizer, and before the Sagnac interferometer.

B. Extinction factor

The extinction has been measured first for the rectangular
Sagnac interferometer with three mirrors and no focusing. A
typical transverse intensity profile recorded by the CCD cam-
era in the dark output of the interferometer, after optimization
of the extinction factor, is presented in Fig. 9. The two spots
due to back-reflections on the rear side of the beamsplitter
are clearly observed on opposite lateral sides of the main
signal, with approximately equal intensities IAR. As illustrated
in Fig. 7,3 one spot IAR,1 corresponds to the direct image of the
incident intensity after a single reflection on the rear side of
the beamsplitter, while the second spot IAR,2 is a superposition
of four distinct reflected waves:

IAR,1 = Iinr2
AR r2,

IAR,2 = Iinr2
AR r2|1 + 2(t2e2iδφ − r2)|2. (37)

where Iin is the incident intensity at the entrance of the Sagnac
interferometer. At lowest order, we have r2 = t2 = 1/2 and
δφ = 0, which gives IAR,1 = IAR,2 = Iinr2

AR/2. The attenua-
tion factor FAR of the back-reflections is FAR = IAR/I0 =
r2

AR/2. It has been measured with a photodiode and a set of
calibrated neutral density filters, and is FAR = 4 × 10−4. It
corresponds to r2

AR = 8 × 10−4 at 800 nm, in agreement with

3While Fig. 7 shows the case of a triangular two-mirror geometry
with focusing, the contributions of the back-reflected beams to the
output intensity are the same as in the case of a rectangular three-
mirror geometry without focusing.
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the typical value given by the producer. For an incidence angle
of 45◦, the transverse distance between the back-reflections
and the interference signal is δAR = e/

√
n2 − 1/2, where e

is the thickness of the beamsplitter and n is the refractive
index of its substrate. Here e = 3 mm, n � 1.45, and δAR �
2.37 mm.

The interference signal is located in the central part, delim-
ited by the dotted white circle in Fig. 9. The residual phase
noise of the interference signal is shown in the right image of
Fig. 9 by increasing the sensitivity scale of the display (the
intensity of the back-reflections cannot be directly attenuated
using a neutral density filter because of the too small thickness
of the beamsplitter and therefore a too small transverse dis-
tance between the signal area and the back-reflections). Two
types of noise pattern can be distinguished: hot spots in the
central area of the expected intensity signal and interference
rings with large transverse size (low spatial frequency). The
extinction factor measured in the central area is at worst
F � 2 × 10−5.

The noise pattern is due to a difference in phase between
the two counter-rotating pulses when they interfere; we thus
refer to it as the phase noise pattern. It is induced by surface
defects on the mirrors and on the substrate of the beam-
splitter. From Eq. (22), the observed phase noise at a level
F = 2 × 10−5 corresponds to a difference of phase δφ = 4
mrad. It is equivalent to a difference in the optical path lengths
δl = δφλ0/(2π ) � 5 Å. This value is in agreement with the
current tolerance of the surface quality of the mirrors and
beamsplitter, indicating that the residual hot spots seems to be
produced by roughness defects on the surface of the mirrors
or the substrate of the beamsplitter. This is experimentally
confirmed by the fact that the pattern of the noisy hot spots is
horizontally translated when the position of the incident beam
is slightly horizontally translated (by the translation stage TS-
1 shown in Fig. 8), allowing us to scan a different part of the
surface of the mirrors and beamsplitter. The probable origin
of the interference rings, spread over a large transverse size, is
the relatively limited quality of the flatness of the mirrors and
the beamsplitter, and a modest parallelism of the beamspitter
(<5 arcmin). Another possible origin of the residual noise is a
deviation from a symmetric 50/50 beamsplitter. However the
dielectric coating is expected to be very uniform at the atomic
scale. Therefore the asymmetry should be also uniform and
should not exhibit local hot spots.

An additional limitation of the extinction is the presence of
a double back-reflection which interferes with the interference
signal, as discussed in Sec. III C 4 [see Eqs. (31) and (32)].
For the beamsplitter used in the prototype, we have δa � 4 ×
10−3 and r2

AR � 10−3. Therefore, the contribution from the
additional term is small.

In order to reduce the phase noise, and thereby reach an
extinction factor on the order of 10−6, an updated beamsplitter
and mirrors are under development with superpolished surface
qualities: surface flatness peak-to-valley <λ/100 at 633 nm,
surface roughness RMS < 1 Å, parallelism of the beamsplit-
ter <1 arcsec, and an antireflection coating on the rear side of
the beamsplitter with a reflectivity coefficient r2

AR ∼ 10−4 at
800 nm.

The extinction has also been measured for a triangular
Sagnac interferometer with a focusing of the probe beam by

two optical lenses. The minimum waist measured at focus is
w0 ≈ 25 μm. A similar quality of the global extinction has
been measured in the dark output of the interferometer. Degra-
dation of the extinction by a factor about 2 can be observed
locally due to additional defects of lens surfaces. Focusing
with off-axis parabolic mirrors (rather than with lenses) is also
envisaged.

C. Spatial resolution

1. Shot noise

The spatial resolution for the measurement of the barycen-
ter of the intensity profile is inherently limited by the intrinsic
shot noise related to the statistical fluctuations of the average
number of photoelectrons

√
Np.e. detected by the CCD cam-

era. The spatial resolution scales as w/
√

Np.e. where w is the
beam width on the CCD camera. If np.e. is the average number
of photoelectrons per pixel, and dpix is the side length of each
square pixel, then the spatial resolution scales as dpix/

√
np.e.

and is independent of the beam width. Therefore, in order
to achieve the best spatial resolution, we need the highest
charge storage capacity before saturation per unit surface of
the optical readout. For a CCD camera, this is referred to as
the full well capacity Nc, which corresponds to the maximum
number of stored electrons per pixel before saturation.

The spatial resolution has been calculated using Monte
Carlo simulations with a transverse Gaussian intensity profile
and an average number of electrons per pixel at maximum
equal to 75% of the full well capacity Nc in order to ensure
a linear response of the pixels (as is the case in the exper-
imental data). Accounting for both the corrections of beam
pointing fluctuations (see below) and the ON-OFF subtraction
procedure defined in Sec. III D, the ultimate spatial resolution
is found to be

σy(shot noise) = 0.75
dpix√

Nc
. (38)

We also verify that the dark current contribution is negligi-
ble with respect to the shot noise. With the standard Basler
CCD camera currently used in the prototype (dpix = 5.3 μm
and Nc = 104 electrons/pixel), the expected spatial resolution
limited by the shot noise is σy(shot noise) ≈ 40 nm. With
the new generation of standard CCD cameras (for instance
dpix = 1.8 μm and Nc = 104 electrons per pixel for the Basler
acA4024-29um camera), a spatial resolution σy(shot noise) ≈
13 nm can be achieved. Resolution down to 10 nm can be
reached with CCD cameras with larger full well capacity
per unit surface, or with the direct use of position sensitive
photodiodes.

2. Beam pointing fluctuations

In the current prototype, no system of laser beam stabiliza-
tion has been installed. Significant beam pointing fluctuations
are present, leading to large fluctuations of the transverse
position of the intensity profile measured by the CCD. These
are characterized by a standard deviation on the order of
σb = 10–15 μm, depending on the experimental conditions
in the laser room. The online monitoring of the beam position
is performed using the back-reflection which corresponds to
the direct image of the incident beam (see Fig. 7). Ideally,
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FIG. 10. Intensity profile recorded by the CCD camera in the
dark output of the interferometer, after having rotated the polariza-
tion of the probe beam at the entrance of the interferometer in order
to have a signal intensity of the same order as the back-reflection
intensities. The observed intensity has been normalized by the maxi-
mum intensity of the input pulse.

in order to maintain a high extinction, the intensity of the
back-reflections must be attenuated with a neutral density so
as to be of the same order as the interference signal. However,
the back-reflected spots are not sufficiently distant from the
interference signal because the thickness of the beamsplitter
is too small (the thickness of the future beamsplitters under
development will be increased to e = 6.35 mm for this pur-
pose). Therefore, we have had to reduce the extinction of the
interferometer in order to obtain an interference signal inten-
sity equal to the back-reflection intensities. This was done
by rotating very slightly the incident polarization of the laser
pulse with the half-wave plate WP (see Fig. 8), increasing the
deviation coefficient δa of the beamsplitter. Figure 10 shows
the intensity profile recorded by the CCD after rotation of
the polarization with the interference signal intensity equal to
the back-reflection intensity. The measurement of the spatial
resolution is performed in this configuration. It corresponds to
an extinction factor F = 5 × 10−4.

We present here the measurement of the spatial resolu-
tion, obtained with 8000 successive laser shots (at a 10 Hz
repetition rate), collected with the rectangular Sagnac interfer-
ometer with three mirrors and no focusing. Data of successive
odd (2i − 1) and even (2i) laser shots are arbitrarily sepa-
rated into OFF and ON data in order to define an ON-OFF
measurement i using two successive laser shots (at a 5 Hz
repetition rate). The barycenters of the intensity profiles of
the interference signal ȳsig(i) and the back-reflection ȳref (i)
are calculated along the vertical axis, using a square analysis
window (or region of interest) whose size wRoI is by default
equal to half the width w (FWHM) of the intensity profile.
The beam pointing fluctuations are suppressed for each ON
and OFF measurement using the correlation of the barycenters

of the signal ȳsig(i) and the back-reflection ȳref (i). One obtains
the corrected positions:

ȳOFF
corr (i) = ȳOFF

sig (i) − [
aOFFȳOFF

ref (i) + bOFF
]
,

(39)
ȳON

corr (i) = ȳON
sig (i) − [

aOFFȳON
ref (i) + bOFF

]
,

where aOFF and bOFF are obtained by fitting the linear corre-
lation, using only the OFF measurements. Figure 11 shows
the correlation for both OFF and ON data, with the result
of the linear fit superposed. The signal δy(i) of the ON-OFF
measurement i is

δy(i) = ȳON
corr (i) − ȳOFF

corr (i). (40)

Its average value 〈δy〉 is expected to be zero since there is no
interaction between pump and probe pulses. The distribution
of the raw barycenter position of the interference signal for the
OFF data ȳOFF

sig (i) is presented in Fig. 12 as a function of the
ON-OFF measurement number i (effectively, as a function of
time). Strong beam pointing fluctuations are clearly observed.
The frequency spectrum of this distribution is also presented,
showing a typical 1/ f drift noise at low frequency and three
harmonic peaks at 1, 2, and 2.4 Hz. The ON-OFF subtraction
(at 5 Hz) of the raw barycenter positions ȳON

sig (i) − ȳOFF
sig (i)

acts as a lock-in measurement, suppressing the low-frequency
noise. However, the harmonic peaks are still present and the
beam pointing fluctuations are still large with a poor spatial
resolution of about 1.3 μm. Finally, the distribution of the
signal δy(i), after correcting for beam pointing fluctuations
according to Eqs. (39), exhibits an excellent spatial resolution
σy(wRoI = w/2) = 40.2 ± 0.4 nm in agreement with the ex-
pected CCD shot noise limit of Eq. (38). The average value
over 4000 measurements is 〈δy〉 = 540 ± 636 pm, which is
compatible with the expected zero value, with subnanometer
accuracy. The frequency spectrum is flat, indicating that the
residual noise is purely stochastic as expected for the quan-
tum shot noise of the CCD camera. This study shows that
the ultimate shot noise resolution is achieved for relatively
small region of interest (wRoI � w/2) when the phase noise
is negligible.

3. Phase noise pattern

For larger region of interest, the phase noise is not negligi-
ble anymore and must be taken into account. Using Eq. (22),
the intensity profile at the dark output Iout,i(x, y) for a laser
pulse i is then given by

Iout,i(x, y) = Iin(x − x̄i, y − ȳi )[δa2 + δφ2(x, y)], (41)

where x̄i and ȳi are the barycenters of the intensity profile
of the incident pulse i, and δφ2(x, y) is the matrix of the
phase noise pattern. The barycenters x̄i and ȳi fluctuate from
shot to shot with standard deviation σb. It is assumed that the
beamsplitter asymmetry δa is uniform, and independent of the
transverse position. The first term IS = Iin(x − x̄i, y − ȳi )δa2

in Eq. (41) corresponds to the signal intensity profile as
measured in Fig. 9 where δa has been increased by rotating
the beam polarization. The second term IB = Iin(x − x̄i, y −
ȳi )δφ2(x, y) corresponds to the phase noise pattern intensity
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FIG. 11. Correlation of the barycenters in intensity of the interference signal ȳsig(i) and the back-reflection ȳref (i), calculated along the
vertical axis y. The data is shown as black points, for both OFF (left panel) and ON (right panel) measurements, while the result of the linear
fit obtained using the OFF data only is shown in both panels as a blue line. The absence of any noticeable shift is consistent with the expected
zero signal.

profile as measured in Fig. 10 at maximum extinction (δa 

1). In the absence of beam pointing fluctuations, the beam pro-
file is stable (σb = 0) and we can arbitrarily set x̄i = ȳi = 0. In
this case, the phase noise profile IB is equivalent to a constant
offset of the intensity profile, and the spatial resolution is
only limited by the shot noise. However, in the presence of
beam pointing fluctuations, the intensity profile of the incident

beam, which is shifted by x̄i, ȳi, is now multiplied by the phase
noise matrix δφ2(x, y), which is independent of the beam po-
sition, and is fixed with respect to the optical elements of the
interferometer. Same properties apply to the back-reflections.
As a consequence, the shift of the signal intensity profile is not
anymore correctly measured by the shift of the back-reflection
and the spatial resolution is degraded.

FIG. 12. Measurement of the spatial resolution obtained with 8000 successive laser shots at 10 Hz. (Left) Distribution of the barycenters in
intensity of the interference signal as a function of the ON-OFF measurement i. Upper plot: Raw barycenter position for the OFF data ȳOFF

sig (i)
without any pointing correction. Middle plot: ON-OFF subtraction of the raw barycenter positions ȳON

sig (i) − ȳOFF
sig (i). Lower plot: corrected

signal δy(i), after beam pointing correction. Analysis is done with a region of interest of size wRoI = w/2, where w is the width (FWHM)
of the intensity profile of the beam. The achieved spatial resolution is σy(wRoI = w/2) = 40.2 ± 0.4 nm and the average signal is 〈δy〉 =
540 ± 636 pm, which is compatible with the expected zero value. (Right) Corresponding frequency spectra.
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FIG. 13. (Left) Efficiency εs of measuring the signal (i.e., the displacement of the barycenter) as a function of wRoI/w where wRoI is the size
of the analysis window and w the width (FWHM) of the beam, as measured in the data (dots) and calculated for a Gaussian transverse profile
of the beam. (Right) Spatial resolution σy as a function of wRoI/w. Solid blue line corresponds to the data and is compared to the Monte Carlo
simulations with beam pointing fluctuations (σb = 15 μm) and a phase noise as measured in the data (crosses and dot-dash line). Result of the
simulations are also presented, assuming beam pointing fluctuations σb = 1 μm and a phase noise 10 times smaller (triangles and dot-dash
line), and assuming only shot noise (squares and dot line). The figure of merit defined as ξ (wRoI ) = εs(wRoI )σy(shot noise)/σy(wRoI ) is shown
in the red line.

This effect is well observed by measuring the spatial reso-
lution σy(wRoI) as a function of the size wRoI of the analysis
window, normalized to the width w (FWHM) of the beam.
As shown in Fig. 13, for wRoI < 0.5w, the phase noise in-
tensity IB can be considered as negligible with respect to
the signal intensity IS and the spatial resolution is relatively
constant and close to the expected shot noise. However the
resolution becomes progressively worse when wRoI becomes
larger, due to the phase noise pattern which is no longer neg-
ligible. This behavior is well reproduced by the Monte Carlo
simulation which now includes normal random beam pointing
fluctuations and the phase noise matrix δφ2(x, y) measured in
Fig. 13.

Therefore the beam pointing fluctuations combined to the
phase noise are the main limitation for the spatial resolution
σy. It requires us to reduce the size of the analysis window
wRoI in order to achieve the ultimate shot noise resolution.
However, the reduction in size of the analysis window tends
to decrease the capacity to measure the displacement of the
barycenter. By defining 〈δy〉(wRoI ) as

〈δy〉(wRoI ) =
∫∫ wRoI/2

−wRoI/2 Iout (x, y)y dx dy∫∫ wRoI/2
−wRoI/2 Iout (x, y) dx dy

, (42)

we then define the efficiency εs(wRoI) of measuring the
signal as

εs(wRoI) = 〈δy〉(wRoI )

〈δy〉 . (43)

The dependence of εs(wRoI) on the size wRoI of the anal-
ysis window, as measured in the data, and as numerically
calculated for a Gaussian transverse profile of the beam, is
shown in Fig. 13. For wRoI = 0.5w, the calculated efficiency

is εs = 0.12. The experimental sensitivity is maximum when
the ratio

ξ (wRoI) = εs(wRoI)σy(shot noise)/σy(wRoI) (44)

is maximum. This ratio, equivalent to a figure of merit, is
presented in Fig. 13 as a function of the size wRoI of the
analysis window and is maximum for wRoI = 0.8w where
εs = 0.3 and σy(wRoI = 0.8w) = 60 nm.

The phase noise induced by possible beamsplitter and mir-
ror instabilities is another possible source of systematics. As
already mentioned, the interference pattern and the extinc-
tion factor in the dark output of a Sagnac interferometer are
unmodified in the presence of a mirror or beamsplitter transla-
tion. Therefore, we are only sensitive to rotation instabilities.
The direct monitoring of the extinction pattern allows us to
control and correct any rotation drift at the level of tens of
nanometers. But noise induced by smaller rotation instabili-
ties is still present. However, as already discussed, the signal
is measured by applying an ON-OFF subtraction method at
5 Hz, which acts as a lock-in measurement of a signal at the
definite 5 Hz frequency. Therefore, only rotation instabilities
at 5 Hz can contaminate the DeLLight signal, and any insta-
bilities at other frequencies can be identified and suppressed
in the frequency domain. Finally, an important experimental
test to distinguish a synchronous noise from a real DeLLight
signal is to delay the pump pulse by a few picoseconds, in
order to cancel the signal induced by the interaction with the
pump.

The second prototype configuration with focusing in the
interferometer is much more sensitive to the turbulence of
the air, which generates instabilities of the extinction pattern.
This induces fluctuations of the phase noise pattern which
deteriorates the spatial resolution (as previously discussed).
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TABLE I. Summary of the values of the five experimental param-
eters which limit the sensitivity of the experiment. Values obtained
with the prototype are compared to the target values of the final
design. The expected sensitivity, calculated from Eq. (36), is also
calculated using results of the prototype and for the final design.
The fourth column indicates the required sensitivity gain, for each
parameter and in total, to reach the DeLLight specifications. Note
that, in calculating the sensitivity gain when decreasing the probe
waist at focus, we assume a fixed pump waist at focus of 5 μm.
The spatial resolution and efficiency of the prototype correspond to
the values obtained with a region of interest wRoI = 0.8w, which
maximizes the figure of merit ξ (wRoI ) defined in Eq. (44).

DeLLight Sensitivity
Prototype goal gain

Spatial resolution σy 60 nm 10 nm 6
Efficiency εs 0.3 1.0 3
Extinction factor F 5 × 10−4 5 × 10−6 10
Focal length f 100 mm 500 mm 5
Probe waist at focus w0 25 μm 5 μm 47

n2 1σ -sensitivity 7.4 × 10−29 1.8 × 10−33 4 × 104

[cm2/W
√

Tobs(days)]

Therefore this measurement must be carried out at lower
pressure. This will be done in the near future in the vacuum
chamber, which is currently under development.

D. Current sensitivity of the prototype

The experimental parameters limiting the sensitivity of the
experiment, given by Eq. (36), are the spatial resolution σy,
the efficiency εs, the extinction factor F of the interferom-
eter, the focal length f for the focusing of the probe, and
the waist at focus w0 of the laser beam. The current values
of each parameter, obtained with the prototype, are summa-
rized in Table I. They are compared to the project goals,
which correspond to a 1-sigma sensitivity per square root
of number of days of measurement to detect the expected
QED vacuum nonlinear index n2,QED = 1.6 × 10−33 cm2/W
(as discussed in Sec. III D). The extrapolated sensitivity of
the current prototype is n2 = 7.4 × 10−29 cm2/W, about four
orders of magnitude above the expected QED signal. The
corresponding factor to be gained is also listed separately for
each parameter in the last column.

It is worth noting that, as discussed in the previous sections,
the listed parameters are actually correlated and limited by
two common experimental issues: the phase noise and the
beam pointing fluctuations, which must both be reduced by
a factor of 10 in order to reach the project goals. The phase
noise will be reduced thanks to the current development of
a beamsplitter, mirrors, and lenses with superpolished sur-
face qualities. The beam pointing fluctuations will be reduced
thanks to the installation of a beam stabilization system in the
LASERIX facility. Also the shot noise, which is the ultimate
limitation of the spatial resolution σy, will be reduced to the
project goal thanks to the use of a CCD camera with ten times
the full well capacity. Finally it is clear that the probe waist
at focus w0 is a key parameter since the sensitivity scales as
(w2

0 + W 2
0 )−3/2 (W0 being the waist of the pump at focus).

The diameter w of the collimated probe beam in the interfer-
ometer is inversely proportional to w0. Therefore, reducing w0

requires us to maintain the performances of the interferometer
with a larger beam diameter. For instance w � 25 mm for
w0 = 5 μm and a focal length f = 500 mm for the probe
beam. A possible approach to reduce by a factor of 2 the
diameter w of the probe beam, while maintaining a small
waist at focus, is to double the frequency of the incident laser
pulse, using second harmonic generation (from λ = 800 nm
to λ = 400 nm) before entering the interferometer.

V. CONCLUSION

Quantum electrodynamics predicts that the speed of light
in vacuum must be reduced when the vacuum is stressed
by intense electromagnetic fields. This has not yet been ob-
served and remains one of the most intriguing experimental
predictions of QED at macroscopic scales. To date, the most
sensitive tests involve the search for a nonlinear vacuum bire-
fringence induced by an external magnetic field.

In this article we have presented an experimental method
which directly exploits the change in the vacuum refractive
index, rather than the associated birefringence. The idea is
to measure the refraction of a focused probe laser pulse
crossing the transverse vacuum index gradient induced by a
focused intense pump pulse. The associated nonlinear index
is n2,QED = 1.6 × 10−33 cm2/W, as predicted by the Euler-
Heisenberg model of nonlinear electrodynamics derived from
QED. The DeLLight experiment has recently been installed
in the LASERIX facility at IJCLab, designed to deliver pulses
with energy of 2.5 J and durations 30 fs, at a repetition rate
of 10 Hz. We have shown that, if pump and probe are both
focused with a minimum waist of 5 μm (corresponding to
a maximum intensity of ∼3 × 1020 W/cm2), the expected
refraction angle is 0.13 prad. The refraction of the probe is
measured via a Sagnac interferometer, the signal correspond-
ing to a transverse displacement of the intensity profile in
the dark output of the interferometer. We have shown that
the interferometric method amplifies the signal by a factor
which scales as the inverse of the square root of the extinction
factor F . If F = 0.5 × 10−5, the measured displacement is
amplified by a factor of 250 and is calculated to be about 15
pm when using a focal length of 500 mm for the focusing of
the probe. The signal of displacement is measured by alter-
nating laser shots with and without interactions between the
pump and the probe pulse (ON and OFF measurements), and
by calculating the ON-OFF signal. We have shown that this
signal can be detected with LASERIX at a 5-sigma confidence
level with about one month of collected data if we maintain a
spatial resolution of σy = 10 nm for measuring the barycenter
of the intensity profile. This corresponds to the typical lowest
shot noise of the current available CCD camera.

The DeLLight experiment will be run in a first phase,
using the LASERIX facility operating at around 80 TW. For a
second phase, the experiment could be run using more intense
PW or multi-PW lasers coming to operation. As shown in
Eq. (36), the sensitivity of the experiment is proportional to
the energy of the laser pulses and, for a given duration of
measurement, proportional to the square root of the repetition
rate of the laser shots. Thus a very suitable laser is the L3
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(a) (b)

FIG. 14. Adopted coordinate system. (a) In an inertial coordinate
system which is fixed with respect to the laboratory, the wave vectors
of pump and probe together span the xz plane, and each makes an
angle of θtilt/2 with the z axis. The total tilt angle between the two
wave vectors is of course θtilt . (b) Calculating the barycenter shift
is most easily done in a coordinate system which is attached to
the probe, related to that in (a) by subtracting the velocity of the
probe. In this coordinate system, the probe is of course stationary,
while the pump moves towards it in the z direction at a velocity
u′ = 2 c cos(θtilt/2).

laser system named HAPLS (high-repetition-rate advanced
petawatt laser system) [31] installed at the ELI-Beamlines
Center (Czech Republic), which is designed to deliver pulses
with energy of at least 30 J and duration 30 fs (1 PW) at a
repetition rate of 10 Hz. Using the HAPLS laser, the DeLLight
displacement signal is expected to be about 0.2 nm, 12 times
larger than the expected signal with LASERIX, and could
be detected at 5-sigma in only 6 h of collected data. Other
lasers coming to operation, as ELI-NP facility (Romania) [32]
or SULF facility (China) [33], will deliver 10 PW pulses at

1 shot/min (0.017 mHz). With this intensity, the DeLLight
signal is expected to be on the order of 1 nm. However,
because of their very small repetition rate, the achievable sen-
sitivity is slightly lower than that achievable with HAPLS, and
the drift noise (which is inversely proportional to the repetition
rate) becomes almost three order of magnitude larger.

A first Sagnac interferometer has been developed in the
LASERIX facility and we have measured the critical pa-
rameters (in addition to the laser intensity), which are the
extinction of the interferometer, the spatial resolution, and the
transverse size of the focused pulses in the interferometer.
The achieved sensitivity of this first prototype is about four
orders of magnitude above the sensitivity goal. However, these
results have been obtained with a precursory setup, and it is
shown that the final DeLLight specifications can be achieved
by improving the surface quality of the optics, by improving
the stability of the beam and its focus quality, and by using
CCD cameras with the best available charge storage capacity
per unit surface.
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APPENDIX: ACCOUNTING FOR A NONZERO
TILT ANGLE

In this Appendix we generalize the calculation presented
in Sec. III B to one in which the tilt angle θtilt between the
trajectories of pump and probe is nonzero.

Let us symmetrize the descriptions of pump and probe by
using coordinates in which each of them has a trajectory at
angle θtilt/2 with respect to the z axis (see Fig. 14). Consider
first the intensity profile of the probe. With respect to the
profile in the “old” coordinates:

Iprobe(x, y, z) = Iin exp

(
−2

x2

w2
0

− 2
y2

w2
0

− 2
z2

w2
z

)
, (A1)

we effectively make a rotation of the form x →
x cos(θtilt/2) + z sin(θtilt/2) and z → z cos(θtilt/2) −
x sin(θtilt/2), so that we have instead:

Iprobe(x, y, z) = Iin exp

(
−2

[x cos(θtilt/2) + z sin(θtilt/2)]2

w2
0

)
exp

(
−2

y2

w2
0

)
exp

(
−2

[z cos(θtilt/2) − x sin(θtilt/2)]2

w2
z

)
. (A2)

The transformation of the pump profile behaves analogously, the only differences being:
(1) The occurrence of the impact parameter b, so that the exponential in y becomes exp[−2(y − b)2/W 2

0 ]; and
(2) the rotation by θtilt/2 occurring in the opposite direction, so that, in effect, the terms in sin(θtilt/2) change sign.
By completing the square in z, Eq. (A2) can be rewritten in the form

Iprobe(x, y, z) = Iin exp

[
−2

w2
0cos2 θtilt

2 + w2
z sin2 θtilt

2

w2
0w

2
z

(
z + cos θtilt

2 sin θtilt
2

(
w2

0 − w2
z

)
w2

0cos2 θtilt
2 + w2

z sin2 θtilt
2

x

)2]

×exp

(
−2

y2

w2
0

)
exp

(
−2

x2

w2
0cos2 θtilt

2 + w2
z sin2 θtilt

2

)
(A3)

and similarly for δn(x, y, z).
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So far we have considered only the spatial profiles of the
two pulses. Let us now consider how these vary in time. We
assume, as before, that the interaction region is short enough
that there is no significant divergence of the pulses, and that
they vary in time only on account of their propagation in space
at a constant velocity. In the laboratory frame, these velocities
have magnitude c and are aligned with the pulse axes; more
precisely, they are, in the (x, y, z)-coordinate system,

upump = c

(
−sin

θtilt

2
, 0, cos

θtilt

2

)
,

uprobe = c

(
−sin

θtilt

2
, 0,−cos

θtilt

2

)
. (A4)

It is, however, more convenient to use a coordinate system
that is attached to the probe, so that each position r′ = r −
uprobet corresponds to a fixed point within the probe pulse.
Then only the pump pulse and its associated index variation δn
are actually moving, and its velocity in this coordinate system
will be

u′
pump = upump − uprobe = 2c cos

θtilt

2
ẑ. (A5)

In this coordinate system, the infinitesimal distance traveled
by a ray within the probe becomes simply c dt , and so Fer-
mat’s principle of Eq. (4) becomes

dθy

dt
= c ∂y[δn(r′ − u′t )], (A6)

which upon integration gives

δθy(r′) = c ∂y

[∫ +∞

−∞
δn(r′ − u′t ) dt

]

= c

|u′| ∂y

[∫ +∞

−∞
δn(x, y, z′ − Z ) dZ

]
, (A7)

where in the last equality we have used the integration vari-
able Z = |u′|t . Note that the factor of 1/|u′| accounts for
the interaction time between the two pulses, generating the
1/cos(θtilt/2) factor that leads to a third power in the nu-
merator of rtilt [see Eq. (14)] instead of the fourth power
characterizing the nonlinear index [see Eq. (1)].

From Eq. (A7) we see that, as before, we can integrate
directly over Z and that δθy is a function only of x and y.
Performing this integration, we have

δθy(x, y) = ∂y

⎡
⎣ δnmax

2 cos θtilt
2

√
π

2

W0Wz√
W 2

0 cos2 θtilt
2 + W 2

z sin2 θtilt
2

exp

(
−2

y2

W 2
0

)
exp

(
− 2

x2

W 2
0 cos2 θtilt

2 + W 2
z sin2 θtilt

2

)⎤
⎦. (A8)

We now wish simply to write δnmax in terms of the energy and the dimensions of the pump pulse. Using Eq. (1) and the Gaussian
profile of the pulse, we have

δnmax = n2,max c cos4 θtilt

2

(
2

π

)3/2 E
W 2

0 Wz
, (A9)

and so

δθy(x, y) = ∂y

⎡
⎣ 1

π
c n2,max cos3 θtilt

2

E
W0

1√
W 2

0 cos2 θtilt
2 + W 2

z sin2 θtilt
2

exp

(
−2

(y − b)2

W 2
0

)
exp

(
−2

x2

W 2
0 cos2 θtilt

2 + W 2
z sin2 θtilt

2

)⎤
⎦.

(A10)

The last step is to average δθy(x, y) over all x and y, using
Iprobe as a weighting function. Once again, the integral over
z in the numerator is canceled by the same integral in the
denominator, so we can ignore the exponential factor in z and
consider only those in x and y, i.e., we calculate

〈δθy〉 =
∫∫

dx dy δθy(x, y) I ′
probe(x, y)∫∫

dx dy I ′
probe(x, y)

, (A11)

where we have defined

I ′
probe(x, y) = Iin exp

(
−2

y2

w2
0

)

×exp

(
−2

x2

w2
0cos2 θtilt

2 + w2
z sin2 θtilt

2

)
. (A12)

The y integral is decoupled from the rotation in the xz plane,
and therefore works out exactly as before. Only the x integral

is altered by θtilt . The result is

〈δθy〉 = c n2,max

4π
√

e

E
b3

opt

rtilt
b

bopt
exp

{
1

2

[
1 −

(
b

bopt

)2]}
,

(A13)
where we have defined

bopt = 1

2

√
W 2

0 + w2
0 (A14)

and

rtilt = cos3
(

θtilt
2

)
√

1 + (R2 − 1) sin2
(

θtilt
2

) , R2 = W 2
z + w2

z

W 2
0 + w2

0

. (A15)
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