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Coupling of electrodynamic fields to vibrational modes in helical structures
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Helical structures like alpha helices, DNA, and microtubules have profound importance in biology. It has been
suggested that these periodic arrangements of constituent units could support collective excitations similarly to
crystalline solids. Here, we examine the interaction between such constructs and oscillating dipoles, and evaluate
the role of the helicity in the coupling between electrodynamic fields and vibrations. Based on vibrational and
eigenfunction analyses we identify a group of modes of coherent oscillations that give rise to a strong and
delocalized response, selectivity in frequency, and a typical interaction range. To describe the field scattering
due to the structure vibrations we consider an anisotropic permittivity with a helical periodicity, which applies
to all vibration types and close dipole locations. The type of resonances identified here may help explain the role
of electrodynamic fields in the diverse functionality of cytoskeletal microtubules in the cellular environment.
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I. INTRODUCTION

Microtubules (MTs) are tubular helical structures that self-
assemble from their constituent tubulin-protein units. MTs
are critical for the development and maintenance of the cell
shape, transport of vesicles, and other components throughout
cells, cell signaling, and mitosis. Tubulins have a large dipole
moment [1–4] and it was conjectured that MT vibrations could
generate an electric field in its vicinity [5–7], also beyond
the typical Coulomb and van der Waals range. This process
can be powered by Guanosine triphosphate (GTP) hydrolysis,
motor proteins that move along the MT, and mitochondria
energy release [6]. MTs were also analyzed in the context
of robust-edge topological vibrational modes [8], vibrational
modes of hollow cylinders, and two-dimensional crystal lat-
tices [9,10]. Recently, their three-dimensional mechanical
vibrations were calculated numerically using a molecular
structural-mechanics model [11] and their acoustic modes
were measured experimentally under the assumption of ther-
mal equilibrium [12]. Importantly, alternating electric fields
were shown to inhibit cancerous cell growth by an anti-MT
mechanism [13].

MTs have a highly regular helical shape that is rare in
nature, similarly to carbon nanotubes [14]. Their constituent
units are identical, even more than in DNA and alpha helices,
whose elementary units have different residues. In addition,
the MT structure appears like a shifted crystal, which may
give rise to axial propagation of vibrations. It is certainly of
interest to understand how this exquisite geometry may affect
oscillatory phenomena of MTs such as vibrations and electro-
magnetic (EM) excitations. In a broader sense, one can ask
if these properties are critical for the diverse functionality of
MTs in biology. Of particular interest would be to understand
the interaction with surrounding molecules and if the modes
have a particular extent and frequency properties.

In the following, we answer these questions to some extent.
We first analyze vibrations in a helical structure by employ-
ing a top-view model that describes accurately macroscopic

vibrations of complex structures. We then develop an eigen-
function analysis [15–18] for the vibrational-mode-mediated
interaction between a MT and an oscillating electric dipole in
a host medium. To that end, we consider an infinitely long
dielectric structure in a uniform medium, which applies to
MTs and DNAs that have a persistence length much larger
than the radius and is an approximation for alpha helices that
have a persistence length of 1 nm and a radius of 2.3 Å [19].
The dielectric structure consists of units disposed in a helical
arrangement that can vibrate in a collective manner and have
internal vibrational and electronic excitations. We will focus
on properties that arise from the helical arrangement, and even
though the units in MTs, DNAs, and alpha helices are differ-
ent, the analysis should apply to most cases. In addition, while
the structure vibrations can be damped by the medium, the
vibrations of a cylindrical-shell-medium system can behave
similarly to a free shell in a range of spatial frequencies [9].
A dipole in proximity to this structure emits radiation with
a wavelength λ = 2πc/ω � l , where l is the typical length
scale, and therefore the interaction can be analyzed in the
quasistatic approximation [20]. In this regime, the electric and
magnetic fields are decoupled and the electric field, which os-
cillates in time, obeys Poisson’s equation [15–17]. We derive
eigenfunctions that express the scattering of the electric field
due to the vibrations. To describe this interaction, we define
the MT as an inclusion with a permittivity ε

↔
1(ω, r) that is

anisotropic and periodic along a helical orbit, and the host
medium with a permittivity ε2(ω), assuming ω > 250 MHz,
in which ionic screening is negligible [2].

II. RELATING THE VIBRATIONS TO THE
INCOMING-FIELD MODES

We consider a dipole that emits radiation, which impinges
on the helical structure. In the near field, the dominant spatial
frequencies of the emitted field correspond to wavelengths on
the order of the distance from the dipole [17,21]. We define the
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FIG. 1. The physical system: an oscillating dipole emitting elec-
tromagnetic field is in proximity to a microtubule. Part of the electric
field couples to vibrational modes in the microtubule (a). The cou-
pled field can be in a helical arrangement (b) or standard longitudinal
arrangement (constant when varying the azimuthal angle) (c). In
response to the field, the tubulins deform and translate such that they
move synchronously (d) or asynchronously (e).

incoming field Einc as the dipole field in a uniform ε2 medium
[15–17]. While this field is usually described with respect to
the dipole position, we utilize its expansion with respect to the
structure axis to relate it to the structure vibrations. We con-
sider the case in which laterally adjacent units move together,
which for an axially shifted crystal results in that axial chain
behaves as a one-dimensional (1D) crystal. To impose this
movement, we require Einc to be symmetric to a continuous
translation along a helical orbit. This situation is illustrated in
Fig. 1(a) for the case of a MT, in which the tubulin dimers
are disposed in a helical arrangement. The electric fields in
helical and longitudinal configurations are shown in Figs. 1(b)
and 1(c). As a result, the tubulin units can change their size
and move as suggested in Figs. 1(d) and 1(e), respectively.
In a helical-field arrangement, laterally adjacent units move
together [Fig. 1(d)]. The movement where the adjacent tubu-
lins are not aligned as shown in Fig. 1(e) is assumed to be
less favorable energetically. Imposing this symmetry on Einc

inside the structure results in (see Appendix A)

Einc(φ, z, ρ) ∝ exp [im(φ − kzz)] (1)

where m is an integer number; kz = 2π/a; a is the helical-
orbit axial period; and φ, z, ρ are cylindrical-coordinates
variables. In these field modes, the k and m degrees of
freedom are related by k = mkz, which, if the medium
responds strongly to them, implies selectivity in k and ω.
Clearly, the high-m modes have high spatial frequencies and
can be dominant only for close dipole locations. In addition,
invariance of Einc to discrete lateral translations along the
helix results in the same field distribution in each constituent
unit and a coordinated movement. Such modes have high spa-
tial frequencies kzn, where n is the number of units per helical
round. These modes can be excited when the dipole is very
close to the helical structure (typical interaction distance is
2π/kzn) and the field impinging on the structure has very high
spatial frequencies. This situation is similar to the simpler
case of the electrostatic field generated by charges in a helical
arrangement with a uniform-inclusion permittivity [22].

III. VIBRATIONAL-MODE ANALYSIS

Having analyzed the coupling of incoming EM fields to
synchronous vibrations, we examine now in more detail the
vibrations in the helical structure. We first consider the forms
of vibration. Radial movements are expected to be damped
[6] since they involve movements of a relatively large volume
of liquid. While vibrations of a helical structure are different
from vibrations of a spring, a spiral motion may also be less
favorable mechanically since it involves movements of long
helical chains. Moreover, in the context of MTs, the azimuthal
dipole moment is small [6] and in a recent work torsion was
found to be insignificant [11]. We will therefore focus on axial
vibrations.

We now analyze classically the vibrational modes that can
be excited by the incoming field and generate field. For 1D
crystals, such a treatment agrees with the quantum analysis
[23]. We consider the coupling of vibrations also to field
components with kc � ω that are almost static [24]. While in-
teraction of the near field with a crystal was analyzed for ka �
1 [25,26], we extend it to ka � 1. When vibrational modes
and the electric field are coupled they have the same ω and k,
and at low and high k, ω(k) of one of the polaritons and the
uncoupled vibrational mode are similar [23]. We also show
that in our case the 1D crystal symmetry k → k + kz [23] is
not satisfied. We consider a structure comprising two types of
units with masses m1, m2 connected by springs k1, k2, k3, k4

as shown in Fig. 2(b). Denoting the axial displacements of
m1,2 and the indices of the axial and lateral shifts by u1,2 and
s, q, respectively, and assuming u1,2 = a1,2eikz+imφ , we write
the equations of motion (EOMs)

−ω2m1u1sq = k1(u2sq − u1sq ) − k2(u1sq − u2s−1q ) − k3(u1sq − u1sq+1) − k3(u1sq − u1sq−1),

−ω2m2u2sq = k2(u1s+1q − u2sq ) − k1(u2sq − u1sq ) − k4(u2sq − u2sq+1) − k4(u2sq − u2sq−1), (2)(−ω2m1 + k1 + k2 + 4k3 sin2 [(ka/n − 2πm/n)/2] −(k2e−ika + k1)

−(k2eika + k1) −ω2m1 + k1 + k2 + 4k4 sin2 [(ka/n − 2πm/n)/2]

)(
u1

u2

)
=
(

0

0

)
.

(3)
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This 1D description enables us to analyze the behavior of the
system in the axial axis while accounting implicitly for the lat-
eral interactions in the terms with k3, k4. These diagonal terms
with k3, k4 restrain the movements of m1, m2 to their sites as in
a local oscillator and vanish for the helical functions satisfying
k = mkz [see Eq. (1)]. These interactions are associated with
propagation of axial movements along a helical orbit similarly
to an infinite chain of identical particles [23].

For the k = mkz modes since u1s,q+1 = u1s,qei(ka/n−2πm/n),
laterally adjacent units oscillate in phase and form a standing
wave, resulting in super-radiance and strong scattering in
some cases (see Refs. [27,28] and p. 102 in Ref. [23]). In
more complex structures the identical atoms and therefore
the centers of mass of all the units move together, which
relates this type of model also to low ω and large mass
vibrations. Equation (3) can be written as Au = ω2u, where
A is a Hermitian matrix and therefore diagonalizable. Since
ω2 is real and positive, we obtain real ω(k), which means that
the modes are delocalized. We now consider the response at
a given k and therefore analyze the EOMs at this k. When
anharmonicity or dissipation is incorporated, the matrix
formulation and Hermiticity do not hold and localization
can arise. We introduce anharmonicity in the axial forces
between lateral units due to the alignment shift of the
units upon movement. The sum of these (second-order) forces
∝ u2

1sq{1 − 2 cos (ka/n − 2πm/n) + cos [2(ka/n − 2πm/n)]}
and translates to an on-site term. For the k = mkz modes
these forces vanish and the u1 − u2 coupling terms are
maximal. Moving away from k = mkz increases the ratio
of anharmonicity to dispersion, leading to a more localized
response, similarly to interacting diatomic molecules with
internal anharmonicity [29,30] (see Appendix B1). In
Appendix B2 we perform a similar analysis for two helical
structures without axial periodicity and axial interactions
and obtain similar properties. Such properties were recently
observed in DNA [31]. We also analyze the effect of
dissipation by introducing γ u̇1,2 terms, which shows that
Re[ω(k)] is hardly affected and Im[ω(k)] is constant at
all ks, except at large γ s that suppress the acoustic modes
(Appendix B3). Since we consider axial vibrations and in
Ref. [9] the vibrations of a cylindrical-shell-water system
behave similarly to a free shell for our m � 1 modes, we
assume that anharmonicity is a more dominant effect at least
for the optical modes.

Interestingly, the α, β units of the MT have electrical
charges with the same sign [1]. This may imply that “acoustic”
modes, for which adjacent units move together [23], generate
current and couple to the electric field along with optical
modes. From Eq. (3) we calculate ω(k) for the acoustic and
optical modes. We find that the k = mkz modes have the same
ω(k) of a 1D crystal [see Fig. 2(c) and Supplemental Material
[32]] in agreement with the previous analysis in Eq. (1). In
addition, one can substitute ωT → ω(k) in the expression for
ε [23] and obtain ε(ω, k) = 1 + 4πNq2/[mr (ω2(k) − ω2)],
where q is the charge, mr is the reduced mass, and N is the
charge concentration.

Moreover, the k = mkz field modes have the same potential
distribution in each dimer and for a fixed dimer length (corre-
sponds to internal vibrations or acoustic modes) the dimers
can be treated as noninteracting also in the axial axis that

FIG. 2. Vibrational-mode analysis for a helical structure. The il-
lustrations show that when varying the field along a helical trajectory,
the field coincides with its initial state for k = kzm, implying that
these modes are allowed when requiring decoupling between the ax-
ial protofilaments (a). The structure is composed of two units denoted
by α, β with masses m1, m2 connected with springs k1, k2, k3, k4 (b).
ω(k) is shown for the acoustic and optical m = 1 helix and 1D crystal
modes. The MT parameters are m1 = m2 = 0.9 × 10−22 (kg), k1 =
8, k2 = 1, k3 = k4 = 2 (N/m), n = 13, where k4 is of the order of
magnitude of the value in Ref. [10] (c).

may result in a similar spectrum for a dimer and the structure,
which agrees with Ref. [33].

IV. QUANTITATIVE ANALYSIS OF THE
DIPOLE-STRUCTURE INTERACTION

Having described the vibrational modes of the helical
structure, we now examine the scattering of the electric field
due to these vibrations. To this end, we will use the eigenstates
ψk of the quasielectrostatic potential. In a composite medium
ψk represents the potential of a field that exists without a
source for an inclusion eigenpermittivity ε1k . ψks can be used
to expand the scattered electric field ψsc, which is generated
due to the existence of the inclusion. In turn, ε1ks are calcu-
lated by imposing field boundary conditions and depend on
the inclusion geometry. For propagating waves, this requires
gain and constructive interference as in a laser. However,
for evanescent waves ε1ks are real and can be reached more
naturally. When the inclusion permittivity ε1 ≈ ε1k , a physical
resonance occurs and the system responds resonantly [15–17].

Let us describe ψsc for an anisotropic inclusion permittivity
with a helical periodicity, which enables us to account for
surface roughness. We first associate the permittivity tensor to
axial vibrations by considering an anisotropic inclusion with
an axial permittivity εz(r) and ερ = εφ = ε2. We then utilize
the structure symmetries to analyze a permittivity with helical
periodicity. In crystals, the permittivity is usually expanded
in a Fourier series and it couples each field mode with the
modes with k + Gn, where Gn is a reciprocal-lattice vector,
and there is an effective ε

↔
1(ω, k) that describes the ω, k

response to an excitation at ω, k [15,20,24,34–39]. In our
case, the symmetry to discrete translations defines the k =
mkz and nkz modes that represent the “dc” and higher-order
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Fourier components, respectively. Thus, the coupling is to
modes with integer multiples of (�m,�k) = (1, kz ) and
�k = nkz apart. This form of ε

↔
1(ω, k) is justified for the MT

because λ/a � 1 and ρext (ω) = 0, Jext (ω) = 0 inside the in-
clusion, since the charges oscillate only in response to external
excitations [24,40,41].

We now turn to the quantitative analysis of the
dipole-helical structure interaction. In Appendix C
we show that for εz(k) and ερ = εφ = ε2 the amplitude
of ψk in the expansion of ψsc, Ckω ∝ [ε2(ω) − ε1z(k, ω)]/
[ε1zk − ε1z(k, ω)]

∫
θ1dr∂ψ∗

k /∂zE inc
kz , where θ1 = 1 in the ε1

volume, and therefore E inc
k results in a contribution of ψk

with the same k in the expansion. Thus, we write the ψms that
describe the spatial dependency of ψsc due to the k = mkz

vibrations:

ψm = eim(φ−kzz)

⎧⎨
⎩

A1mKm(mkzρ) ρ > ρ2

A2mIm + A3mKm ρ1 < ρ < ρ2

A4mIm(mkzρ) ρ < ρ1

, (4)

where ρ1 and ρ2 are the internal and external inclusion radii,
and Km and Im are the modified Bessel functions. We then
solve Laplace’s equation in cylindrical coordinates in ρ1 <

ρ < ρ2 to find the argument of the functions

ε2
1

ρ

∂

∂ρ

(
ρ

∂ψm

∂ρ

)
− ε2m2 1

ρ2
ψm − k2

z m2εzmψm = 0, (5)

and obtain Im(mkz
√

ε1zm/ε2ρ) and Km(mkz
√

ε1zm/ε2ρ). To
simplify Ckω we show in Appendix C that the integral
in Ckω ∝ ε2(ω)/(ε2(ω) − ε1zk)∇ψ∗

k (r0) · p, where p is the
dipole moment, and r0 is the dipole location.

Let us now analyze the scaling of ψm for small and large
ρs. We first observe that the m = 0 mode is constant every-
where and can therefore be omitted. This mode is, however,
relevant in the far field. For an infinite cylinder, when k =
m = 0 and ρ2 � λ, it has the form outside the structure for
kρ � 1 of ETM

z,m=0 ∝ √
k0/ρei(k0ρ−π/4), where k0 = ω/c [42].

Interestingly, this mode extends far from the helical structure
and scales as

√
k/ρ. Now we examine the scaling of the m � 1

modes. For ρ � a, Km�1(mkzρ) → 1√
2mkz

√
π
ρ

e−mkzρ , which

means that the typical interaction distance for a dipole is of the
order of a from the structure. Inside the MT the modes scale
as limρ→0 Im(mkzρ) ∝ ( mkzρ

2 )
m

. Importantly, these modes are
discrete and are dominated by the m = 1 mode for ρ0 − ρ2 �
a/2, where ρ0 is the dipole radius. This means that the re-
sponse of these modes is highly selective in k. For ρ0 − ρ2 �
a/2 the m = 1 mode is excited by the dipole and couples to
the high-order modes that have a negligible effect at ρ = ρ0

and we can consider approximately only this mode.
In Fig. 3 we present the radial dependence of the first

modes outside a MT. The modes have a typical interaction
distance of the size of a = 8 nm, which is larger than the
Debye distance of 1 nm [2], and the m = 1 mode dominates
at large distances. These functions have m in the radial argu-
ment unlike the standard cylindrical modes. Two isopotential
surfaces of ψm=1(r) outside the helical structure are shown in
the inset.

To obtain the eigenpermittivities we impose the field
boundary conditions (see Appendix C). We also calculate
Em�1 and find that Ez > Eρ > Eφ , which means that the

FIG. 3. Normalized Km(mkzρ ) outside the microtubule. The in-
teraction distance is of the order of a. Inset: Two isopotential surfaces
of ψm=1(r) = ±0.1 extending to a radius of about 18 nm.

dipole tends to align almost parallel to the helical structure
(see Appendix D).

The resonances are approached when ε1zk ≈ ε1z(k, ω1),
where ω1 is a resonance frequency. Delocalization of modes
implies Im(ωk ) ≈ 0 and hence Re[ε1z(k, ω)] that spans over a
large range of values. Therefore, close to k = mkz the system
is likely to be at a resonance at ω1 � ωk=mkz . When exciting
at ω1 there can be a strong and collective response [43] of
the helical structure that may affect the MT functionality. For
resonances in nanotubes [44] and additional types of struc-
tures [45–48]. ε1zk depends on the structure dimensions and
ε1zk (ω) depends on the internal interactions. Hence, ω1 may
enable us to distinguish between different helical structures.

The phenomena associated with the helical structure are
both in the near and far fields (for m � 1 and m = 0, respec-
tively). They can be observed by absorption spectroscopy [49]
with an incoming field polarized along the axial axis [50],
by Raman spectroscopy [51], or, indirectly, by conductivity
measurements [33].

V. SUMMARY

In conclusion, we studied the coupling between EM fields
and vibrational modes in a helical crystal structure by ana-
lyzing the bulk and geometric properties of the structure. In
particular, we examined the interaction of the structure and
oscillating dipole, which emits field components also beyond
the first Brillouin zone. We identified a group of discrete
modes of in-phase oscillations that give rise to a delocalized
response and selectivity in ω and k. We note that in a recent
experiment coherent and delocalized response was observed
in DNA [31]. We found that the first mode is long range
and scales as 1/

√
ρ while the other modes are quasistatic

and have typical interaction distances characterized by the
helical-orbit axial period. The fact that the spatial distribu-
tion of the m = 1 mode correlates with the constituent units
may imply spatial selectivity, which can be relevant for pro-
cesses like self-assembly and induced polymerization. Finally,
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similar phenomena may arise in other physical systems where
the constituent units are self-assembled [52].
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APPENDIX A: THE FORM OF THE INCOMING FIELD

When the system size l , which is determined by the inclu-
sion radius and the dipole-inclusion distance, is much smaller
than the far-field wavelength λ, ∇ × E ≈ 0. Thus, E is de-
coupled from the magnetic field and can be approximated by
Poisson’s equation. We consider a two-constituent medium
composed of a helical structure, which we regard as the in-
clusion and a host medium. We then define the incoming
field E inc as the dipole field in the host medium. We utilize
the expansion of E inc with respect to the structure’s axis us-
ing cylindrical vector harmonics in order to relate it to the
structure’s vibrations. A field that is constant along a helical
orbit results in synchronous oscillation of laterally adjacent
units. In the case of an axially periodic structure such as the
microtubule, the protofilaments behave as 1D crystals, or, in
other words, the protofilaments are noninteracting. We impose
that E inc is symmetric to a continuous translation along the
helical orbit and obtain inside the inclusion volume

E inc ,m ∝ eim(φ−kzz), E inc ,m ≈ −∇ψinc ,m

⇒ ψinc ,m ∝ eim(φ−kzz),

∇vψinc ,m = v · ∇ψinc ,m

= − i√
(ρkz )2 + 1

(ρkz, 1) · (m/ρ,−mkz )eim(φ−kzz)

= 0,

where φ, z, and ρ are cylindrical coordinates variables; kz =
2π/a; and a is the helical-orbit axial period. When the dipole
is very close to the helical structure, the field impinging on the
microtubule has very high spatial frequencies and it excites
additional modes that correspond to coordinated movement
and encode the arrangement of the constituent units. These
field modes have the relation for the axial index k = pnkz,
where p is an integer number and n is the number of units
per helical round. Note that this form of the field agrees
with the form of a subgroup of terms in a simpler case of
the electrostatic potential generated by charges in a helical
arrangement in DNA. Our case is much more complex as
the inclusion is an anisotropic (and charge-free) medium that
is composed of many atoms and we consider excitations of
vibrations by electrodynamic field [21].

APPENDIX B: VIBRATIONAL-MODE ANALYSIS

1. Delocalization analysis

The equations of motion [see Eq. (3) in the main text] can
be written as

({k1 + k2 + 4k3 sin2 [(ka/n − 2πm/n)/2]}/m1 −(k2e−ika + k1)/m1

−(k2eika + k1)/m2 {k1 + k2 + 4k4 sin2 [(ka/n − 2πm/n)/2]}/m2

)(
u1

u2

)
= ω2

(
u1

u2

)
.

This matrix is Hermitian and therefore diagonalizable and has real eigenvalues. Since the eigenvalue is ω2 and we are interested
that ω will be real, we will prove that the matrix is positive semidefinite so that ω2

n � 0. For m1 = m2 we omit the mass and write

(u∗
1 u∗

2 )

({k1 + k2 + 4k3 sin2 [(ka/n − 2πm/n)/2]} −(k2e−ika + k1)
−(k2eika + k1) {k1 + k2 + 4k4 sin2 [(ka/n − 2πm/n)/2]}

)(
u1

u2

)

= (u∗
1 u∗

2 )

(
u1{k1 + k2 + 4k3 sin2 [(ka/n − 2πm/n)/2]} − u2(k2e−ika + k1)
−u1(k2eika + k1) + u2{k1 + k2 + 4k4 sin2 [(ka/n − 2πm/n)/2]}

)

= k1|u1 − u2|2 + k2|u1eika − u2|2 + 4(k3|u1|2 + k4|u2|2) sin2 [(ka/n − 2πm/n)/2] � 0.

This indicates that we can write ω(k) with real ω or k and
therefore the modes are delocalized. We have also verified
that ω(k)2 � 0 for m1 
= m2 for several values from the an-
alytical solution of Eq. (3) in the main text. We consider an
external excitation and an excited vibrational mode at ω, k
and we therefore need to consider the EOMs at these ω, k.
When introducing on-site anharmonicity or dissipation, local-
ization can arise since the operator can no longer be written
in this form or becomes non-Hermitian. When increasing
the dispersion or coupling between u1 and u2, it increases
the delocalization of the mode [29,30] (these terms are also
compatible with Hermiticity). Since the lateral alignment of

the units changes upon axial-distance change, it results in
different interactions and asymmetric potential (see Fig. 4).
We therefore introduce the second-order quadratic force to
account for the anharmonicity:

F1 = −k3an(u1sq − u1s,q+1)2 − k3an(u1sq − u1s,q−1)2

= −k3anu2
1sq(1 − ei(ka/n−2πm/n) )2

−k3anu2
1sq(1 − e−i(ka/n−2πm/n) )2

= −2k3anu2
1sq{1 − 2 cos (ka/n − 2πm/n)

+ cos [2(ka/n − 2πm/n)]}.
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FIG. 4. Axial locations of the lateral units in the two states of the
right unit, indicating different interactions and anharmonic potential.

This force translates to an on-site anharmonicity and van-
ishes for the k = mkz modes. For these modes the u1 − u2

coupling terms are also maximal. Moving away from these
modes increases the ratio of anharmonicity to dispersion,
which is associated with localization of modes. The potential
now has the same form of the potentials in Refs. [29,30],
in which it was shown that phonons become localized when
increasing the ratio of the on-site anharmonicity to dispersion
or coupling between sites.

2. Dispersion relation for two helical structures without
periodicity and axial interactions

In this section we analyze ω(k) for helical structures with-
out axial interactions and axial periodicity.

a. Helix of alternating α, β units without axial interactions

First we analyze ω(k) for a helix of alternating units with-
out axial interaction [Fig. 5(a)].

We write the EOMs

−ω2m1u1sq = −k1(u1sq − u2s,q+1) − k1(u1sq − u2,sq−1),

−ω2m2u2sq = −k1(u2sq − u1s,q+1) − k1(u2sq − u1,sq−1),

which translate to

−ω2m1u1sq + 2k1[u1sq + u2sq cos (ka/n − 2πm/n)] = 0,

−ω2m2u2sq + 2k1[u2sq + u1sq cos (ka/n − 2πm/n)] = 0,

FIG. 5. Two helical structures without axial interactions and ax-
ial periodicity.

and the matrix form( −ω2m1 + 2k1 2k1 cos (ka/n − 2πm/n)
2k1 cos (ka/n − 2πm/n) −ω2m2 + 2k1

)(
u1sq

u2sq

)

=
(

0
0

)
.

It can be seen that there is strong dispersion in the k = mkz

eigenmodes (associated with delocalization). We write the
dispersion relation

m1m2ω
4 − 2k1ω

2(m1+m2)+4k2
1 sin2 (ka/n − 2πm/n) = 0.

From the analogy to a 1D crystal of two particles [23] we
observe an in-phase oscillation in the k = mkz eigenmodes.
DNA requires us also to introduce a second helix and impose
that the sites that interact (base pair) will have the same poten-
tial distribution with corresponding modes such as m = 0, 2,
etc.

b. Vertical dimers disposed in a helical structure without
axial interactions and periodicity

We also consider the model of Fig. 2 in the main text with-
out axial interaction between the dimers and without requiring
periodicity along the helix [see Fig. 5(b)]. We write the EOMs
in a matrix

(−ω2m1 + k1 + 4k3 sin2 [(ka/n − 2πm/n)/2] −k1

−k1 −ω2m2 + k1 + 4k3 sin2 [(ka/n − 2πm/n)/2]

)(
u1sq

u2sq

)
=
(

0
0

)
,

from which we obtain the dispersion relation for the k = mkz

modes:

(−ω2
k=mkz

m1 + k1
)(−ω2

k=mkz
m2 + k1

)− k2
1 = 0,

ω2
k=mkz

[
m1m2ω

2
k=mkz

− k1(m1 + m2)
] = 0,

ω2
k=mkz

= k1
m1 + m2

m1m2
, 0.

We substitute ω2
k=mkz

= k1
m1+m2
m1m2

and get

(
−k1

m1 + m2

m1m2
m1 + k1

)
u1sq − k1u2sq = 0,

−k1

(m1

m2

)
u1sq − k1u2sq = 0,

u2sq = −
(m1

m2

)
u1sq.
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(a)

(b)

FIG. 6. ω(k) of the optical (a) and acoustical (b) modes for γ =
0.2 (kg/s).

Here we see that the k = mkz modes have the same
in-phase oscillations (see Supplemental Material [32]) and
behavior associated with the anharmonicity. Note that while
in this case the propagation of the vibrations is via the helix,
the mathematical structure is similar to Eq. (3) in the main text
and we can therefore analyze it in the same manner.

3. Incorporating dissipation to the vibrational-mode analysis

We incorporated dissipation in our model [Fig. 2(b) in
the main text] by introducing to Eq. (2) in the main text
the terms γ u̇1,2. We first substituted γ = 0, required that the
determinant of the matrix will be equal to zero, and calculated
numerically the dispersion relation to verify that it agrees with
the analytic calculation. We then calculated numerically ω(k)
for the optical and acoustic modes where γ = 0.2 (kg/s) and
m1 = m2 = 1(kg) for simplicity. By calculating the modes at
various γ values we observed that Re[ω(k)] is hardly affected
and Im[ω(k)] is constant except at large γ values that suppress
the acoustic modes (Fig. 6). This means that, at least for the
optical modes, the effect of the dissipation has no preference
to a specific k, unlike the effect of the anharmonic terms.
In addition, the acoustical modes might be suppressed since
ω = 0 there.

APPENDIX C: QUASISTATIC ANALYSIS OF THE
INTERACTION BETWEEN A DIPOLE AND

HELICAL CRYSTAL

1. Expansion of the potential of a dipole for an anisotropic and
spatially dispersive inclusion

We will start by expanding the physical potential of a
charge distribution in a two-constituent medium, in which
both constituents are isotropic and spatially uniform, similarly
to the treatment in Refs. [15–17]. We will then develop an

expansion for an inclusion with an anisotropic and spatially
uniform permittivity and simplify it for a dipole source. Fi-
nally, we will formulate the field expansion for a k-dependent
inclusion permittivity where the modes are uncoupled and
analyze the scattered field for a crystal inclusion.

In the quasistatic regime we use Poisson’s equation in a
two-constituent medium for the electric potential of a charge
distribution ρ̃(r). When both constituents have a spatially
uniform and isotropic permittivities we write [15–17]

∇ε∇ψ = ρ̃(r),

∇2ψ (r) = ∇ · θ1(r)u∇ψ (r) + ρ̃(r)/ε2, u ≡ ε2 − ε1

ε2
,

where θ1(r) is a window function that equals 1 inside the
inclusion, ε1 is the inclusion permittivity, and ε2 is the
host-medium permittivity. The potential can be regarded as
generated by the external charge distribution ρ̃(r)/ε2 and
∇ · θ1(r)u∇ψ (r). Therefore, it can also be expressed as ψ =
ψ0 + ψsc in terms of the potential ψ0 generated by the charge
distribution in a uniform ε2 medium (corresponds to E inc in
the main text) and ψsc that is generated due to the existence of
the inclusion.

An eigenstate ψn, which exists in a system without a
source, is defined as follows:

∇2ψn(r) = ∇ · θ1(r)un∇ψn(r), un ≡ ε2 − ε1n

ε2
,

ψn(r) =
∫

G(r − r′)∇ · θ1un∇ψn(r′)dr′

= un

∫
θ1(r′)∇G(r − r′)∇ψn(r′)dr′,

where G(r − r′) is Green’s function of Poisson’s equation and
we performed integration by parts. We define the operator �̂

as

�̂ψn =
∫

θ1(r′)∇G(r − r′)∇ψn(r′)dr′

and write

ψn = un�̂ψn, snψn = �̂ψn, sn = 1

un
.

We then obtain [15–17]

ψ = u�̂ψ + ψ0

= 1

1 − u�̂
ψ0 = ψ0 + u�̂

1 − u�̂
ψ0

= ψ0 +
∑

n

u�̂

1 − u�̂
|ψn〉〈ψn|ψ0〉

= ψ0 +
∑

n

sn

s − sn
|ψn〉〈ψn|ψ0〉

= ψ0 + q
∑

n

s2
n

s − sn
|ψn〉ψ∗

n (r0)
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where we have used for a point charge [17]

〈ψn|ψ0〉 =
∫

drθ1∇ψ∗
n ∇ψ0

=
∫

drθ1(r)∇ψ∗
n (r)∇

∫
G(r − r′)qδ(r′ − r0)dr′

= qsn

∫
dr′ψ∗

n (r′)qδ(r′ − r0) = qsnψ
∗
n (r0).

The eigenstates are assumed to be normalized, where the inner
product is defined as

〈ψn|ψn〉 =
∫

drθ1∇ψ∗
n ∇ψn.

Now we develop the expansion of the potential for an
anisotropic inclusion permittivity. We denote the inclusion
permittivity tensor by ε

↔
1 and write

∇ ε
↔∇ψ = ρ̃(r),

ε2∇2ψ + ∇θ1(ε↔1 − ε2)∇ψ = ρ̃(r),

ε2∇2ψ = ρ̃(r)

ε2
+∇θ1

(ε2 − ε
↔

1)

ε2
∇ψ,

∇2ψ (r) = ∇ · θ1(r)u↔∇ψ (r) + ρ̃(r)

ε2
, u↔ ≡ ε2I − ε

↔
1

ε2
,

where I is the unit matrix.
We define an eigenfunction ψk as follows:

ψk (r) =
∫

G(r − r′)∇ · θ1 u↔k∇ψk (r′)dr′

=
∫

G(r − r′)
∂

∂ ′i
θ1ui j,k

∂

∂ ′ j
ψk (r′)dr′

=
∑
i, j

ui j,kG(r − r′)
∂

∂ ′
i

θ1(r′)
∂

∂ ′
j

ψk (r′)dr′

=
∑
i, j

ui j,kθ1(r′)
∂

∂ ′
i

G(r − r′)
∂

∂ ′
j

ψk (r′)dr′,

where we performed integration by parts and ui j,k ≡ δi j −
ε1k,i j

ε2
.

For a diagonal form of ε
↔ we have

ψk (r) = ui,k

∫
G(r − r′)

∂

∂ ′
i

θ1(r′)
∂

∂ ′
i

ψk (r′)dr′

=
∑

i

ui,k

∫
θ1(r′)

∂

∂ ′
i

G(r − r′)
∂

∂ ′
i

ψk (r′)dr′.

For (εx, εy, εz ) = (ε2, ε2, ε1z )

ψk (r) = uzk

∫
G(r − r′)

∂

∂ ′
z

θ1(r′)
∂

∂ ′
z

ψk (r′)dr′

= uzk

∫
θ1(r′)

∂

∂ ′
z

G(r − r′)
∂

∂ ′
z

ψk (r′)dr′.

We write the eigenvalue equation

ψk = uzk�̂zψk, szkψk = �̂zψk,

szk = 1/uzk = ε2/(ε2 − ε1zk ),

where szk is an eigenvalue. Note that here the physical permit-
tivity of the inclusion ε1 is spatially uniform and the index k
denotes the mode index. Similarly, we write the expansion of
ψ for (εx, εy, εz ) = (ε2, ε2, ε1z ):

ψ = ψ0 +
∑

k

szk

sz − szk
|ψn〉〈ψn|ψ0〉.

For a point charge we substitute the eigenvalue equation in the
inner product to obtain

〈ψk|ψ0〉 =
∫

drθ1(r)
∂

∂z
ψ∗

k (r)
∂

∂z
ψ0(r)

= 4π

ε2

∫
drθ1(r)

∂

∂z
ψ∗

k (r)
∂

∂z
G(r − r′) ∗ qδ(r′ − r0)

= 4πq

ε2
szkψ

∗
k (r0).

We then consider a dipole composed of two charges and write

〈ψk|ψ0〉 = szkq[ψ∗
k (z0 + d/2) − ψ∗

k (z0 − d/2)]

= szkqd
[ψ∗

k (z0 + d/2) − ψ∗
k (z0 − d/2)]

d
.

For a cylindrical inclusion, the eigenfunctions have two in-
dices m, k. All in all, we obtain for ψ

ψ = ψ + 4π

ε2

∑
m

∫
s2

k

sz − sk
|ψm,k〉∇ψ∗

m,k (r0) · pdk, (C1)

where the inner product for the normalization is

〈ψk|ψk〉 =
∫

drθ1(r)
∂

∂z
ψ∗

m,k (r)
∂

∂z
ψm,k (r).

We now formulate the expansion for a k-dependent inclusion
permittivity without coupling between modes. This is the situ-
ation in an electron gas, where the physical permittivity value
is associated with each mode [23]. We first write the response
of the inclusion to an excitation at a given k:

ψsc,k = uzk�z

1 − uzk�z
ψ0k,

where uzk corresponds to the physical inclusion permittivity at
a given k and

ψ0k = 〈ψ0|ψk〉ψk .

We can now sum these terms and substitute in Eq. (C1) sz →
sz(m, k) to obtain for a cylindrical inclusion

ψ = ψ0 + 4π

ε2

∑
m

∫
s2

km

sz(m, k) − skm
|ψkm〉∇ψ∗

km(r0) · pdk.

(C2)

Finally, we analyze the response of a crystal inclusion. In
the case of a helical crystal the Fourier expansion is along
a helical orbit and the “dc” components have constant poten-
tial along this orbit. We thus have coupling between modes
of the types (m′, k′) → (m′ + m, k′ + mkz ) and (m′, k′) →
(m′, k′ + pnkz ), where p is an integer number and n is the
number of units per helical round. We will show in the next
subsection that for ρ0 − ρ2 > a/n, ρ0 − ρ2 > a/2 the sec-
ond and first types of coupling are negligible, respectively, at
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ρ = ρ0. We therefore conclude that for ρ0 − ρ2 > a/2 only
the m = 1 mode is important and write

ψ (r, ρ0 > a/2)

≈ψ0(r)+ 4π

ε2

∫
s2

km=1

sz(m = 1, k) − sk,m=1
|ψkm〉∇ψ∗

km(r0) · pdk.

(C3)

We can substitute the eigenpermittivities and the physi-
cal permittivity, to get sz(m = 1, k), sk,m=1, respectively, and
obtain an expansion for ψ (r). The calculation of the eigenper-
mittivities will be explained in this section and the physical
permittivity can be measured in some cases or calculated by
substituting ω(k) → ωT in the expression for ε [23]. ω(k)
is calculated in the main text from the EOMs and can also
be calculated when anharmonic terms are incorporated (see
references in Ref. [29]).

Since a strong response is expected at m = 1, k = kz (see
explanation in the main text in pp. 4–5), a dipole that emits at
a range of spatial frequencies will interact more dominantly
with this mode. In this region the dominant term in the expan-
sion is

4π

ε2

s2
kzm=1

sz(m = 1, kz ) − skzm=1
|ψkzm=1〉∇ψ∗

kzm=1(r0) · p,

in addition to ψ0, where kz = 2π
a , and a is the helical-orbit

axial periodicity.
Finally, ψ0 can also be expanded by a set of eigenfunctions

inside the inclusion as follows:

ψ0 =
∑

m

∫
dk〈ψ0|ψkm〉〈ψkm|

=
∑

m

smk

∫
|ψkm〉∇ψ∗

km(r0) · pdk.

2. The form of the eigenfunctions

Since a E inc/ψ0 component with a given k results in a con-
tribution of an eigenfunction with the same k in the expansion,
the eigenfunctions that account for the field scattering due to
synchronous vibrations are

ψm = eim(φ−kzz)

⎧⎨
⎩

A1mKm(mkzρ) ρ > ρ2

A2mIm + A3mKm ρ1 < ρ < ρ2

A4mIm(mkzρ) ρ < ρ1

,

where φ, z, and ρ are cylindrical coordinates variables;
Im and Km are the modified Bessel functions; ρ1 and ρ2 are
the internal and external inclusion radii; kz = 2π/a; and a is
the helical-orbit axial period. Upon a continuous translation
along the helical orbit, ψm remains constant and therefore
corresponds to an eigenvalue 1. We can similarly take the
directional derivative in the direction of the helical orbit and
obtain

∇vψm = v · ∇ψm

= − i√
(ρkz )2 + 1

(ρkz, 1) · (m/ρ,−mkz )eim(φ−kzz) = 0,

as expected. This means that R̂ψn = ψn, where R̂ is the
continuous-translation operator.

3. The scaling of the eigenfunctions

We analyze the scaling of ψm for small and large ρs. We
start with the first m = 0 mode:

Km(x → 0) →
{−[ln ( x

2

)+ 0.5772
]

m = 0
�(m)

2

(
2
x

)m
m 
= 0

.

Since for m = 0, x = 0 and we expect a finite potential, this
mode is associated in all regions with Im=0(x) and is constant
everywhere (and therefore can be omitted). This mode can
be treated in the full Maxwell-equation analysis and can be
shown to scale as

√
1/ρ [42]. We proceed to the m � 1 modes

at ρ � a and obtain

Km�1(ρ � a) → 1√
2mkz

√
π

ρ
e−mkzρ,

with a typical interaction distance on the order of a/m. This
determines the range in which a dipole interacts with each
mode.

The scaling of the helical modes inside the structure is

Im(x → 0) → 1

�(m + 1)

( x

2

)m
,

Im=0(mkzρ → 0) → 1

�(m + 1)

(
mkzρ

2

)m

= 1

�(m + 1)
mm

(
kzρ

2

)m

, �(m + 1) = m!.

4. Calculating the radial argument inside the inclusion

In a crystal one can write the effective permittivity ε =
ε(ω, k), which relates the response at a given k to an excitation
at the same k. In the case of a MT, this form of ε(ω, k) is
justified because the period length a is 8 nm and, therefore,
(λ0/a)2 � 1 where λ0 = c/ω is the vacuum wavelength [24].
Note that in the derivation in Ref. [24] it is assumed that inside
the inclusion ρext (ω) = 0, Jext (ω) = 0, which is satisfied in
our case since the charges on the tubulin and tubulin dimers
oscillate only as a response to an external excitation and
can therefore be defined as polarization. Also, eigenstates are
defined for the system without a source. Another argument is
that for sources at distances larger than the typical interaction
distance of the m = 2 mode, the inclusion is not affected by
the m > 1 modes.

To represent axial vibrations, we assume an anisotropic in-
clusion with an axial permittivity εz and radial and azimuthal
permittivities ε2, equal to the host-medium permittivity, where
we omit k for brevity. Note that the eigenpermittivities
in the quasistatic regime do not depend on ω. We now
solve Laplace’s equation in cylindrical coordinates inside the
anisotropic inclusion. This will allow us to find the argument
of the functions Im, Km for ρ1 < ρ < ρ2 and calculate the
eigenpermittivities in the next subsection. Substituting the
form of ψm we write Laplace’s equation inside the helical
structure:

∇ ε
↔∇ψm = 0,

ε2
1

ρ

∂

∂ρ

(
ρ

∂ψm

∂ρ

)
− ε2m2 1

ρ2
ψm − k2

z m2εzmψm = 0.
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We change variables

x ≡ km
√

εz/ε2ρ,
∂

∂ρ
= ∂

∂x

∂x

∂ρ
= ∂

∂x
kzm

√
εzm/ε2,

and write

1

x
k2

z m2εzm
∂

∂x

(
x
∂ψm

∂x

)
− m2 (kzm

√
εzm)2

x2
ψm − k2

z m2εzmψm = 0,

1

x

∂

∂x

(
x
∂ψm

∂x

)
−
(

m2

x2
ψm + 1

)
ψm = 0,

Thus we get

ψm = eim(φ−kzz)

⎧⎪⎨
⎪⎩

A1mKm(mkzρ) ρ > ρ2

A2mIm
(
mkz

√
εzm

ε2
ρ
)+ A3mKm

(
mkz

√
εzm

ε2
ρ
)
ρ1 < ρ < ρ2

A4mIm(mkzρ) ρ < ρ1

,

which needs to be multiplied by additional factors to obtain the contribution in the expansion of the potential of a point charge
as we showed in the previous subsection.

In the more general case of diagonal permittivity ε = (ερ, εφ, εz ) we write

ερ

εz

1

ρ

∂

∂ρ

(
ρ

∂ψm

∂ρ

)
− εφ

εz
m2 1

ρ2
ψm − k2

z m2ψm = 0.

We change variables

x ≡ kzm
√

εz/ερρ,
∂

∂ρ
= ∂

∂x

∂x

∂ρ
= ∂

∂x
kzm

√
εz/ερ,

and get

1

x

∂

∂x

(
x
∂ψm

∂x

)
− εφ

ερ

m2

x2
ψm − ψm = 0,

from which we obtain v = m
√

εφ

ερ
:

ψm = eim(φ−kzz)

⎧⎪⎨
⎪⎩

A1mKm(mkzρ) ρ > ρ2

A2mIv
(
mkz

√
εzm

ερ
ρ
)+ A3mKv

(
mkz

√
εzm

ερ
ρ
)
ρ1 < ρ < ρ2

A4mIm(mkzρ) ρ < ρ1

.

5. Calculating the eigenpermittivities

We express the eigenvalue equation and the relation between the coefficients, where B1 is treated as known (cancels out in
the expansion). We first write the boundary conditions

Aa = B1b11 + B2b21,

B1b12 + B2b22 = C1c,

Aad = (B1b11d + B2b21d ),

(B1b12d + B2b22d ) = C1cd ,

where A ↔ A1mk, B1 ↔ A2mk, B2 ↔ A3mk,C1 ↔ A4mk , and

a = Im(mkzρ1), b±
11 = Im

⎛
⎝mkz

√
ε±

1m

ε2
ρ1

⎞
⎠, b±

12 = Im

⎛
⎝mkz

√
ε±

1m

ε2
ρ2

⎞
⎠, b±

21 = Km

⎛
⎝mkz

√
ε±

1m

ε2
ρ1

⎞
⎠,

b±
22 = Km

⎛
⎝mkz

√
ε±

1m

ε2
ρ2

⎞
⎠, c = Km(mkzρ2), ad =

(
∂Im(mkzρ)

∂ρ

)
ρ=ρ1

,
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b±
11d =

⎡
⎣ ∂

∂ρ
Im

⎛
⎝mkz

√
ε±

1m

ε2
ρ

⎞
⎠
⎤
⎦

ρ=ρ1

, b±
12d =

⎡
⎣ ∂

∂ρ
Im

⎛
⎝mkz

√
ε±

1m

ε2
ρ

⎞
⎠
⎤
⎦

ρ=ρ2

,

b±
21d =

⎡
⎣ ∂

∂ρ
Km

⎛
⎝mkz

√
ε±

1m

ε2
ρ

⎞
⎠
⎤
⎦

ρ=ρ1

, b±
22d =

⎡
⎣ ∂

∂ρ
Km

⎛
⎝mkz

√
ε±

1m

ε2
ρ

⎞
⎠
⎤
⎦

ρ=ρ2

, cd =
(

∂Km(mkzρ)

∂ρ

)
ρ=ρ2

.

We write two relations between B2 and ε1m:

(B1b12d + B2b22d ) = B1b12 + B2b22

c
cd , (C4)

B1b11 + B2b21

a
ad = (B1b11d + B2B21d ). (C5)

From Eq. (C4) we express B2:

B2b22d − B2b22cd

c
= B1b12

c
cd − B1b12d ,

B2

(
b22d − b22cd

c

)
= B1

(
b12

c
cd − b12d

)
,

B2 = B1

(
b12
c cd − b12d

b22d − b22cd
c

)
.

Substituting this expression in Eq. (C5) we obtain the eigenvalue equation for ε1m:

B1b11 + B1
( b12

c cd −b12d

b22d − b22cd
c

)
b21

a
ad =

[
B1b11d + B1

(
b12
c cd − b12d

b22d − b22cd
c

)
b21d

]
,

[
b11 +

(
b12
c cd − b12d

b22d − b22cd
c

)
b21

]
ad

a
=
[

b11d +
(

b12
c cd − b12d

b22d − b22cd
c

)
b21d

]
,

[
b11

(
b22d − b22cd

c

)
+
(

b12

c
cd − b12d

)
b21

]
ad

a
=
[

b11d

(
b22d − b22cd

c

)
+
(

b12

c
cd − b12d

)
b21d

]
,

0 =
(

b22d − b22cd

c

)(
b11d − b11

ad

a

)
+
(

b12

c
cd − b12d

)(
b21d − b21

ad

a

)
.

Using this equation we can calculate ε1m. We calculated numerically ε1m for the first modes. Interestingly, due to the anisotropy
there is an infinite degeneracy in the quasistatic (real) eigenvalues and each mode has an infinite number of eigenpermittivities,
similarly to electrodynamics.

Finally, we express A and C1:

A = B1

b11 + ( b12
c cd −b12d

b22d − b22cd
c

)
b21

a
,

C1 = B1

b12 + ( b12
c cd −b12d

b22d − b22cd
c

)
b22

c
.

6. Calculating the inner product

We calculate the inner product for completeness. Since the integration over the z, φ degrees of freedoms is trivial we focus
on the integration with respect to ρ:

〈ψn|ψn〉 ∝
∫

[B1I1(bρ) + B2K1(bρ)]∗ · [B1I1(bρ) + B2K1(bρ)]dρ,

where b =
√

ε1zk

ε2
k.
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We calculate 〈ψn|ψn〉 for b = i
√

|ε1zk |
ε2

k:∫
[B1I1(bρ) + B2K1(bρ)]∗ · [B1I1(bρ) + B2K1(bρ)]dρ =

∫
|B1|2|I1(bρ)|2 + |B2|2|K1(bρ)|2

+ B∗
1I∗

1 (bρ)B2K1(bρ) + B∗
2K∗

1 (bρ)B1I1(bρ)dρ.

We use the identities

Im(ix) = i−mJm(−x) = i−m(−1)mJm(x),

I1(ix) = iJm(x),

Km(ix) = π

2
im+1H (1)

m (−x), K1(ix) = π

2
(−1)H (1)

1 (−x),

to simplify the first and second term and obtain∫
|B1|2|I1(bρ)|2 =

∫
|B1|2J1(|b|ρ)2dρ,∫

|B2|2|K1(bρ)|2 =
(π

2

)2|B2|2
∫ [

J (|b|ρ)2 + Y 2(|b|ρ)
]
dρ.

We simplify the third and fourth terms by summing the values of two adjacent ρ values:

B∗
1I∗

1 (bρ ′
1)B2K1(bρ ′

1) + B∗
2K∗

1 (bρ ′
1)B1I1(bρ ′

1) + B∗
1I∗

1 (bρ ′
2)B2K1(bρ ′

2)

+ B∗
2K∗

1 (bρ ′
2)B1I1(bρ ′

2)2Re[B∗
1I∗

1 (bρ ′
1)B2K1(bρ ′

1)] + 2Re[B∗
1I∗

1 (bρ ′
2)B2K1(bρ ′

2)]

= 2Re[B∗
1I∗

1 (bρ ′
1)B2K1(bρ ′

1) + B∗
1I∗

1 (bρ ′
2)B2K1(bρ ′

2)]

= 2Re[B∗
1B2I∗

1 (bρ ′
1)K1(bρ ′

1) + B∗
1B2I∗

1 (bρ ′
2)K1(bρ ′

2)]

= 2{Re(B∗
1B2)Re[I∗

1 (bρ ′
1)K1(bρ ′

1)] − Im(B∗
1B2)Im[I∗

1 (bρ ′
1)K1(bρ ′

1)]}
+ 2{Re(B∗

1B2)Re[I∗
1 (bρ ′

2)K1(bρ ′
2)] − Im(B∗

1B2)Im[I∗
1 (bρ ′

2)K1(bρ ′
2)]}

= 2Re(B∗
1B2){Re[I∗

1 (bρ ′
1)K1(bρ ′

1)] + Re[I∗
1 (bρ ′

2)K1(bρ ′
2)]}

− 2Im(B∗
1B2){Im[I∗

1 (bρ ′
1)K1(bρ ′

1)] + Im[I∗
1 (bρ ′

2)K1(bρ ′
2)]}.

From this we deduce ∫
B∗

1I∗
1 (bρ)B2K1(bρ) + B∗

2K∗
1 (bρ)B1I1(bρ)dρ

= 2Re(B∗
1B2)

∫
Re[I∗

1 (bρ)K1(bρ)]dρ − 2Im(B∗
1B2)

∫
Im[I∗

1 (bρ)K1(bρ)]dρ.

All in all we get ∫
[B1I1(bρ) + B2K1(bρ)]∗ · [B1I1(bρ) + B2K1(bρ)]dρ

=
∫

|B1|2J1(|b|ρ)2dρ + π

2
|B2|2

∫
[J (|b|ρ)2 + Y 2(|b|ρ)]dρ

+ Re(B∗
1B2)

∫
πJ (|b|ρ)Y (|b|ρ)dρ − Im(B∗

1B2)
∫

πJ2
1 (|b|ρ)dρ

=
∫

|B1|2J1(|b|ρ)2dρ +
(π

2

)2|B1|2|B1→2|2
∫

[J (|b|ρ)2 + Y 2(|b|ρ)]dρ

+ |B1|2
[

Re(B1→2)
∫

πJ (|b|ρ)Y (|b|ρ)dρ − Im(B∗
1B2)

∫
πJ2

1 (|b|ρ)dρ

]
.

We calculate the integrals analytically:∫
J1

(
k

∣∣∣∣
√

ε1m

ε2

∣∣∣∣ρ
)2

= 1

2
ρ2

[
Jm

(
k

∣∣∣∣
√

ε1m

ε2

∣∣∣∣ρ
)2

− Jm−1

(
k

∣∣∣∣
√

ε1m

ε2

∣∣∣∣ρ
)

Jm+1

(
k

∣∣∣∣
√

ε1m

ε2

∣∣∣∣ρ
)]

,
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(π

2

)2|B1→2|2
∫

[J (|b|ρ)2 + Y 2(|b|ρ)]dρ

= 1

4
π2|B1→2|2

{
1

2
ρ2

[
J2

m

(
k

∣∣∣∣
√

ε1m

ε2

∣∣∣∣ρ
)

− Jm−1

(
k

∣∣∣∣
√

ε1m

ε2

∣∣∣∣ρ
)

Jm+1

(
k

∣∣∣∣
√

ε1m

ε2

∣∣∣∣ρ
)]

+1

2
ρ2

[
Y 2

m

(
k

∣∣∣∣
√

ε1m

ε2

∣∣∣∣ρ
)

− Ym−1

(
k

∣∣∣∣
√

ε1m

ε2

∣∣∣∣ρ
)

Ym+1

(
k

∣∣∣∣
√

ε1m

ε2

∣∣∣∣ρ
)]}

,

Re(B1→2)
∫

πJ

(
k

∣∣∣∣
√

ε1m

ε2

∣∣∣∣ρ
)

Y

(
k

∣∣∣∣
√

ε1m

ε2

∣∣∣∣ρ
)

dρ − Im(B∗
1B2)

∫
πJ2

1

(
k

∣∣∣∣
√

ε1m

ε2

∣∣∣∣ρ
)

dρ

=
πRe(B1→2)

( 2m2 csc(πm)�(m+1)[−1+F2(− 1
2 ;−m,m;−k2ρ2| ε1m

ε2
|)−1]

k2| ε1m
ε2

|�(1−m)
+ 4−mρ2 cot(πm)| ε1m

ε2
|m

(kρ)2mF2(m+ 1
2 ;m+2,2m+1;−k2ρ2| ε1m

ε2
|)

m+1

)
2�(m + 1)2

− π

2
ρ2Im(B1→2)

[
Jm

(
k

∣∣∣∣
√

ε1m

ε2

∣∣∣∣ρ
)2

− Jm−1

(
k

∣∣∣∣
√

ε1m

ε2

∣∣∣∣ρ
)

Jm+1

(
k

∣∣∣∣
√

ε1m

ε2

∣∣∣∣ρ
)]

,

where F is a hypergeometric function. All the analytical calculations have been verified with numerical calculations.

APPENDIX D: CALCULATING THE ELECTRIC FIELD OF ψm

To calculate Em�1 we use

∂

∂ρ
Km(kzmρ) = −1

2
kzm[Km−1(kzmρ) + Km+1(kzmρ )],

and write, assuming ψm ∝ cos[m(φ − kzz)],

Em�1 = Cm

[
1

2
kzm[Km−1(kzmρ) + Km+1(kzmρ)]cos[m(φ − kzz)]eρ +

(
m

ρ
eφ − kzez

)
Km(kzmρ)sin[m(φ − kzz)]

]
,

where Cm is the expansion coefficient. For m = 1 we have

Em=1 = Cm=1p

[
1

2
kz[K0(kzρ) + K2(kzρ)]cos(φ − kzz)eρ +

(
1

ρ
eφ − kzez

)
K1(kzρ)sin(φ − kzz)

]
,

Cm=1p ∝ p ·
[

1

2
kz[K0(kzρ) + K2(kzρ)]cos(φ − kzz)eρ +

(
1

ρ
eφ − kzez

)
K1(kzρ)sin(φ − kzz)

]
.
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