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Nonspecular effects in the vicinity of a photonic Dirac point
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Since the construction of various topological photonic metamaterials, the Dirac degeneracy has been realized
and provides a crucial opportunity to investigate the nonspecular effects [Goos-Hänchen (GH) and Imbert-
Fedorov (IF) shifts] of light at the unique optical interface. In this paper, we furnish a general and precise model
to explore how photonic Dirac point affects nonspecular effects in Dirac metamaterial. Based on this model, the
giant nonspecular effects are discovered when a Gaussian beam reflects in the vicinity of a photonic Dirac point.
We confirm that the giant nonspecular effects are the consequence of degeneracy between Brewster angles and
critical angle caused by the Dirac point. Furthermore, the ability to generate a vortex beam at the Dirac point
has also been simply verified. We believe that our work is of underlying significance, and may be served as a
reference for the measurement of Dirac point, even other degenerate points. Moreover, our precise model can
also be used to describe the nonspecular effects in other analogous photonic systems.
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I. INTRODUCTION

Violating the prediction of geometric optics, there exist
the longitudinal and transverse shifts in directions parallel
and perpendicular to the plane of incidence when a light
beam reflects from the dielectric interface, which is deemed
to nonspecular effects. In 1947, Goos and Hänchen found
longitudinal shift experimentally [1], which was therefore
referred to the Goos-Hänchen (GH) shift. Additionally the
existence of the GH shift was proved by Artmann in 1948
[2]. The transverse shift was predicted theoretically by Fe-
dorov in 1955 [3] and proved by Imbert in 1972 [4] and
so-called Imbert-Fedorov (IF) shift. With the further research,
GH and IF angular shifts have also been discovered and ex-
tensively studied [5–10]. Although these nonspecular effects
have been discovered for decades, the corresponding studies
not only touch upon its intrinsic physics [11–16], but also
upon various reflected interfaces, such as graphene [17–22],
plasmonics [23–25], photonic crystal [26–29], metasurfaces
[30,31], weakly absorbing dielectric [32,33], optical waveg-
uide structures [34], and even nonoptical systems [35–38].
In addition, nonspecular effects have potential applications
in optical sensors [24,39–41], optical switching [42], beam
steering [43], and image edge detection [44]. In topological
photonics, the nonspecular effects can be a feasible way of
determining the parameters of materials through direct optical
measurement [21,45].

In recent years, the emergence of topological materials
enriches the classical photonics and plays a significant role
to study topological behaviors of electromagnetic waves. Fur-
therly, the topological insulators [46–48], Weyl degeneracies
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[49–51], and Dirac degeneracies [52–54] have been realized
theoretically and experimentally in the metamaterial and pho-
tonic crystal systems. Hence, the research of nonspecular
effects based on topological materials, such as topological
insulators [55], Weyl semimetals in photonic system [56],
and electronic system [37,38], has attracted much attention of
scholars. In photonics, fourfold degeneracy of the Dirac point
can be realized through spatial degrees of freedom [57,58] or
the intrinsic degrees of freedom in electromagnetism under
electromagnetic duality [54]. Additionally, the basic topology
is connected between a Dirac point and vortex or vector beams
[54], and a strong photonic spin Hall effect near the Dirac
point occurs when a Gaussian beam impinges on the interface
of photonic Dirac metamaterial [59]. Owing to the particular-
ity of Dirac point, we are interested in the question of how it
affects nonspecular effects in light reflection.

Herein, a general and precise model is established to de-
scribe the nonspecular effects at the interface of photonic
Dirac metamaterial. In our model, the cross-polarization com-
ponents of reflection coefficients appear when the reflection
behavior of arbitrary wave vector is considered. In Dirac
metamaterial, the giant nonspecular effects can be found when
a Gaussian beam reflects in the vicinity of a photonic Dirac
point. We underline that it is the Dirac point that ties the
Brewster angles and critical angle together to achieve degen-
eracy, which results in both giant GH and IF shifts near the
Dirac point. In addition, the ability to generate a vortex beam
at the Dirac point has also been simply verified. Hence, the
degeneracy of Dirac point paves a new way to generate vector
and vortex beams [54]. Finally, we show that as the beam
waist of incident beam increases to a sufficiently large value,
the beam shifts reach the asymptotic regime. In this case, the
beam width is so large that the related effects are difficult to
measure [67,68].

2469-9926/2021/103(2)/023522(9) 023522-1 ©2021 American Physical Society

https://orcid.org/0000-0002-9243-4951
https://orcid.org/0000-0003-3899-2730
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.103.023522&domain=pdf&date_stamp=2021-02-18
https://doi.org/10.1103/PhysRevA.103.023522


YANG, XU, CHEN, WEN, AND LUO PHYSICAL REVIEW A 103, 023522 (2021)

FIG. 1. (a) Schematic illustrating the Cartesian coordinate sys-
tem in Dirac metamaterial. (b) Band structure on the kx-kz plane
with εy = μy = 0.5. (c) The dispersion relation along the kx and
kz directions, respectively. In both (b) and (c), the Dirac points are
marked with red spheres.

II. BAND STRUCTURE AND FRESNEL EQUATIONS IN
DIRAC METAMATERIAL

We first set up the Cartesian coordinate system (x, y, z) in
the photonic Dirac metamaterial, and use coordinate frame
(xi, yi, zi) and coordinate frame (xr, yr, zr) to denote the cen-
tral wave vectors of incidence and reflection, respectively
[see Fig. 1(a)]. Then we consider a uniaxial metamaterial
with homogeneous effective electromagnetic properties. The
effective parameters of the medium have the anisotropic form
ε̄ = diag[εx, εy, εz] and μ̄ = diag[μx, μy, μz]. In our model,
there are εy = εz = const, μy = μz = const, and

εx = 1 + f1ω
2
0

/(
ω2

0 − ω2
)
, μx = 1 + f2ω

2
/(

ω2
0 − ω2

)
,

(1)

where ω0 is the resonance frequency and the coefficients f1

and f2 are adjustable constants determined by the structure pa-
rameters. The resonance along x direction of permittivity and
permeability means that there exist two bulk plasmon modes,
a longitudinal electric mode, and a longitudinal magnetic
mode. The degeneracy between the two longitudinal modes
can be reached by setting f2 = 1 − 1/(1 + f1). Moreover, the
feasibility of a realistic metamaterial structure was theoreti-
cally proposed [54] and experimentally fabricated [60].

To obtain the band structure of photonic Dirac metamate-
rial, we commence from Maxwell’s equations:

∇ × E = iωB, (2)

∇ × H = −iωD. (3)

Multiply ∇ × μ̄−1 on both sides of Eq. (2) and ∇ × ε̄−1 on
both sides of Eq. (3), and utilize the constitutive relations:
D = ε̄E, B = μ̄H, we have wave equations of electric and
magnetic fields:

∇ × μ̄−1(∇ × E) = ε̄ω2E, (4)

∇ × ε̄−1(∇ × H) = μ̄ω2H. (5)

Assuming that electromagnetic fields E and H possess the
form eik·r, then the wave equations can be rewritten as M̄E =
0 and N̄H = 0, where

M̄ = (k × Ī )μ̄−1(k × Ī ) + ω2ε̄, (6)

N̄ = (k × Ī )ε̄−1(k × Ī ) + ω2μ̄, (7)

and Ī is the identity tensor.
The zero determinant of 3 × 3 matrix M̄ and N̄ can give

rise to the characteristic equation. After substituting permittiv-
ity and permeability in Eq. (1) into the characteristic equation,
the band structure of photonic Dirac metamaterial can be
deduced, as shown in Figs. 1(b) and 1(c). Figure 1(b) shows
the band structure of bulk states in the kx-kz plane, where two
bands are nearly overlapping with each other. In the direc-
tion of kx, there are two fourfold degeneracy points named
Dirac points symmetrically displaced, as marked with the red
spheres. Figure 1(c) presents the dispersion relation of the
material along the kx and kz directions. We can get the Dirac
points (kD, ωD) with kD = ±k0

√
εyμy and ωD = √

1 + f1ω0,
where k0 = ω/c is the the wave number in vacuum, and c is
the speed of light.

We consider a Gaussian beam of frequency ω impinges on
the interface between vacuum and Dirac metamaterial at an
angle θi to obtain the Fresnel equations. The Gaussian beam
is a superposition of different plane waves, and the direction
of the optical axis for arbitrary wave vector is not identical.
Then we introduce a unit vector Î:

Î = αx̂ + βŷ + γ ẑ, (8)

and let α, β, γ be direction cosines of the optical axis relative
to the Cartesian laboratory frame. For an arbitrary direction of
optical axis, the tensors of permittivity and permeability can
be amended as [61]

ε̄ =
⎡
⎣εy + α2�ε αβ�ε αγ�ε

αβ�ε εy + β2�ε βγ�ε

αγ�ε βγ�ε εy + γ 2�ε

⎤
⎦, (9)

μ̄ =
⎡
⎣μy + α2�μ αβ�μ αγ�μ

αβ�μ εy + β2�μ βγ�μ

αγ�μ βγ�μ εy + γ 2�μ

⎤
⎦, (10)

with α2 + β2 + γ 2 = 1 due to the unit vector Î, and �ε =
εx − εy, �μ = μx − μy.

Let the xz plane be the incident plane, the optical axis is al-
most along the x direction in the xy plane, that is α → 1, γ =
0. The direction cosine β can be indicated by kiy, which re-
spects the y component of arbitrary vector relative to the beam
center, hence there is β ∼ kiy/ki sin θi. In Dirac metamaterial,
for a given incident wave vector k = (kx, 0, kz ), there are two
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normal wave vector components k±
z . The corresponding trans-

mitted electromagnetic fields are the eigenstates determined
by the null space of the Hamiltonian formalism M̄ and N̄ (see
Appendix A).

By utilizing the boundary conditions [62] and considering
the paraxial approximation (see Appendix A), the Fresnel
reflection coefficients can be deduced as

rpp = −qe + εx cos θi

qe + εx cos θi
, (11)

rss = −qo + μx cos θi

qo + μx cos θi
, (12)

rps = 2 kiy

ki

√
εxμx(

√
εxμx − √

εyμy) cot θi

(qe + εx cos θi )(qo + μx cos θi )
, (13)

rsp = 2 kiy

ki

√
εxμx(

√
εyμy − √

εxμx ) cot θi

(qe + εx cos θi )(qo + μx cos θi )
, (14)

where rpp, rss, and rps(rsp) represent the Fresnel reflection
coefficients for parallel, perpendicular, and crossing polariza-
tion, respectively. Considering the robustness of our model,
if we set εx = εy = const and μx = μy = 1, the reflection
coefficients Eqs. (11)−(14) can reproduce to the classical
case of isotropic [63]. Accordingly, this general and precise
model can be used in other similar systems based on a real
Gaussian beam transmission. It should be noted, moreover,
that if the reflection of arbitrary wave vector is not taken into
consideration, there will be no reflection coefficients rps and
rsp for crossing polarizations.

III. GIANT NONSPECULAR EFFECTS

In this section, we will establish a general and precise
model to describe nonspecular effects of the light beam at the
interface of photonic Dirac metamaterial. The angular spec-
trums of the reflected field and the incident field are linked by
the reflection matrix:[

Ẽ p
r

Ẽ s
r

]
=

[
rpp rps

rsp rss

]
·
[

Ẽ p
i

Ẽ s
i

]
. (15)

We consider a monochromatic Gaussian beam with finite
beam width impinging from air to a planar interface of Dirac
metamaterial. The incident angular spectrum of a Gaussian
beam can be written as

Ẽi(kix, kiy) = ( fpx̂i + fsŷi ) exp

[
−w0

2
(
kix

2 + kiy
2
)

4

]
, (16)

where fp = ap ∈ R and fs = as exp(iη), which determine the
polarization of the beam and w0 is the beam waist. The com-
plex amplitude for the reflected beam in position space can be
expressed by utilizing the Fourier transformation:

Er (xr, yr, zr ) =
∫∫

dkrxdkryẼr (krx, kry)

× exp[i(krxxr + kryyr + krzzr )], (17)

where krz =
√

k2
r − (k2

rx + k2
ry) which can be expanded to

the first order in the paraxial optics: krz ∼ −(k2
rx + k2

ry)/2k0.
Ẽr (krx, kry ) is the reflected angular spectrum that can be

obtained by combining the Eqs. (15), (16), and the boundary
conditions: krx = −kix and kry = kiy.

The GH and IF shifts of beam occur in the directions par-
allel and perpendicular to the plane of incidence, respectively.
At any given plane zr = const, the GH and IF shifts can
be obtained by giving the field centroid of longitudinal and
transverse displacements:

DGH =
∫∫

xrI (xr, yr, zr )dxrdyr∫∫
I (xr, yr, zr )dxrdyr

, (18)

DIF =
∫∫

yrI (xr, yr, zr )dxrdyr∫∫
I (xr, yr, zr )dxrdyr

. (19)

The intensity distribution of beam is closely related to the
Poynthing vector I (xr, yr, zr ) ∝ S · ẑr . Then the Poynting vec-
tor associated with the electromagnetic field can be shown
as S ∝ Re(Er × H∗

r ), where the magnetic field is given by
Hr = −ik−1

r ∇ × Er .
For GH shift, we consider an incident beam with horizontal

polarization (HP), i.e., ap = 1, as = 0, and η = 0. Then the
expression of GH shift can be derived (see Appendix B for
detailed derivations) as

�H
GH = 2zRR2

ppϕpp

R′2
sp + 2k0zRR2

pp + χpp
, (20)

�H
GH = − 2R2

ppρpp

R′2
sp + 2k0zRR2

pp + χpp
, (21)

where rA = RA exp(iφA), ρA = Re(∂ ln rA/∂θi ), ϕA =
Im(∂ ln rA/∂θi ), χA = R2

A(ϕ2
A + ρ2

A), zR = k0w
2
0/2 is the

Rayleigh length and the notations � and � denote the spatial
shift and angular shift, respectively. The GH shift of vertical
polarization (i.e., ap = 0, as = 1, and η = 0) can be obtained
by replacing rpp and rsp with rss and rps, respectively.

Similarly for IF shift, we consider an incident beam with
left-handed circular polarization (LCP), i.e. ap = 1/

√
2, as =

1/
√

2, and η = π/2, then the spatial and angular shifts can be
obtained (see Appendix B for detailed calculations) as

�L
IF = 2zR[ξ1 − ξ2 + ζ cot θi]

R′2
ps + R′2

sp + 2k0zR
(
R2

pp + R2
ss

) , (22)

�L
IF ≈ 0, (23)

where ξ1 = R′
spRss cos(φsp − φss), ξ2 = R′

psRpp cos(φps −
φpp), ζ = R2

pp + R2
ss + 2RppRss cos(φpp − φss), rA =

RA exp(iφA). Likewise, we can get the IF shift for an incident
beam with right-handed circular polarization (RCP) (i.e.,
ap = 1/

√
2, as = 1/

√
2, and η = −π/2) as �R

IF = −�L
IF and

�R
IF = −�L

IF ≈ 0. Hence, for both LCP and RCP, there is
nearly no IF angular shift occurs at the interface of the Dirac
metamaterial.

In the following discussion, we will choose (θD, ωD) to
denote the Dirac point owing to the relation kD = k0

√
εyμy

and the incident condition ki = k0 = kD/ sin θD. As illustrated
in Fig. 2, 3D figures of the GH and IF shifts are plotted
as the functions of the distance δθi away from Dirac angle
θD and the distance δω away from the Dirac frequency ωD.
The giant GH spatial and angular shifts with HP incidence
[see Figs. 2(a) and 2(b)] and giant IF spatial shift with LCP
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FIG. 2. The GH and IF shifts are plotted as the functions of the
distance δθi away from Dirac angle θD and the distance δω away
from the Dirac frequency ωD on the surface of Dirac metamaterial.
(a) GH spatial shift with HP incidence. (b) GH angular shift with
HP incidence. (c) IF spatial shift with LCP incidence. (d) IF spatial
shift with RCP incidence. We set the incident beam with horizontal
polarization for GH shift and circular polarization for IF shift, waist
radius w0 = 100 × λ, and λ = 2πc/ω. Parameters for the Dirac
metamaterial are chosen as εy = μy = 0.5 and structural coefficient
f1 = 0.5.

and RCP incidence [see Figs. 2(c) and 2(d)] which are very
sensitive to the change of incident angles can be obtained
when a Gaussian beam reflects near the Dirac point. For GH
spatial and angular shifts, only one of them appears under the
same incident condition. In Fig. 2(b), the jagged GH angular
shift when δθi < 0◦ is caused by Brewster angle at different
frequencies. We believe that the result of this giant nonspecu-
lar effects is of underlying significance, and may be served as
a reference for the optical measurement of Dirac point, even
other degenerate points.

In order to reveal the origin of giant nonspecular effects
in the vicinity of a photonic Dirac point, we discuss the
reflection amplitude and phase plotted in Figs. 3(a) and 3(b)
as the functions of the distance δθi away from Dirac angle
θD, and we choose the frequency as δω = 10−3ωD. It can be
seen that the Brewster angles appear near the Dirac angle and
reflection amplitude Rps, Rsp have a peak at the Dirac angle
and reflection phase φpp, φss have a saltation at the Brewster
angles. It is worth mentioning that both GH shift and IF shift
are zero at the Brewster angle because of the zero reflection
coefficients. Furthermore, the Dirac angle coincides with the
critical angle. Consequently, the giant GH spatial shift occurs
near the Dirac angle, giant GH angular shift and IF spatial
shift occur near the Brewster angles due to the distortion of
the reflection fields near these angles, as shown in Figs. 3(c)
and 3(d). Such enhancement near the Brewster angle has also
been demonstrated in other systems [17,22,64–66].

As mentioned above that the Brewster angles appear near
the Dirac angle, hence we are interested in the connection

FIG. 3. The reflection coefficients, GH and IF shifts near the
Dirac point. (a) Reflection amplitude. (b) Reflection phase. (c) GH
spatial and angular shifts with HP incidence. (d) IF spatial shifts
with LCP and RCP incidence. The frequency of the incident beam
is δω = 10−3ωD. Other parameters are the same as those in Fig. 2.

between Dirac point, Brewster angles, and critical angle. Ac-
cording to the Eqs. (17) and (18), we can obtain the Brewster
angles θB and θ ′

B for parallel and perpendicular polarization,
respectively:

θB = arccos

√
1 − εyμy

1 − εxεy
, (24)

θ ′
B = arccos

√
1 − εyμy

1 − μxμy
, (25)

where εy and μy are the constants, εx = 1 + f1ω
2
0/(ω2

0 − ω2)
and μx = 1 + f2ω

2/(ω2
0 − ω2) are longitudinal electric mode

and longitudinal magnetic mode, respectively. Based on the
degeneracy condition f2 = 1 − 1/(1 + f1) of two longitudi-
nal modes, at the Dirac point, there are εx = 0 and μx = 0.
Therefore, the Brewster angles θB = θ ′

B = arccos
√

1 − εyμy.
In addition, the critical angle and Dirac angle are degenerate
due to the model itself:

θC = θD = arcsin
√

εyμy. (26)

Notice that arccos
√

1 − εyμy = arcsin
√

εyμy by mathemati-
cal derivation. Hence, at the Dirac point, the Brewster angles
and critical angle are degenerate (that is θB = θ ′

B = θC = θD).
As shown in the Fig. 4(a), when the incident frequency

reduces to the Dirac frequency (that is δω/ωD = 0), the Brew-
ster angles approach the Dirac point (as marked with a green
spot) and therefore meet the critical angle. We confirm, thus,
that it is the Dirac point that connects the Brewster angles and
critical angle together to achieve degeneracy, thereby resulting
in both giant GH and IF shifts near the Dirac point. It can also
be well verified from Figs. 4(b)–4(e) that giant GH spatial
shift occurs near the critical angle, giant GH angular shift
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FIG. 4. The influence mechanism of Dirac point on nonspecular
effects. (a) The connection between Dirac point, Brewster angles,
and critical angle. The Dirac point (θD, ωD) is marked with a green
spot. (b) Brewster angle θB with the different frequencies. (c) GH
spatial shift. (d) GH angular shift. (e) IF spatial shift. We set the fre-
quency change as δω/ωD = 0.01, 0.02, 0.03, 0.04. Other parameters
are the same as those in Fig. 2.

occurs near the Brewster angle and critical angle, giant IF
spatial shift occurs near the Brewster angle. Importantly, it
can be clearly seen that as the Brewster angle approaches the
Dirac point, the giant shifts tend to the Dirac point.

The reflection field intensity distributions of GH shift with
HP incidence and IF shift with LCP incidence are shown in
Figs. 5(a) and 5(b), respectively. The incident angle δθi is
0.03◦ for GH shift and −0.03◦ for IF shift, and we set the
incident frequency δω = 10−3ωD. Obviously, the GH and IF
shifts emerge in the directions parallel (x̂r ) and perpendicu-
lar (ŷr ) to the plane of incidence, respectively. The distance
between the centroid of the light spot and the vertical (hori-
zontal) dashed white line corresponds to the GH (IF) spatial
shift. The reflected angular spectrum is highly asymmetric
and no longer possess a intact Gaussian distribution. This
deformed angular spectrum caused by the Dirac point is com-
pletely coherent with the results of shift curves in Figs. 3(c)
and 3(d). It is the Dirac point that results in the degeneracy of
Brewster angle and critical angle, thereby leading to this giant
nonspecular effects. Figures 5(c) and 5(d) give the reflected
phase and intensity distribution of reflected field in the vicin-
ity of a Dirac point (δθi = −0.0012◦, δω = 10−5ωD) with
LCP incidence, respectively. Circular polarizations are the

FIG. 5. The reflected field intensity distributions and phase.
(a) and (b) show the field intensity distribution with HP incidence for
GH shift and LCP incidence for IF shift, respectively. (c) and (d) give
the reflected helical phase and intensity distribution of reflected vor-
tex field near the Dirac point(δθi = −0.0012◦, δω = 10−5ωD) with
LCP incidence.

eigenstates of the system because of the electromagnetic du-
ality. In the position space, a counterclockwise helical phase
2π appears [see Fig. 5(c)] with LCP incidence leading to the
generation of a vortex beam [see Fig. 5(d)] in reflection in the
vicinity of a Dirac point. Hence, the degeneracy of Dirac point
provides a novel method to generate vector and vortex beams
[54].

Now, to explore the role of the cross-polarization compo-
nents of reflection matrix in beam shifts, we set R′

ps = 0 and
R′

sp = 0 in reflection matrix, and this can also be achieved
in experiment by utilizing a polarizer to eliminate the cross-
polarization components. Then we obtain the modified GH
and IF shifts as

�H ′
GH = 2zRR2

ppϕpp

2k0zRR2
pp + χpp

, (27)

�H ′
GH = − 2R2

ppρpp

2k0zRR2
pp + χpp

, (28)

�L′
IF = −

[
R2

pp + R2
ss + 2RppRss cos(φpp − φss)

]
cot θi

k0
(
R2

pp + R2
ss

) , (29)

�L′
IF = 0. (30)

Note that if the cross-polarization of reflection matrix is not
considered, both GH and IF shifts [see Eqs. (27)–(30)] can be
consistent with the result in Ref. [56].

In Fig. 6, we give the GH and IF spatial shifts for cross-
polarization components considered (solid blue line) and not
considered (dashed red line). The intensity distributions of
reflected field for two different expressions are also inserted
in the figure. The position pointed by the arrow corre-
sponds to the incident condition and also the result of it. In
Fig. 6(b), it can be seen that without the contribution of the
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FIG. 6. The GH and IF spatial shifts are obtained from two
different expressions for cross-polarization components considered
(solid blue line) and not considered (dashed red line). (a) GH spatial
shift. (b) IF spatial shift. Insets show the intensity distributions of the
reflected field for two different expressions. The position pointed by
the arrow corresponds to the incident condition and also the result of
it. We set the change δω/ωD = 10−4. Other parameters are the same
as those in Fig. 2.

cross-polarization components, the IF spatial shift is almost
zero (see dashed red line). Accordingly, there exist huge
disparity for two different cases and the cross-polarization
components of the reflection coefficients which are small
quantities have a great influence on the nonspecular effects.
For a real Gaussian beam, the directions of optical axis for dif-
ferent wave vectors are not identical, so the reflection behavior
of arbitrary wave vector that previous works did not involve
in the question of nonspecular effects should be taken into
account. Hence, our Fresnel equation model in Eqs. (11)–(14)
is more precise to study the nonspecular effects at the interface
of bulk crystals.

In the above investigation, we focus on the GH and IF
shifts at the interface between the Dirac metamaterial and
air under a certain incident beam width. However, this non-
specular effects depend on the incident beam waist when the
beam width is in a relatively narrow range. The GH and IF
shifts reach the asymptotic regime and only incident angle
dependent when the beam waist is large enough, as shown
in Fig. 7. Figures 7(a)–7(c) are GH spatial shift, GH angular
shift, and IF spatial shift as a function of the incident beam
waist for two selected incident angles, respectively. In the
range of narrow beam waist, the shifts corresponding to the
two selected angles are not significantly different because of
a 0.03◦ incident angle change only. It is worth noting that the
GH angular shift tends to zero in the scale of large beam waist
[see Fig. 7(b)]. Because in this case, the divergence of a beam
is extremely prosperous.

From Eqs. (20)−(22), the large beam waist means
2k0zRR2

pp � (R′2
sp + χpp) and 2k0zR(R2

pp + R2
ss) � (R′2

sp +
R′2

ps), then a straightforward calculation yields: �H ′′
GH = ϕpp/k0

which coincides well with the Artmann formula [2],
�H ′′

GH = −ρpp/k0zR which agrees with the theoretical result of
Aiello [11], and �L′′

IF = �L′
IF. It is clear that these asymptotic

formulas can be fully trusted only when the beam waist is
extremely wide rather than narrow. The asymptotic results
are interesting and valid. However, as enormous beams are
required to reach the asymptotic regime, the related effects
may be intractable to observe [67,68].

FIG. 7. The GH spatial shift (a), GH angular shift (b), and IF
spatial shift (c) change as a function of the incident beam waist for
two different incident angles. We choose the frequency of beam as
δω/ωD = 10−3.

IV. CONCLUSIONS

In conclusion, we have established a general and precise
model to explore how photonic Dirac point affects nonspecu-
lar effects of the light beam in photonic Dirac metamaterial.
By considering the reflection behavior of arbitrary wave
vector, the cross-polarization components of the reflection
coefficients appear and have a great influence on nonspecular
effects. It is demonstrated that the giant nonspecular effects
which are very sensitive to the incident angles occur when
a Gaussian beam reflects in the vicinity of a photonic Dirac
point. We underline that the giant nonspecular effects near
the Dirac point are the consequence of degeneracy between
Brewster angles and critical angle caused by the Dirac point.
Furthermore, it is simply verified that the degeneracy of Dirac
point provides a new path to generate vector and vortex
beams. We believe that the result of giant nonspecular effects
near the Dirac point is of underlying significance, and may
be served as a reference for the optical measurement of Dirac
point, even other degenerate points. Moreover, the nonspec-
ular effects in other analogous photonic systems can also be
investigated by our precise model.
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APPENDIX A: FRESNEL REFLECTION COEFFICIENTS

In this Appendix, we give the specific derivation of the
Fresnel reflection coefficients, which retain robustness and
accuracy and can be used in other similar bulk materials based
on a real Gaussian beam transmission. The Gaussian beam is
a superposition of different plane waves, and the direction of
the optical axis for each wave vector is not identical. Therefore
the reflection behavior of arbitrary wave vector is taken into
account [see Eqs. (8)–(10)].

Substituting Eqs. (9) and (10) into Eq. (6) and solving the
characteristic equation |M̄| = 0, there are two normal wave
vector components:

k+
z =

√
−k2

x (�ε + εy) + k2
0εyμy[(1 + β2)�ε + εy]

εy
,

(A1)

k−
z =

√
−k2

x (�μ + μy) + k2
0εyμy[(1 + β2)�μ + μy]

μy
,

(A2)

where + and − denote two different transmission modes.
Each of two wave vector components k±

z is associated with
an eigenwave determined by the null space of the Hamiltonian
formalism in Eq. (6), given as E± = E0(e±

x , e±
y , e±

z ), where E0

is the electric field magnitude for both plus and minus modes,
and ⎡

⎢⎣
e+

x

e+
y

e+
z

⎤
⎥⎦ =

⎡
⎢⎣

k2
x − k2

0εyμy

−βk2
0εyμy

kxk+
z

⎤
⎥⎦,

⎡
⎢⎣

e−
x

e−
y

e−
z

⎤
⎥⎦ =

⎡
⎢⎣

−βk−
z

k−
z

βkx

⎤
⎥⎦. (A3)

The corresponding magnetic fields are also obtained from
the constitutive relation and Maxwell’s equations as H± =
ω−1μ̄−1k × E± = E0

η0
(h±

x , h±
y , h±

z ), where η0 = √
μ0/ε0, and

⎡
⎣h+

x
h+

y
h+

z

⎤
⎦ = k0εy

⎡
⎣ βk+

z
−k+

z
−βkx

⎤
⎦,

⎡
⎣h−

x
h−

y
h−

z

⎤
⎦ = 1

k0μy

⎡
⎣k2

x − k2
0εyμy

−βk2
0εyμy

kxk−
z

⎤
⎦. (A4)

We consider the first-order paraxial approximation of a
Gaussian beam propagating with the incident wave number
ki = k0 = kx/ sin θi, then two vector components k±

z are sim-
plified as qe and qo:

qe =
√

(−sin2θi + εyμy)εx

εy
, (A5)

qo =
√

(−sin2θi + εyμy)μx

μy
. (A6)

Utilizing the boundary conditions [62] and considering the
paraxial approximation, the Fresnel reflection coefficients
determined by the incident and reflected amplitudes: rpp =

E p
r /E p

i , rss = Es
r /Es

i , rps = E p
r /Es

i , and rsp = Es
r /E p

i , are ob-
tained as

rpp = −qe + εx cos θi

qe + εx cos θi
, (A7)

rss = −qo + μx cos θi

qo + μx cos θi
, (A8)

rps = 2 kiy

ki

√
εxμx(

√
εxμx − √

εyμy) cot θi

(qe + εx cos θi )(qo + μx cos θi )
, (A9)

rsp = 2 kiy

ki

√
εxμx

(√
εyμy − √

εxμx
)

cot θi

(qe + εx cos θi )(qo + μx cos θi )
, (A10)

where rpp, rss, and rps(rsp) represent the Fresnel reflection
coefficients for parallel, perpendicular, and crossing polariza-
tion, respectively.

APPENDIX B: THE EXPRESSIONS
OF GH AND IF SHIFTS

Here, we will detailedly derive the expressions of GH
and IF shifts when a Gaussian beam impinges on the planar
interface of Dirac metamaterial. To obtain the GH shift more
precisely, the reflection coefficients are expanded as a polyno-
mial of kix and remained to the first order:

rA(kix ) = rA(kix = 0) + kix

[
∂rA(kix )

∂kix

]
kix=0

, (B1)

where A ∈ {pp, ss}. Then the reflection matrix can be
written as [

rpp − krx
∂rpp

∂krx
rps

rsp rss − krx
∂rss
∂krx

]
, (B2)

where ∂krx can be replaced by k0∂θ . In the above equation,
the boundary condition krx = kix has been introduced.

After replacing the reflection matrix in Eq. (15) with
Eq. (B2), the reflected angular spectrum can be written as

Ẽr = exp

[
−w0

2
(
krx

2 + kry
2
)

4

]

×
{

x̂r

[
fprpp

(
1 − krx

k0

∂ ln rpp

∂θi

)
+ fs

kry

k0
r′

ps

]

+ ŷr

[
fsrss

(
1 − krx

k0

∂ ln rss

∂θi

)
+ fp

kry

k0
r′

sp

]}
, (B3)

where r′
ps = rpsk0/kry, r′

sp = rspk0/kry, the boundary condi-
tion kry = kiy has also been introduced. By utilizing the
Fourier transformation in Eq. (17), the general expression
of the reflected field for GH shift in positon space can be
written as

Er ∝ exp

(
ik0zr − k0

2

x2
r + y2

r

zR + izr

)

×
{

x̂r

[
fprpp

(
1 − ixr

zR + izr

∂ ln rpp

∂θi

)
+ fsr

′
ps

iyr

zR + izr

]

+ŷr

[
fsrss

(
1 − ixr

zR + izr

∂ ln rss

∂θi

)
+ fpr′

sp

iyr

zR + izr

]}
,

(B4)
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where zR = k0w
2
0/2 is the Rayleigh length. After sub-

stituting Eq. (B4) into Eq. (18) and making a further
derivation, the GH shifts for horizontal polarization can be
obtained as

DGH = 2zRR2
ppϕpp

R′2
sp + 2k0zRR2

pp + χpp
− zr

2R2
ppρpp

R′2
sp + 2k0zRR2

pp + χpp
,

(B5)

where rA = RA exp(iφA), ρA = Re(∂ ln rA/∂θi ), ϕA =
Im(∂ ln rA/∂θi ), and χA = R2

A(ϕ2
A + ρ2

A). The GH shift of
vertical polarization can be obtained in the same way. The
result shows that, in above equation, we can replace the rpp

and rsp with rss and rps, respectively. In Eq. (B5), the first term
denotes the spatial GH shift and the second term represents
the angular GH shift which is zr dependent. Therefore the GH
shift can be divided into spatial and angular shifts:

�H
GH = 2zRR2

ppϕpp

R′2
sp + 2k0zRR2

pp + χpp
, (B6)

�H
GH = − 2R2

ppρpp

R′2
sp + 2k0zRR2

pp + χpp
. (B7)

Then for IF shift, we consider that the rotation of polar-
ization for each angular spectrum component is different after
reflecting from the interface of Dirac metamaterial. Therefore
the reflected polarization states related to the incident polar-
ization state can be written as [64][

rpp − kry (rps−rsp) cot θi

k0
rps + kry (rpp+rss ) cot θi

k0

rsp − kry (rpp+rss ) cot θi

k0
rss − kry (rps−rsp) cot θi

k0

]
. (B8)

Eliminating the second-order small amount kry(rps −
rsp) cot θi/k0, the reflection matrix can be rewritten as

[
rpp rps + kry (rpp+rss ) cot θi

k0

rsp − kry (rpp+rss ) cot θi

k0
rss

]
. (B9)

Through the combination of Eqs. (B9), (15), and (16),
the general expression of the reflected field for IF shift is

determined and can be obtained as

Ẽr = exp

[
−w0

2
(
krx

2 + kry
2
)

4

]

×
{

x̂r

[
fprpp + fs

kry

k0
r′

ps + fs
kry(rpp + rss)

k0
cot θi

]

+ ŷr

[
fsrss + fp

kry

k0
r′

sp − fp
kry(rpp + rss)

k0
cot θi

]}
,

(B10)

After performing the Fourier transformation, the reflected
field in position space can be given as

Er ∝ exp

(
ikzr − k0

2

x2
r + y2

r

zR + izr

)

×
{

x̂r

[
fprpp + fs

iyr

zR + izr
r′

ps + fs
iyr (rpp + rss)

zR + izr
cot θi

]

+ŷr

[
fsrss + fp

iyr

zR + izr
r′

sp − fp
iyr (rpp + rss)

zR + izr
cot θi

]}
.

(B11)

We consider an incident beam with left-handed circular
polarization. The spatial and angular shifts can be obtained
by substituting Eq. (B11) into Eq. (19):

�L
IF = 2zR[ξ1 − ξ2 + ζ cot θi]

R′2
ps + R′2

sp + 2k0zR
(
R2

pp + R2
ss

) , (B12)

�L
IF = ς1 − ς2

R′2
ps + R′2

sp + 2k0zR
(
R2

pp + R2
ss

) , (B13)

where ξ1 = R′
spRss cos(φsp − φss), ξ2 = R′

psRpp cos(φps −
φpp), ς1 = R′

spRss sin(φsp − φss), ς2 = R′
psRpp sin(φps − φpp),

ζ = R2
pp + R2

ss + 2RppRss cos(φpp − φss), and rA =
RA exp(iφA). We note that φsp − φss ≈ π , φps − φpp ≈ 0,
hence ς1 ≈ 0, ς2 ≈ 0. According to the Eq. (B13), the IF
angular shift for left-handed circular polarization is almost
zero, that is �L

IF ≈ 0. Similarly, we can also get the IF shift
for the incident beam with right-handed circular polarization
as �R

IF = −�L
IF and �R

IF = −�L
IF ≈ 0. Hence, for both

left-handed circular polarization and right-handed circular
polarization, there is nearly no IF angular shift occurs at the
interface of the Dirac metamaterial.
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