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Kerr comb generation is usually based on the nonlinear dynamics of the intracavity field in a whispering-
gallery-mode resonator pumped by a continuous-wave laser. However, using a pulsed instead of a continuous-
wave pump opens an alternative research avenue from both the theoretical and experimental viewpoints, as it
permits us to tailor the spectral properties of ultrashort pulse trains with a single passive nonlinear element. In
this article we study the dynamics of Kerr optical frequency combs when the whispering-gallery-mode resonator
is pumped by a synchronous pulse train. We propose a model that is based on an extension of the Lugiato-Lefever
equation, which accounts for both the pulsed nature of the pump and the mismatch between the free-spectral
range of the resonator and the repetition rate of the pulse train. We lay a particular emphasis on the effect
of pump-cavity desynchronization on the spectral shape of the output combs. The numerical simulations are
successfully compared with experimental measurements where the optical pulses are generated via time-lens
soliton compression, and the resonator is a millimeter-size magnesium fluoride resonator with a billion quality
factor at the pump wavelength.
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I. INTRODUCTION

Whispering-gallery-mode (WGM) resonators with Kerr
nonlinearity are a compact and versatile platform for the
generation of broadband optical frequency combs [1–4]. The
intracavity process is based on stimulated four-wave mixing,
and the spectral features of the comb depend on nontriv-
ial fashion of the intrinsic properties of the cavity (mainly
dispersion and losses), and on those of the continuous-wave
pump (power and frequency). The main appeal of Kerr comb
generation using a continuous-wave pump is its conceptual
simplicity and its high conversion efficiency.

A complementary approach to Kerr comb generation cor-
responds to the case where the resonator is pumped in a
synchronous pulsed regime. In the temporal domain, the light-
wave signal entering the cavity is an optical pulse train with a
repetition rate matching the free-spectral range of the cavity.
In the spectral domain, this corresponds to pumping the cavity
with an optical frequency comb. The output comb therefore
results from the nonlinear interaction of the input comb with
the WGM resonator. The resonator therefore responds as if it
was subjected to a large number of mutually coherent pumps,
and its dynamical behavior becomes substantially different
than the one obtained when there is a single-frequency pump.
The earliest works along that line, even though not exactly
viewed as pulse pumping schemes, involved dual-pump Kerr
combs—the “pulses” in this case being mere sinusoids when
both modes are phase locked [5–9]. Recently, more systematic
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experimental works have shown that pumping high-Q mi-
croresonators with ultrashort optical pulses permits us to
generate broadband frequency combs with lower average
power when driving a microresonator with a pulse train whose
repetition rate matches the cavity free-spectral range [10,11].

In this work we introduce a modified version of the
Lugiato-Lefever equation (LLE) which accounts for a pulse
train (or equivalently a frequency comb) as a pump. In order
to validate the model, we have experimentally built an opti-
cal pulse generator to drive our WGM resonator. Numerical
simulations based on the split-step Fourier algorithm are then
performed and compared to the experimental results. One of
the main focuses of our work is the asymmetric broadening
of the generated frequency combs when a mismatch between
the pulse train repetition rate and the free-spectral range of the
cavity is accounted for.

The article is structured as follows. The experimental sys-
tem under study is introduced in Sec. II. Section III is devoted
to the modeling of the optical pulse generation. The LLE
corresponding to the WGM resonator in the pulse-pump is
established in Sec. IV, while Sec. V discusses the results of the
numerical simulations and experimental measurements. The
final section provides some concluding remarks.

II. EXPERIMENTAL SYSTEM

The system under study is presented in Fig. 1. It features
two subunits, namely an ultrashort optical pulse generator
with tunable repetition rate, and a WGM resonator.

The optical pulse generator relies on time-lens soliton-
assisted compression [12] that has the capability to yield
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FIG. 1. Experimental setup used to drive a WGM resonator
with quasisynchronous ultrashort optical pulses. The mm-size WGM
resonator in this experiment is made of magnesium fluoride, and
has an FSR of approximately 6 GHz with Q in excess of 109 at
1550 nm. PC: Polarization controller; IM: Intensity modulator; PM:
Phase modulator; EDFA: Erbium-doped fiber amplifier; RFA: Radio
frequency amplifier; PS: Phase shifter; SMF-28: Single-mode fiber
spool; WGMR: WGM resonator; Att: Optical attenuator; OSA: Op-
tical spectrum analyzer.

picosecond pulses with GHz repetition rates and watt-level
peak power. The optical source of the pulse generator is
a narrow linewidth continuous-wave (CW) laser of power
PL = 10 mW and wavelength λL � 1550 nm. An integrated
Mach-Zehnder intensity modulator with half-wave voltages
VπRF = 4.2 V and VπDC = 5.85 V is used to carve pulses out
of the CW optical signal—the so-called prepulses. A phase
modulator of half-voltage Vπp = 3.1 V is then used to apply
a quadratic phase profile (chirp) in the time domain on the
pulses, in the same fashion a lens applies a quadratic phase
profile in the spatial domain to focus a light beam. Both
the amplitude and phase modulators are driven by a radio
frequency (RF) synthesizer at angular frequency fS . Two RF
amplifiers are used to adjust the modulating signal powers to
the desired levels in each path. In order to tune the RF phase
difference between the input signals fed into two modulators,
a phase shifter is placed on either one of the paths (here it is
the amplitude modulator path). The use of a RF synthesizer
allows us to tune the pulse train repetition rate to any arbitrary
value from 10 MHz to several tens of GHz with kHz precision.
A low noise erbium-doped fiber amplifier (EDFA) with 33 dB
gain is used to amplify the prepulses in order to reach a high
power before being launched into a standard SMF-28 fiber
spool of length L = 3.6 km, where they undergo time-lens
soliton compression. One of the most interesting advantages
of this architecture is that the maximum achievable peak
power is far superior to the output power of the EDFA.

The output signal of the fiber spool is a train of ps-wide
solitons with a repetition rate equal to fS . These pulses are
coupled via a fiber taper into a custom-made magnesium fluo-
ride (MgF2) WGM resonator with an intrinsic quality factor
in excess of 109 at 1550 nm [13,14]. The diameter of this
resonator is d � 12 mm and its group velocity index is ng =
1.37, corresponding to a free spectral range (or FSR) equal to
fR = c/πdng = 5.782 GHz, where c is the velocity of light in
vacuum. The bandwidth of a resonance in this resonator has
been measured to be approximately 1 MHz. In order to couple
the optical pulses (or frequency comb in the spectral domain)
generated by the system to the WGM resonator, we need to
very precisely match the repetition rate of the pulse train (i.e.,
the driving frequency of the frequency synthesizer) with the

FSR of the cavity. In other words, we need to have fS � fR ,
which is approximately 6 GHz in our case as indicated earlier.

The output signal of the resonator is eventually attenuated
before being sent to an optical spectrum analyzer that displays
the output optical frequency comb.

III. MODEL FOR THE OPTICAL PULSE GENERATOR

The dynamics of the optical pulse generator can be tracked
via the electric field

Ef (z, t ) = 1
2Ef (z, t )eiωL t + 1

2E
∗
f (z, t )e−iωL t , (1)

where ωL is the angular frequencies associated with the
1550 nm CW laser, and Ef (z, t ) is the complex-valued slowly
varying envelope of the optical field, which is normalized
in such a way that the optical power is readily obtained as
|Ef (z, t )|2 in units of watts.

The output field of the CW laser diode (extreme left
of Fig. 1) has an envelope EL = √

PL . This signal is then
amplitude and phase modulated with a driving RF signal pro-
portional to V (t ) = V0 cos �St (with �S = 2π fS ) before being
amplified by the EDFA. As a consequence, the slowly varying
envelope of the optical field at the input of the optical fiber is
obtained as [15]

Ef (0, t ) = √
κoGoPL

× cos

{
π

2

V0

VπRF

cos �St + π

2

VB

VπDC

}

× exp

{
iπ

ηV0

Vπp

cos �St + �	

}
, (2)

where κo stands for all the optical losses between the output of
the laser and the input of the optical fiber spool, Go is the gain
of the EDFA, VB is the bias voltage of the intensity modulator,
�	 is the phase shift induced between phase and intensity
modulations signals, while η is a dimensionless parameter
measuring the amplitude ratio between the phase and inten-
sity electro-optic modulations (controlled by the imbalance
between the RF amplifiers in the two modulation paths).

The field Ef (0, t ) is a train of chirped prepulses with qua-
sisinusoidal shape, which is then launched into the fiber spool,
where it evolves as Ef (z, t ) following the propagation equation

∂Ef

∂z
= −αf

2
Ef − β1f

∂Ef

∂t
− i

β2f

2

∂2Ef

∂t2
+ iγf |Ef |2Ef . (3)

The fiber parameters are the loss parameter αf = 0.046 km−1,
the inverse group velocity β1f = 1/vg,f = [2.0 × 108 m/s]−1,
the group-velocity dispersion β2f = −20 ps2/km, and the
Kerr nonlinearity parameter γf = 1.1 W−1/km. Equation (3)
is subsequently reduced to the well-known nonlinear
Schrödinger equation (NLSE) with losses, by rewriting it in
the moving frame that cancels the first-order term β1f∂tEf . Af-
ter numerical simulation using the split-step Fourier algorithm
and initial condition Ef (0, t ), the NLSE permits us to obtain
the output signal Ef (L, t ) of the fiber spool, which becomes
the input signal for the WGM resonator.
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IV. THE LUGIATO-LEFEVER EQUATION MODEL
FOR A WGM RESONATOR WITH A PULSED PUMP

The Lugiato-Lefever equation (LLE) is a well established
model to describe the intracavity dynamics of laser fields in
WGM resonators with Kerr nonlinearity, when pumped by a
continuous-wave laser [4,16,17]. When the pump field is a
train of quasisynchronous optical pulses, the LLE ruling the
intracavity dynamics becomes

∂E
∂t

= −κE + iσE − �
�

∂E
∂θ

+ ivg

K∑
k=2

(i�R )k βk

k!

∂kE
∂θ k

+ ivgγ |E |2E + √
2κt/TR Ein(θ ), (4)

where E (θ, t ) = ∑
l El (t )eilθ is the envelope of the total in-

tracavity field normalized such that |E |2 is the corresponding
power in watts, and El (t ) is the field envelope for the mode
of reduced azimuthal order l = � − �0. This intracavity field
depends on the azimuthal angle along the closed-path circum-
ference of the resonator θ ∈ [−π, π ] and on the time variable
t . The parameter

�
�

= �S − �R = 2π f
�

(5)

is the frequency detuning between the pulse repetition rate
and the cavity free-spectral range. It should be noted that
here the retarded time frame is characterized by the angle �St
(and not �R t like in the CW pump case), so that stationary
patterns are rotating at angular frequency �S instead of �R .
Equivalently, the reference comb is equidistant with frequency
spacing �S . As a consequence, when �

�
�= 0, the patterns

should experience a drift (or walk-off) in the cavity.
The loss parameters in this equation are the internal

(“i”), coupling or external (“e”), and total coupling band-
widths �ωi,e,tot = ω0/Qi,e,tot , where ω0 is the cold-cavity
eigenfrequency of the pumped mode. We can then redefine
these coefficients as κi,e = �ωi,e/2, and the total (or loaded)
half-linewidth κ = �ωtot/2 is now rewritten as κ = κi + κe

(∼2π × 1 MHz). The frequency detuning between the laser
and the resonance frequency of the pumped mode is σ =
ωL − ω0. The intracavity round-trip time is TS = 2π/�S , and
the kth order dispersion parameters are βk . The four-wave
mixing (FWM) term induces a global coupling weighted by
the nonlinear parameter γ = n2ωL/cAeff , where n2 is the Kerr
nonlinearity, and Aeff = Veff/πd is the effective mode area
inside the resonator, with d being its diameter. The parameter
vg = c/ng stands for group velocity in the resonator at the
pump frequency. In this study we will restrict ourselves to
second-order dispersion (with β2 ∼ −10 ps2/km), and ne-
glect higher-order dispersion (βk ≡ 0 for k � 3).

The input field of the WGM resonator is the output field
Ef (L, t ) of the optical pulse generator, following

Ein(θ ) ≡ Ef (L, t ) = Ef (L, θ/�S ). (6)

We have here accounted for the fact that t is a fast time
variable time in the NLSE of Eq. (3), which in our case has
to be mapped to the spatial variable θ [note that t in the LLE
obtained in Eq. (4) is a slow time variable]. On the other hand,
the output field of the WGM resonator is defined as

Eout (θ, t ) = −Ein(θ ) + √
2κeTR E (θ, t ). (7)

The comparison between the numerical simulations and ex-
perimental results will be carried out using the output signal
|Eout|2, and not |E |2 which is experimentally inaccessible (ex-
cept in the add-drop configuration). The LLE corresponding
to the conventional case of CW pumping is recovered by
setting �

�
≡ 0, and by replacing the pulsed pump Ein(θ ) by a

constant field
√

P0, where P0 is the laser of the pump laser.
It is noteworthy that an equation similar to Eq. (4) was

studied in Refs. [18,19]. It was also used in Ref. [20] to inves-
tigate spontaneous breaking of the time-reversal symmetry in
a passive Kerr fiber resonator driven by a synchronous pulsed
pump (with no frequency mismatch). A detailed mathematical
analysis of that model was later on carried out in Ref. [21],
where the authors analyzed the bifurcation behavior of the
system and the emergence of asymmetric states as a function
of the pump power.

For our numerical simulations, it is convenient to rewrite
Eqs. (4) and (7) in dimensionless form. For that purpose we
introduce the following dimensionless variables:

ψ = (γ vg/κ )1/2 E and τ = κt (8)

for the intracavity field and the time, where κ is the loaded
half-linewidth.

If we restrict ourselves to second-order dispersion, the
dimensionless model is now rewritten as

∂ψ

∂τ
= −(1 + iα)ψ + ε

∂ψ

∂θ
− i

β

2

∂2ψ

∂θ2

+ i|ψ |2ψ + F S (θ ), (9)

where we recover the real-valued dimensionless parameters
that characterize the conventional LLE, and that stand for
cavity detuning and group-velocity dispersion following

α = −σ

κ
and β = β2

vg�
2
R

κ
. (10)

The new dimensionless parameter is

ε = −�
�

κ
, (11)

which accounts for the frequency mismatch between the pulse
train repetition rate and the cavity FSR. Note that ε is typically
of the same order of magnitude as α: Resonant pumping
requires −1 < ε < 1, while perfectly synchronous pumping
corresponds to ε = 0.

The normalization of the pulsed-pump term is such that

F =
√

2γ vg

TR

κe

κ3

√
PS , (12)

where

PS = 1

TS

∫ TS /2

−TS /2
|Ef (L, t )|2dt (13)

= 1

2π

∫ π

−π

|Ein(θ )|2dθ (14)

is the average power of the optical pulse train, while

S (θ ) = Ein(θ )√
PS

(15)
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FIG. 2. (a) Numerical simulation based on Eq. (3) for the
time-lens soliton compression as the quasisinusoidal prepulses are
propagating along the fiber spool. The parameters of the simulation
for the initial condition in Eq. (2) are κoGoPL = 420 mW, V0 = 2 V,
�	 = 0, and η = 3. (b) Comparison between the experimental and
simulated autocorrelation (AC) plots for the compressed (output)
optical pulses. This plot permits us to evaluate the full-width at
half-maximum to a value around 4 ps.

is its normalized complex-valued envelope that fulfills the
condition

1

2π

∫ +π

−π

|S (θ )|2 dθ = 1. (16)

We also note that the dimensionless output field is

ψout = −FS (θ ) + 2ρ ψ, (17)

with ρ = κe/κ being the ratio between out-coupling and total
losses. The usual dimensionless LLE for CW pumping is
recovered by setting ε ≡ 0 and S (θ ) ≡ 1.

The new dynamical equation corresponding to our system
is Eq. (9), with the normalization constraint of Eq. (15). It
appears that this model introduces two new features relative
to its CW counterpart, namely the frequency mismatch ε and
the pulse profile S (θ ). The latter is complex valued and infi-
nite dimensional, but it is very likely that its most important
characteristic will be its angular pulse width w, which con-
trols the spectral span of the pump pulses. Therefore, in first
approximation we can consider that pulsed pumping adds two
new parameters to the classical LLE, namely ε and w.

V. EXPERIMENTAL AND NUMERICAL RESULTS

We have used the experimental system presented in Fig. 1
to generate the optical pulses needed to drive the WGM
resonator. The autocorrelation profile show that pulses were
shortened down to 4 ps, as shown in Fig. 2, and the output
peak power was 1.5 W (corresponding to an average power of
40 mW). The autocorrelation function has the characteristic
structure of soliton compression associated with the Peregrine
soliton profile [22].

Numerical
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FIG. 3. Kerr comb spectra at the output of the WGMR for a repe-
tition rate mismatch of ±30 kHz relative to the FSR. Top: Numerical
simulation using Eq. (9) with parameter α = 0, F = 8, β = −0.005,
and considering a Gaussian pulse with a 4.2 ps width. Bottom: Ex-
perimental spectra using the experimental setup presented in Fig. 1.

This signal was then used to pump the WGM resonator, and
the resulting spectra are shown in Fig. 3. We have laid a par-
ticular emphasis on the role of the frequency mismatch �

�
=

�S − �R between the pulse train repetition rate and the res-
onator FSR. We observe that the spectra undergo asymmetric
broadening as the driving signal repetition rate is mismatched,
and that the direction of the asymmetry is directly correlated
with the sign of the mismatch.

This phenomenon can be intuitively understood when we
picture the position of the frequency comb used to drive
the resonator relative to the position of each resonance. When
the repetition rate of the pulse train is superior to the FSR
of the cavity, part of the spectrum that is broadened (high-
frequency part of the optical spectrum) corresponds to the
spectral area of the frequency comb which is red detuned
in the resonances; conversely, the spectral area of the fre-
quency comb on the blue-detuned side does not undergo any
broadening. When the repetition rate is inferior to the FSR,
the opposite phenomenology is observed. This dynamical be-
havior is reminiscent of the mechanism needed to generate
dissipative Kerr solitons with microresonators [23], where a
scan in the red-detuned side of the resonance was necessary
to generate broadband frequency combs.

In order to reach a deeper understanding of the phe-
nomenon, the model introduced in Eq. (9) has been numer-
ically implemented, using the split-step Fourier algorithm.
The simulation displays a phenomenon similar to the one
observed experimentally. When ε is negative, the repetition
rate of the pulse train is higher than the FSR of the cavity
and the spectrum broadens toward the lower frequencies. On
the other hand, when ε is positive, the spectrum shifts to-
ward the higher frequencies. We observe a slope of about
approximately 0.5 dB per mode on both the experimental and
numerical spectra, leading us to the conclusion that our model
is in good qualitative agreement with the experiments. We can
rule out Raman self-pumping as the key effect behind the phe-
nomenon we observed, because the the related self-frequency
shift would continuously shift the soliton pulse toward lower
frequencies. However, in our experiment, we were able to
observe both redshift and blueshifts.
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FIG. 4. Experimental and numerical spectra for various values
of the frequency mismatch f

�
. The parameters for the numerical

simulations were α = 0 and β = −0.008. The input pulse was a
Gaussian with a 4.2 ps pulse width.

We have also investigated the effect on the frequency mis-
match �

�
between the repetition rate of the pulses and FSR

of the cavity on the dynamics of the system. Figure 4 shows
the experimental and numerical spectra for four different de-
tuning ranging from 0 to −120 kHz, while Fig. 5 displays
the corresponding numerical pulse shapes. When the detuning
is null, we observe minimal spectrum broadening, and the
pulses remain Gaussian. As f

�
is set to −60 kHz, we ob-

serve a large asymmetrical broadening, tilted towards higher
frequencies. This broadening corresponds to a pulse doubling
(or splitting) in the time domain. When the detuning is de-
creased to −90 kHz, the bandwidth broadening is reduced,
thereby indicating that the broadening process has a nontrivial
dependence with �

�
. Accordingly, the pulse splitting in the

time domain is gradually reversed. Further decrease of the
detuning to −120 kHz leads to a the spectrum that is very
similar to one obtained with resonant pumping ( f

�
= 0 kHz),

with the time-domain pulse displaying a single but slightly
asymmetric peak. Both the experimental measurements and
the numerical simulations are in agreement while describing
this phenomenology, which confirms the notable effect of
frequency mismatch on the bandwidth of the output comb
spectra. One should note however that we have pumped two
different mode families in Figs. 3 and 4, thereby explaining
why two different values of dispersion were used in the nu-
merical simulations. One can also note that the envelope of the
spectra are not smooth, and this can be attributed to instability
within the resonator (thermal instabilities, jitter of the source).

Another interesting point is the small frequency range
around which the system exhibits asymmetric broadening.
Both the experimental measurements and the numerical sim-
ulations indicate that this range is roughly about 100 kHz in
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FIG. 5. Numerical simulation showing the variation of the pulse
shape power P for various values of the frequency mismatch f

�
. The

parameters for the numerical simulations are the same as those in
Fig. 4.

our case, even though the resonance on which we are locked
is approximately 1 MHz wide. Our interpretation of this phe-
nomenon is that when we set a detuning of �

�
, only the the

first pair of teeth of the frequency comb we use to pump the
resonator is detuned by that amount relative to the resonance,
as the the nth pair of comb teeth is detuned by n�

�
. This

means that as the detuning is increased, the side modes of the
pump comb are increasingly becoming out-of-resonance input
signals, and their influence in the intracavity dynamics thereby
decreases. Asymptotically, only the central frequency of the
pump comb becomes relevant when �

�
	 κ and the resulting

comb becomes in all points similar to the one obtained by a
continuous-wave pump.

VI. CONCLUSION

We have introduced a version of the Lugiato-Lefever equa-
tion which accounts for the use of a pulse train as the
quasisynchronous driving field of a WGM resonator. We have
presented the experimental setup used to drive the WGMR
with pulses, as well as the corresponding theoretical model.
The numerical simulations and experimental measurements
have shown the phenomenon of asymmetric broadening of
frequency comb when a mismatch between the cavity FSR
and the repetition rate of the pulse train was induced.

This work could be extended in numerous ways in the
near future. From a mathematical viewpoint, it is necessary
to perform a full bifurcation analysis based on the normal
form theory in order to understand the nature and stability
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of the patterns that can emerge in the system [24–27]. The
consideration of other nonlinear [28,29] or thermal [30–32]
effects would lead to additional terms that are relevant in order
to provide a more accurate description of the intracavity dy-
namics. From the applications perspective, this system and the
associated model would permit us to optimize self-oscillators
incorporating WGM oscillators in their feedback loop [33,34].

One of the most important application of our work belong
to the realm of quantum optics. Indeed, quantum frequency
combs are the ideal technological paradigm for the creation
and manipulation of frequency bin states [35–40]. High-Q
WGM resonators with pulsed pumping arose in recent years as
ideal systems from that perspective as they have the potential

to provide a chipscale platform for the next generation of
quantum photonic systems, as it enables time bin protocols
and drastically reduces the optical power needed to drive the
resonators [41–47]. We expect that a quantization of the clas-
sical equations would allow us to gain a deeper understanding
of these systems.
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