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Controllable generation of several nonlinear waves in optical fibers with third-order dispersion
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We propose a method to controllably generate six kinds of nonlinear waves on continuous waves, including the
one- and multipeak solitons, the Akhmediev, Kuznetsov-Ma, and Taijiri-Watanabe breathers, and stable periodic
waves. In the nonlinear fiber system with third-order dispersion, we illustrate their generation conditions by
the modified linear stability analysis and numerically generate them from initial perturbations on continuous
waves. We implement the quantitative control over their dynamical features, including the wave type, velocity,
periodicity, and localization. Our results may provide an effective scheme for generating optical solitons on
continuous waves, and it can also be applied for wave generations in other various nonlinear systems.
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I. INTRODUCTION

Nonlinear wave generation has recently become a subject
of intense research in optical fiber systems. Successful gen-
eration of some fundamental waves was implemented, such
as soliton [1–6], breathers [7–10], and Peregrine rogue wave
[11,12]. It benefits from the research on the wave’s exact solu-
tions and generation mechanisms in the nonlinear Schrödinger
(NLS) model [13–22]. This famous model describes the prop-
agation of optical pulse in a nonlinear fiber without high-order
effects and is also remarkably effective for other diverse phys-
ical systems [23–27].

For an ultrashort pulse, some high-order effects need to
be introduced into the NLS model to ensure its effectiveness
[23]. When the coefficients of introduced effects exhibit some
proportions, the model is still integrable, such as the Hirota
[28] and Sasa-Satsuma [29] models, etc. [30]. In these models,
more kinds of nonlinear waves were presented in the form of
exact solutions (especially the waves on continuous waves),
like one- and multipeak solitons and periodic waves [31–40].
Although the complexity of these models makes their real-
ization in real fibers difficult, the exact solutions of nonlinear
waves undoubtedly enrich the types of wave patterns and
provide new potential applications of wave generation.

The key point is how to achieve and control the genera-
tion of these waves in real fibers. To this end, some efforts
have been made to study their generation mechanism. Suc-
cessful controls on the generations of Akhmediev breathers
and Peregrine rogue waves have been given by the standard
linear stability analysis (LSA) [7,41]. They originate from
the modulation instability of periodic and localized perturba-
tions, respectively. However, the controllable generations of
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other waves need more feature parameters besides instabil-
ity gain, especially their periodicity and localization [42,43].
It prompts us to focus on the modified LSA [44]. This
method was presented to predict the quantitative dynamics of
a perturbed continuous wave, including the periodicity and lo-
calization of generated waves. Thus, it provides the possibility
to control wave generation in real nonlinear fibers.

In this paper, we analyze the wave features under different
parameters by the modified LSA, including the periodicity,
localization, and velocities of waves. We classify the six kinds
of waves on continuous waves according to their features and
illustrate their several generation conditions. These mecha-
nisms of wave generation are implemented in the NLS models
with third-order dispersion, and we achieve the control over
their types and features. Third-order dispersion plays a key
role in enriching the types of generated waves, like the multi-
and one-peak solitons on continuous waves. Then, the exper-
imental feasibility of multi- and one-peak soliton generation
is verified under the parameters of a genuine nonlinear fiber.
The impact of Raman scattering on wave generation is also
discussed.

II. MODIFIED LINEAR STABILITY ANALYSIS
FOR WAVE FEATURES

The optical field in a nonlinear fiber can be described by
the NLS equation. Considering third-order dispersion, its di-
mensionless model with abnormal group-velocity dispersion
is denoted [23]

iψz + 1

2
ψtt − iβ3

6
ψttt + |ψ |2ψ = 0, (1)

where ψ (z, t ) represents the slowly varying complex envelope
of optical field, z, t are respectively the evolution distance and
retarded time, and the subscripts z and t denote the partial
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derivative of the variable with respect to them in this paper.
β3 corresponds to the third-order dispersion. Although the
generation conditions of some waves have been given in some
integrable models with high-order effects, difficulties still re-
mains for nonintegrable systems, such as Eq. (1).

To realize their generations, we try an initial condition with
the form of

ψp(0, t ) = [1 + u(0, t )]ψ0(0, t )

= [1 + (a1eiωpt + a2e−iωpt )L(t )]a0eiω0t . (2)

The initial continuous-wave background ψ0(0, t ) has its am-
plitude a0 and frequency ω0. The initial perturbation u(0, t )
has a localized envelope L(t ) and the modulated periodic wave
with double frequencies ωp and −ωp, whose amplitudes are
a1 and a2 (here we assume ωp > 0). The two-frequency form
of periodic waves provides convenience for feature analysis
of the perturbing wave. Besides, L(t ) is a smooth localized
function whose limit values at |t | → ∞ are zero. Here, we
consider L(t ) = sech(ηpt ), where ηp > 0 scales the localiza-
tion of this function. There were many studies in integrable
models showing that sech-type initial perturbations can gener-
ate fundamental waves with more standard patterns than those
with other types of envelopes [43,45–47].

Now we start the analysis on dynamical features of the
perturbing wave. A perturbed continuous wave is assumed as

ψp(z, t ) = [1 + u(z, t )]ψ0(z, t ). (3)

Here, ψ0(z, t ) is a continuous-wave solution of Eq. (1) with
the form ψ0(z, t ) = a0 exp (iω0t − ik0z), where a0, ω0, and
k0 are the amplitude, frequency, and propagating constant
of background wave, respectively, and k0 = −a2

0 + ω2
0/2 +

β3ω
3
0/6. u(z, t ) stands for a weak perturbing wave with the

condition |u|2 � 1. Substituting Eq. (3) into the model (1),
this condition allows us to figure out the linear equation about
perturbing wave u(z, t ):

0 = iuz + a2
0u + a2

0u∗ +
(

iω0 + iβ3

2
ω2

0

)
ut

+
(

1

2
+ β3

2
ω0

)
utt +

(
− iβ3

6

)
uttt . (4)

We consider a perturbing wave of the form

u(z, t ) = Aep(z,t ) + Bep∗(z,t ). (5)

where p(z, t ) is a complex function about coordinates with a
general form. A and B are the amplitudes of two conjugate
components whose initial values are equal to a1 and a2, re-
spectively. Our method is applicable only when A and B are
small quantities in principle, due to the condition |u|2 � 1.
However, in our some numerical simulations, their moderate
values compared with background amplitude also admit our
control over the wave’s features. To observe the obvious wave
generation, we try to set initial perturbations comparable with
the background wave, which will be illustrated in Sec. IV.
We substitute Eq. (5) into Eq. (4) and obtain a set of two
homogeneous equations for a1 and a∗

2. This set has a nontrivial
solution only when the determinant of the coefficient matrix

is equal to zero. Thus, the expression of pz is

pz = −ω0 pt + 1
6β3N ± 1

2

√
M

(
4a2

0 − M
)
, (6)

where M = −(p2
t + ptt )(1 + β3ω0) and N = p3

t + pttt +
3pt ptt − 3ω2

0 pt . Comparing Eq. (5) with Eq. (2), one can ob-
tain that p(0, t ) = iωpt + ln L(t ) = iωpt + ln[sech(ηpt )]. It
indicates that, at the initial distance z = 0, pt = iωp + Lt/L,
ptt = (−L2

t + LLtt )/L2, pttt = (2L3
t − 3LLt Ltt + L2Lttt )/L3,

which can be substituted into Eq. (6) for the specific expres-
sion of pz.

The wave’s frequency and propagation constant can be
represented by the rate of change of phase Im[p] with t and z,
respectively,

ω = Im[pt ], K = −Im[pz]. (7)

They scale the wave’s periodicity in the t and z directions.
Considering that the shape of the wave envelope is related to
the real part of p, one can describe the wave’s localization in
the t and z directions by the rate of change of Re[p], namely,

η = Re[pt ], G = −Re[pz]. (8)

Meanwhile, the periodicity manifests itself as interference
fringes formed by the interaction between background and
perturbing waves; the localization manifests itself as a local-
ized envelope on a background wave. We can respectively give
the velocities of fringe and localized envelope,

V = K/ω, � = G/η. (9)

Up to now, the wave’s periodicity, localization, and veloci-
ties are described by the above six functions about t , but they
are not convenient to adjust to the features of the wave. Thus,
we consider the relationship between ηp and η:

lim
t→±∞ η = ∓ηp. (10)

It indicates that the localization of the wave envelope can be
described precisely by the limit of the function η when t ap-
proaches positive or negative infinity. Therefore, we introduce
a subscript (+ or −) of the function f to denote its limit value
when t → +∞ or t → −∞ :

f± = lim
t→±∞ f .

It provides convenient limit values to depict the six fea-
tures mentioned above, namely, ω±, η±, K±, G±, V±, and
�±. For the initial condition (2), we have ω+ = ω− = ωp

and η+ = −η− = −ηp. We usually also have K+ = K− and
G+ = −G− in our used model (1), which leads to V+ = V−
and �+ = �− (except for the generation of one-peak soliton
mentioned below). Meanwhile, to make V± and �± describe
more accurately the propagation of the whole wave, the distri-
butions of V and � on t need to be approximately constant. It
requires that the envelope of the initial perturbation be weakly
localized, namely, ηp < 1.

There exists an important problem: pz in Eq. (6) is a
multivalue complex function and so has two branches on its
Riemann surfaces, pB+

z and pB−
z , which indicates that the limit

values of above six functions when t → +∞ and t → −∞
may locate on different branches. For an example, when β3 =
0.1, ηp = 0.5, a0 = 1, and ω0 = 0, the Riemann surfaces of
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FIG. 1. Riemann surfaces of (a) Re[pz] and (b) Im[pz] with re-
spect to t and ωp. Branches + (green surface) and − (blue surface)
respectively denote the function pz with + and − before the square-
root sign. The branches of Re[pz] (or Im[pz]) are not continuous
about t when ωp > ωRe (or ωp > ωIm). The parameters are set as
β3 = 0.1, ηp = 0.5, a0 = 1, and ω0 = 0.

Re[pz] and Im[pz] with respect to t and ωp are shown in
Fig. 1. The green or blue surfaces respectively denote the
branches when the sign before the square-root sign in Eq. (6)
is + or −, called branch + or branch − here. In Fig. 1(a),
there is a red cross line between branches + and −, and this
line ends when ωp = ωRe. In the case of ωp > ωRe, the two
branches are not continuous at t = 0, so one needs to change
the branch for its limit values at t → +∞ and t → −∞. In
the case of ωp < ωRe, the cross line disappears so the branch
is not changed. Similarly, Fig. 1(b) shows the point where the
cross line between the two branches ends, assumed as ωIm.
The continuity about t remains in the range ωp < ωIm and
disappears when ωp > ωIm. To distinguish the two classes of
results from two different continuous surfaces, we call the
waves on branch + when t → +∞ “mode I,” and those on
branch − when t → +∞ “mode II.” They are respectively
denoted by the superscripts (I) and (II). The relation between
the modes and branches is shown in Table I. Note that this
relation is applicable under the parameters in our example,
which demonstrates an example of how to deal with different
branches. The cases with other parameters may admit various
distributions of branches and so require recalculations for the
relations.

As different modes can admit different dynamical features
of perturbing waves, it is necessary to implement the choice
of mode. The mode choice can be realized by setting different
initial amplitudes of perturbation A and B. With a small B, one
can obtain the required A from the homogeneous equation set,

A(I,II) = a2
0B∗/

[
−iω0 pt + i

6
β3N + 1

2
M − ip(I,II)

z − a2
0

]
.

(11)

TABLE I. An example relation between the modes and branches.

Cases Mode I Mode II

ωp < ωRe Re[pz]
(I)
± = Re[pz]B+

± Re[pz]
(II)
± = Re[pz]B−

±
ωp > ωRe Re[pz]

(I)
± = Re[pz]B±

± Re[pz]
(II)
± = Re[pz]B∓

±
ωp < ωIm Im[pz]

(I)
± = Im[pz]B+

± Im[pz]
(I)
± = Im[pz]B−

±
ωp > ωIm Im[pz]

(I)
± = Im[pz]B±

± Im[pz]
(I)
± = Im[pz]B∓

±

FIG. 2. (a) Typical amplitude profiles at t or z directions when
ϕ (t ) or ϕ (z) is set as different values. The localization dominates with
ϕ (t,z) close to 0 while the periodicity dominates with ϕ (t,z) close to
π/2. (b) Feature conditions of the six kinds of waves on ϕ (t )-ϕ (z)

plane. The black square, green dotted dashed line, black circle, blue
dashed line, red solid line, and gray regions denote the conditions of
SPW, AB, OPS, KMB, MPS, and TWB, respectively.

We know that A(I,II) is a function with respect to t and could
have different limit values when t → +∞ and t → −∞.
From our experience, we need to average the values of A(I,II)

+
and A(I,II)

− , namely,

A(I,II)
ini = 1

2

[
A(I,II)

+ + A(I,II)
−

]
. (12)

It provides the required initial values of A (namely a1) when
we generate nonlinear waves corresponding to mode I or II.

By adjusting ωp, ηp, a0, ω0, and β3, the type, periodic-
ity, localization, and velocities of the generated wave can be
controlled. To control the types of waves, we classify the
fundamental nonlinear waves by the above six features in the
next section, and for convenience the superscript (I,II) will be
omitted for a while.

III. NONLINEAR WAVES AND THEIR
GENERATION CONDITIONS

Periodicity and localization of perturbing waves in t or
z directions can be used to classify them, and we take the
case of t → +∞ as an example here. For a wave with the
periodicity (ω+, K+) and the localization (η+, G+), we define
two quantities,

ϕ(t ) = tan−1

[ |ω+|
|η+|

]
, ϕ(z) = tan−1

[ |K+|
|G+|

]
. (13)

Both of the two quantities have the range 0 � ϕ(t,z) � π/2
and they describe, respectively, the mixture of periodicity and
localization in the t and z directions. In the t or z direction,
the typical wave profiles corresponding to different values of
ϕ(t,z) are shown in Fig. 2(a). There are three types of wave
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profiles: when ϕ(t,z) = 0, the wave is purely localized; when
ϕ(t,z) = π/2, the wave is purely periodic; when 0 < ϕ(t,z) <

π/2, the wave is periodic-localized. With the increase of ϕ(t,z),
the wave’s periodicity becomes strong and the localization
gradually weakens. The three types can help us to classify the
fundamental waves.

Their classification has been discussed in some integrable
models with high-order effects [37,39,42]. Here, we slightly
change it and classify them into six kinds of waves, whose
feature conditions are shown in Fig. 2(b). The six waves are
discussed below.

i. Stable periodic wave (SPW) is purely periodic in both
the t and z directions, namely, ϕ(t ) = ϕ(z) = π/2.

ii. Akhmediev breather (AB) is purely periodic in the t
direction and is not purely periodic in the z direction, namely,
ϕ(t ) = π/2 and ϕ(z) �= π/2.

iii. One-peak soliton (OPS) is purely localized in both the
t and z directions, namely, ϕ(t ) = ϕ(z) = 0.

iv. Kuznetsov-Ma breather (KMB) is purely localized in
the t direction and is not purely localized in the z direction,
namely, ϕ(t ) = 0 and ϕ(z) �= 0.

v. Multipeak soliton (MPS) is periodic-localized in both
the t and z directions. It requires that the velocities of the
fringe and localized envelope are the same, i.e., V+ = �+,
to make the wave shape stable in the evolution process. This
condition of velocity matching is equivalent to ϕ(t ) = ϕ(z).

vi. Taijiri-Watanabe breather (TWB) is periodic-localized
in the t direction. To ensure the existence of breathing be-
havior, the velocity matching needs to be avoided, namely,
V+ �= �+. It is equivalent to ϕ(t ) �= ϕ(z).

Note that the Peregrine rogue wave is not within the scope
of our discussion though it has double localization in the t
and z directions. It is because a rogue wave is a special wave
as the limit of breathers at ω+, η+, K+, G+ → 0, and this
limit operation leads to a rational form of waves, which cannot
be described by our assumed perturbing wave with exponen-
tial form. In a similar way, doubly periodic wave generation
cannot be analyzed by our method due to its complex ellip-
tic form. Besides, the above feature conditions of waves are
based on the analysis of periodicity and localization, which is
helpful for the wave classification. It neglects the waves with
some special features, namely, the SPW with V+ = 0, the OPS
with �+ = 0, the MPS and TWB with V+ = 0 or �+ = 0.
These neglected waves will be considered in the following
discussion about the generation conditions of waves.

Let us transform the feature conditions of the six waves
into their generation conditions. The generation conditions are
decided by ω+, K+, η+, G+, V+, and �+ to control the type
and features of generated wave and are shown in Table II.
SPW and AB can be generated from a purely periodic ini-
tial perturbation (namely ωp �= 0 and ηp = 0), generations of
which can be distinguished by whether localization exists in
the z direction. In similar ways, OPS and KMB can be gener-
ated from a purely localized initial perturbation (namely ωp =
0 and ηp �= 0), generations of which can be distinguished by
whether periodicity exists in the z direction; MPS and TWB
can be generated from a localized-periodic initial perturbation
(namely ωp �= 0 and ηp �= 0), generations of which can be
distinguished by whether fringes a localized envelope have

TABLE II. Generation conditions of fundamental waves.

Fundamental waves Generation conditions

Stable periodic wave (SPW) ω+ �= 0, η+ = 0, G+ = 0
Akhmediev breather (AB) ω+ �= 0, η+ = 0, G+ �= 0
One-peak soliton (OPS) ω+ = 0, η+ �= 0, K+ = 0
Kuznetsov-Ma breather (KMB) ω+ = 0, η+ �= 0, K+ �= 0
Multi-peak soliton (MPS) ω+ �= 0, η+ �= 0, V+ = �+
Taijiri-Watanabe breather (TWB) ω+ �= 0, η+ �= 0, V+ �= �+

identical velocity. According to these generation conditions,
the controllable generations of waves in the fiber system will
be discussed in the next section.

IV. CONTROLLABLE GENERATION
OF NONLINEAR WAVES

When β3 = 0, Eq. (1) is the NLS system without the third-
order dispersion. Since this system is integrable, many exact
solutions describing fundamental nonlinear waves were pre-
sented [13–17]. Among the six kinds of fundamental waves
mentioned above, only AB, KMB, and TWB solutions exist
in NLS systems. It indicates that one can use a temporal
profile as initial condition to generate them. Unlike it, what
we focus on in this paper is how to controllably generate
them from an initial condition with a general form, which
is more convenient to prepare. In our analysis on the NLS
system, the expressions of K± and G± are found to be won-
derfully equivalent to the coefficients describing periodicity
and localization in z direction given by the exact solutions of
waves (which is also found in some other integrable models).
This equivalence may be related to the functional form of
perturbing wave solution we assume, as it can be consid-
ered as an approximate solution of initial stage in the NLS
model.

Considering that many waves in the NLS model have
been excited in real fibers, we focus on the system with
third-order dispersion, which admits more kinds of wave
generation mechanisms. Without loss of generality, the co-
efficient β3 is set as 0.1, and the background amplitude is
a0 = 1. We take mode II when t → +∞ as an example
to discuss the wave generations from three types of initial
perturbations.

First, a purely periodic initial perturbation (with ωp �= 0
and ηp = 0) is used to generate SPW or AB. When ηp = 0,
based on Eq. (8), one can obtain

G(II)
+ = 1

2 Re
[√

ω2
p(1 + β3ω0)

[
4a2

0 − ω2
p(1 + β3ω0)

]]
. (14)

The value of |G(II)
+ | is distributed on the ω0-ω plane to distin-

guish the generations of AB and SPW, as shown in Fig. 3(a1).
The white (|G(II)

+ | = 0) and colored (|G(II)
+ | �= 0) regions de-

note the generations of SPW and AB, respectively. We set the
parameters as the coordinates of triangle, namely, (ω0, ωp) =
(4, 4). Its amplitude evolution is shown in Fig. 3(a2). A SPW
is generated perfectly, and its velocity of fringe matches well
with the one predicted by the limit value of Eq. (9) (denoted
by the red dashed line). Then, we set (ω0, ωp) = (4, 1), which
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FIG. 3. (a1) |G(II)
+ | value distribution on ω0-ωp plane with ηp = 0, where white and colored regions severally denote SPW and AB

generations. (b1) |K (II)
+ | value distribution on ω0-ηp plane with ωp = 0, where white and colored regions denote OPS and KMB generation,

respectively. (c1) |V (II)
+ − �

(II)
+ | value distribution on ωp-ηp plane with ω0 = 0, where white and colored regions denote MPS and TWB

generation, respectively. The middle and lower plots illustrate amplitude evolution for generating (a2) SPW, (a3) AB, (b2) OPS, (b3) KMB,
(c2) MPS, and (c3) TWB. Their initial parameters are set as the coordinates of triangles or diamonds in different regions of panels (a1), (b1),
and (c1). Black solid and red dashed lines represent the predicted propagating velocities of the localized envelope and fringe, respectively. All
the waves are generated successfully, except the KMB. The splitting in OPS generation is related to the nondegeneracy of modes and time
signs. Other parameters are β3 = 0.1 and a0 = 1.

are the coordinates of the diamond in Fig. 3(a1). Its amplitude
evolution is shown in Fig. 3(a3), and an AB is generated as
expected. Its numerical velocity of the fringe also agrees well
with the one we predict.

Second, we consider a purely localized initial perturbation
(with ωp = 0 and ηp �= 0) to generate OPS or KMB. When

ωp = 0, based on Eq. (7), one can obtain

K (II)
+ = 1

2 Im
[√−η2

p(1 + β3ω0)
[
4a2

0 + η2
p(1 + β3ω0)

]]
. (15)

The distribution of |K (II)
+ | on the ω0-ηp plane is shown in

Fig. 3(b1) for their generation conditions. Unlike the NLS
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system, the consideration of third-order dispersion admits the
OPS generation, which is denoted by the gray region (with
|K (II)

+ | = 0). The colored region (with |K (II)
+ | �= 0) corresponds

to KMB generation. For a purely localized initial perturbation,
its initial condition (2) becomes

ψloc(0, t ) = [1 + (A + B)sech(ηpt )]a0eiω0t . (16)

It indicates that the generation mode cannot be selected by the
combinations of different A and B. We set the total amplitude
A + B as the modest value of 0.5 to try to generate KMB or
OPS. We set (ω0, ηp) as the triangle’s coordinates (−12, 0.5),
and the amplitude evolution plot is shown in Fig. 3(b2). The
initial localized envelope splits into to waves with different
velocities. The left-hand wave has a stable shape in the prop-
agation process, so we consider it as an OPS. The right-hand
wave gets wider and wider with the increasing distance, and it
has a typical shape of dispersive shock wave. Compared with
our analysis result, the wave splitting indicates the generation
of nondegenerate waves for different modes and time signs.
The velocities of two waves need to be predicted by �

(II)
+

and �
(II)
− , which are shown in Fig. 3(b2). They have good

agreements with the numerical evolution of the two waves.
Then, we change (ω0, ηp) into the diamond’s coordinates
(−4, 0.5) in Fig. 3(b1). Its amplitude evolution plot is shown
in Fig. 3(b3). Before the appearance of second breathing pe-
riod of KMB, the spontaneous oscillation emerges and breaks
the generation of KMB, which indicates that the generation
of KMB is not successful. The spontaneous oscillation always
has a large influence on the generation of nonlinear waves, es-
pecially for the KMB generation. Although some efforts have
been made to generate KMBs, generating a KMB with more
than one breathing period from a nonideal initial perturbation
is still an open problem.

Third, a periodic-localized perturbation can be used to
generate MPS or TWB when the velocity matching is satisfied
or not. Based on Eq. (9), one can derive

V (II)
+ = ω0 + β3

6

(
ω2

p − 3η2
p + 3ω2

0

) +
Im

[√−P
(
4a2

0 + P
)]

2ωp
,

�
(II)
+ = ω0 + β3

6

(
3ω2

p − η2
p + 3ω2

0

) −
Re

[√−P
(
4a2

0 + P
)]

2ηp
,

(17)

where P = (ηp − iωp)2(1 + β3ω0). When ω0 = 0, the distri-
bution of |V (II)

+ − �
(II)
+ | on ωp-ηp plane is shown in Fig. 3(c1).

The colored (|V (II)
+ − �

(II)
+ | > 0) and white (|V (II)

+ − �
(II)
+ | =

0) regions respectively correspond to the generation of TWB
and MPS. We set the initial parameters (ωp, ηp) as the tri-
angle’s coordinates in the plot. Its amplitude-evolution plot
is shown in Fig. 3(c2). Despite the appearance of auto-
modulation process, a MPS is generated with a negative
velocity. On the localized envelope, many fringes can be
observed and it can remain stable for a long distance. Then,
we change (ωp, ηp) into the coordinates of the diamond
in Fig. 3(c1). The amplitude-evolution plot is shown in
Fig. 3(c3). Before the auto-modulation appears, a TWB is
generated and propagates with a constant velocity. Compared
with the MPS generation, the localized envelope and the

FIG. 4. (a) |K (II)
(+t )| value distribution on β3-ω0 plane when ωp = 0

and ηp = 0.5, where the white and colored regions denote OPS and
KMB generation, respectively. (b) Generation condition of MPS on
β3-ωp plane when ω0 = 0. The inset shows the dependence of the
amplitude’s asymmetric degree A/B on β3 for MPS generation.

fringe’s velocities of generated TWB are obviously different,
which matches well with our prediction. Note that Eqs. (14),
(15), and (17) work only in the cases we consider here, so
they need a recalculation when the parameter conditions are
changed.

From the above results, the third-order dispersion has an
influence on enriching the types of nonlinear waves. The
generation condition of OPS and KMB when ωp = 0 and
ηp = 0.5 is shown in Fig. 4(a). With β3 increasing, the re-
quired ω0 for OPS generation is getting higher from a negative
infinite value. When β3 approaches 0, the OPS generation is
forbidden. The generation condition of MPS is also shown in
Fig. 4(b) when ω0 = 0. With β3 increasing, the required ωp

for MPS generation is getting lower. In the limit of β3 → 0,
the required ωp has an unreachable infinite value. This result
agrees well with the case of the NLS model. Meanwhile, the
asymmetric degree of initial amplitude is defined by A/B,
and its corresponding value for MPS generation is shown in
the inset. The asymmetric degree increases from 0 and then
decreases with β3 increasing, and it has a maximal value
around 0.2. Its low asymmetric degree indicates the amplitude
of component with frequency ωp is far less than the one
with frequency −ωp. When β3 is close to 0, one can obtain
A → 0, which implies that the required perturbation for MPS
generation has quasi-single frequency.

V. EXPERIMENTAL FEASIBILITY OF MULTI-
AND ONE-PEAK SOLITON EXCITATIONS

Now, we focus on the experimental feasibility for exciting
multi- and one- peak solitons. By considering A = √

P0ψ ,
T = [|β (2)|/(γ P0)]1/2t , and Z = (γ P0)−1z, the model (1) can
be transformed into a dimensional model. When the fiber loss
is considered, the model is

iAZ − β (2)

2
AT T − iβ (3)

6
AT T T + γ |A|2A + i

α

2
A = 0, (18)

which describes the optical wave evolution in real fibers.
Here, P0, γ , β (2), β (3), and α scale respectively the input
power, the nonlinearity, the group-velocity dispersion, the
third-order dispersion, and the fiber loss. Here, we use the
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experimental parameters of dispersion-shifted fiber used in
Ref. [48]. The parameters are β (2) = −0.86 ps2/km, β (3) =
0.12 ps3/km, γ = 2.4 W−1km−1, α = 0.2 dB/km. The di-
mensionless coefficient of third-order dispersion is β3 =
(γ P0/|β (2)|3)1/2β (3) = 0.0737. We change the input power P0

from 0.63 W into 0.1 W to weaken the symmetry-breaking
phenomena. The initial condition is still the continuous wave
perturbed by a sech-type envelope with two-frequency carrier
waves,

Ap(0, T ) =√
P0ei�0T [1 + (A1ei�pT + A2e−i�pT )sech(T/Tp)].

(19)

The phase of the continuous wave is modulated periodically
by the frequency �0. The relative periodicity and localization
of the perturbation are scaled by the frequency �p and the
half width Tp, respectively. When we consider the influence
of random noise on wave excitations, the initial condition
becomes

Anoise(0, T ) = Ap(0, T )(1 + anoiseRandom[−1, 1]), (20)

where anoise is the relative amplitude of random noise, and the
function Random[a, b] can produce a random value between
a and b at every numerical time point.

For the excitation of MPS, we set the background
frequency f0 = �0/2π = −840.769 GHz, the perturbation
frequency fp = �p/2π = 555.988 GHz, the half width
Tp = 3.786 ps, the perturbation amplitude A1 = 0.03, and
A2 = 0.3, based on the analysis in the above sections.
When anoise = 0.001, the power-evolution plot is shown in
Fig. 5(a). Its color scale denotes the normalized power,
|A(Z, T )|2/[P0 exp(−αZ )]. One can see that a MPS propagat-
ing stably is excited. When the noise amplitude is increased,
its profiles at the initial and final distances are compared
in Figs. 5(b) and 5(c). The good agreement between them
indicates that the MPS keeps robust against increased noise.

Then, we try the excitation of OPS. Since the initial pertur-
bation is purely localized, the initial condition becomes

Aloc(0, T ) = √
P0ei�0T [1 + A12sech(T/Tp)]. (21)

We set f0 = �0/2π = −1140.8 GHz, Tp = 3.786 ps, and
A12 = 0.5. This set is located on the critical line between
OPS and KMB regions [like in Fig. 3(b1)], which avoids the
splitting of initial perturbation induced by wave feature’s non-
degeneration. Its power evolution plot is shown in Fig. 5(d)
when anoise = 0.001. A OPS propagates stably with a constant
velocity. Its initial and final profiles are compared under dif-
ferent anoise in Figs. 5(e) and 5(f). When anoise = 0.01, small
fluctuations appear, and the final profile agrees well with the
initial one. When anoise = 0.05, although the fluctuation in the
final profile is amplified, the profile of soliton is still kept well.
These results indicates that a MPS has a better robustness than
a OPS when a noise is considered.

Note that diverse types of perturbations were used in real
nonlinear fibers described by standard NLS model, and the
types of them were similar to what we use [see Eqs. (19)
and (21)]. For example, there were the cosine-type periodic
perturbations [7,11], the periodic perturbation with two fre-
quency components [12], the purely localized one [49], and
the periodic-localized one [9]. Specially, the spectral shaping

FIG. 5. (a) Power-evolution plot of MPS generation when
anoise = 0.001. (b) Its power profile at Z = 0 km (black curve) and
Z = 10 km (red curve) when anoise = 0.01. (c) The same as panel
(b) except anoise = 0.05. (d) Power-evolution plot of OPS generation
when anoise = 0.001. (e) Its power profile at Z = 0 km (black curve)
and Z = 10 km (red curve) when anoise = 0.01. (f) The same as panel
(e) except anoise = 0.05. The power mentioned here is the normalized
power |A(Z, T )|2/[P0 exp(−αZ )]. �MPS and �OPS are the envelope
velocities of MPS and OPS, respectively.

technology shown in Ref. [9] allows one to synthesize com-
plex modulated initial conditions, which could contain various
types of perturbations. It provides more possibility for prepar-
ing our initial conditions and implementing the corresponding
generations of waves.

As an important and well-known effect in nonlinear fibers,
the influence of Raman scattering on wave generations is
necessary to be discussed. The Raman scattering is reflected
by the nonlocal response function R2(t ) in the generalized
NLSE, and its influence on instability gain can be analyzed
by the standard LSA [50]. But it is difficult to apply the
modified LSA to this model for wave features, due to the
presence of nonlocal term. We note that the width of our
pulses is much larger than 100 fs, so one can approximate
the nonlocal Raman effect as the local one [23]. The non-
linear terms in Eq. (18) become γ (|A|2A − τR|A|2T A), where
τR is the coefficient of Raman effect. Considering that the
value of τR was not provided in Ref. [48], we try the set
τR = 5 fs in Ref. [51]. Its dimensionless coefficient is τr =
τR(γ P0/|β (2)|)1/2 = 0.00264. From our analysis, the Raman
scattering could lead to the “nondegeneration” of wave fea-
tures when t → +∞ and −∞. So a wave could possess
two different values of velocity on the left and right sides,
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corresponding to the broadening or narrowing of waves in the
numerical results. However, these phenomena happen observ-
ably only when the Raman scattering is much stronger than
the experimental one we consider. In the cases we discuss,
there is no obvious change between the soliton evolutions
before and after the Raman scattering is considered. These
results coincide with the statement in Ref. [48] that the Raman
scattering can be neglected in the case we discuss because
the continuous-wave power is far below the calculated Raman
threshold (about 5 W).

VI. CONCLUSION

In conclusion, we numerically generate six kinds of nonlin-
ear waves and control their type, velocities, periodicity, and
localization in the NLS model with third-order dispersion.

The generation condition of these waves is illustrated by
means of the modified linear stability analysis method. They
are generated from a periodic initial perturbation with a sech-
type envelope on continuous waves. The velocities of their
localized envelope and fringes are predicted successfully. Be-
sides, the introduction of third-order dispersion is found to
admit the generation of OPS and MPS so riches the kinds
of waves. The results can provide the guidance for wave
generations in real optical fibers and other nonlinear systems,
like Bose-Einstein condensates, water, and plasmas.
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