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Optical wormhole from hollow disclinations
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We examine the optical properties of two different configurations of an ordered liquid crystal film on a catenoid
forming coreless disclinations. We find the effective optical metric from which we obtain the geodesics and wave
modes characterizing thus the propagation of light on this surface. We show that the optical metric describes a
2D section of the spacetime of a conical wormhole.
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I. INTRODUCTION

Wormholes [1] are shortcuts in spacetime that appear in
many science fiction stories, providing convenient justifica-
tions for faster than light space displacements as well as for
time travel. Even though none have been detected so far,
wormholes are scientifically sound objects which have de-
served a vast literature (see Ref. [2] and references therein).
Wormhole-inspired devices not only are useful as experimen-
tally accessible analogues but may have important practical
applications as electromagnetic radiation harvesters [3], for
being superabsorbers, or in magnetic resonance imaging [4],
for letting magnetic fields be transported without distortion.
Reference [5] lists a number of possible applications for elec-
tromagnetic wormholes built with metamaterials.

A different cosmological object, the cosmic string [6], has
long been compared to disclinations [7] in liquid crystals since
they share common formation mechanisms [8,9] and also
have similarities in their optical properties [10–12]. Again,
important applications might come out of these analogies,
such as the optical concentrator in a disclination-based device
proposed by two of us and coworkers in Ref. [13]. Ideal
cosmic strings, like ideal disclinations, are problematic due
to singularities associated with their respective cores: a cur-
vature singularity in the former and a vector field singularity
in the latter. In both cases, more realistic models smooth the
singularity over a finite region of space around the center of
the defect.

A way of avoiding the singularity is to cut it out and
heal the cut with a graft, imitating the process of “construc-
tion” of horizon-free wormholes [14]: take two Schwarzschild
spacetimes, cut out a 4D region of radius larger than the
Schwarzschild radius in each of them, and graft them to-
gether at the edges of the cuts. One such construction, the
Morris-Thorne wormhole [1], became notorious, not only for
its simplicity, but also for its relation to Carl Sagan’s novel
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Contact. Another such construction [15] repeats the process
with a cylindrical portion of the conical spacetime surround-
ing a cosmic string. A 2D representation of the process is
shown in Fig. 1. The result is two asymptotically conical
spacetimes joined by a singularity-free wormhole. That is, in
each of these, far from the wormhole mouth, the spacetime is
indistinguishable from that of a cosmic string. Moreover, the
string core singularity is removed, its surroundings becoming
the throat of the wormhole. It is this idea that we pursue in
this article with liquid crystals. We propose a simple way of
obtaining a coreless disclination, avoiding the instability prob-
lems associated with the director field singularity, as is done in
Refs. [16,17], and at the same time providing a gravitational
wormhole analog model. We explore our model by studying
both geometric and wave optics, finding qualitative agreement
with known wormhole results.

In the next sections of this work, nematic liquid crystals are
used in a simple device whose geometry generates coreless (or
hollow) disclinations representing the junction of two conical
spacetimes. In Sec. II we find the optical metric for two differ-
ent types of molecular arrangements making disclinations. We
then solve the geodesic equation (Sec. III) and wave equation
(Sec. IV) for both cases in order to have a clear picture of the
propagation of light in these cases. In Section V we digress on
embedding diagrams and conical metrics. Finally, in Sec. VI
we present our conclusions.

II. A LIQUID CRYSTAL DEVICE

Thin films of nematic liquid crystals on curved surfaces
lead to very interesting consequences, such as defects induced
by geometrical frustration [18]. A recent study of the cur-
vature effects on topological defects on such thin films [19]
demonstrated the possibility of manipulation and control of
topological defects using curvature. In particular, the authors
of Ref. [19] focused on nematic ordering on a catenoid and
defects with topological charge (winding number) ±1/2. Bor-
rowing their idea, we study here two versions of a +1 winding
number disclination, also on a catenoid, which naturally sta-
bilizes and locks the defect around its neck. Moreover, the
defects are hollow or coreless due to the catenoid topology.
The director field lines corresponding to either defect are,
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FIG. 1. Two-dimensional representation of two cosmic string
spacetimes (conical geometry) being joined to form a conic
wormhole.

respectively, the circles and catenaries seen in Fig. 2. Far away
from the catenoid throat, since the surface is asymptotically
flat, the defects will look like ordinary +1 disclinations on a
plane with a hole, like in Fig. 3.

In what follows we briefly describe how to obtain the
optical metric that describes the propagation of light along the
nematic film on the catenoid. The ray index associated with
the energy propagation in the liquid crystal medium is given
by [20]

N2 = n2
o cos2 β + n2

e sin2 β, (1)

where no and ne are the ordinary and extraordinary indices,
respectively; β is the angle between the tangent vector to the
light path (Poynting vector) and the director field line, such
that

cos β = �T · �n, (2)

where �n is the unitary director vector. The tangent vector to
the curve �R(�), which represents the light trajectory, is written
as �T = d �R

d�
, where � is a parameter along the curve. In order to

obtain the optical metric, we use the interpretation

ds2 = N2d�2, (3)

where ds2 is the line element in Riemannian geometry, which
gives the light paths as geodesics in this space [21]. This
is obviously equivalent to Fermat’s principle since either a
geodesic or light path is required to obey the variational
principle.

FIG. 2. Director field for circular and radial +1 disclinations on
the catenoid, respectively.

FIG. 3. Director field for circular and radial +1 disclinations on
the plane, respectively.

Now we apply the above relations to a catenoid with its
axis along z. For this surface, we can use the parametric
equations [22]

x = b0 cosh(z/b0) cos φ, y = b0 cosh(z/b0) sin φ, z = z,
(4)

where b0 is the throat radius and φ ∈ [0, 2π ]. We can
reparametrize Eqs. (4) in terms of the arc length of the
catenary, τ = b0 sinh(z/b0), which results in the catenoid
parametrized as

x = (
τ 2 + b2

0

)1/2
cos φ, y = (

τ 2 + b2
0

)1/2
sin φ,

z = b0 sinh−1(τ/b0). (5)

In Cartesian coordinates, the vector �R(�) can be written as

�R = xî + y ĵ + zk̂, (6)

which, according to Eqs. (5), gives

�R = (
b2

0 + τ 2
)1/2

(cos φ î + sin φ ĵ) + b0 sinh−1(τ/b0)k̂ (7)

for the geometry of the catenoid. By writing

d�2 = dx2 + dy2 + dz2 (8)

and using Eqs. (5), we get

dx = τ cos φ(
τ 2 + b2

0

)1/2 dτ − (
τ 2 + b2

0

)1/2
sin φdφ,

dy = τ sin φ(
τ 2 + b2

0

)1/2 dτ + (
τ 2 + b2

0

)1/2
cos φdφ,

dz = b0(
τ 2 + b2

0

)1/2 dτ, (9)

and then

d�2 = dτ 2 + (
τ 2 + b2

0

)
dφ2. (10)

In addition, we can write

�T = dx

d�
î + dy

d�
ĵ + dz

d�
k̂, (11)
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which according to Eqs. (9) gives us

�T =
[

τ cos φ(
τ 2 + b2

0

)1/2

dτ

d�
− (

τ 2 + b2
0

)1/2
sin φ

dφ

d�

]
î

+
[

τ sin φ(
τ 2 + b2

0

)1/2

dτ

d�
+ (

τ 2 + b2
0

)1/2
cos φ

dφ

d�

]
ĵ

+ b0(
τ 2 + b2

0

)1/2

dτ

d�
k̂. (12)

Now, by specifying the director �n configuration, we can study
the two different types of molecular arrangement depicted in
Fig. 2, circular and radial (along the catenary lines).

A. Optical metric for circular disclination on the catenoid

For the nematic liquid crystal molecules circularly dis-
tributed on the catenoid (see Fig. 2), the director is given by

�n = − sin φ î + cos φ ĵ. (13)

The angle between the tangent vector and the director is ob-
tained from Eqs. (2), (12), and (13) as

cos2 β = (τ 2 + b2
0)

(
dφ

d�

)2

. (14)

Therefore, by using Eq. (1), we find

N2 = (
n2

o − n2
e

)(
τ 2 + b2

0

)(dφ

d�

)2

+ n2
e . (15)

Hence, by using Eq. (3), we get

ds2 = n2
e

[
dτ 2 + α2

(
τ 2 + b2

0

)
dφ2

]
, (16)

where

α = no/ne. (17)

Rescaling ds → ds/ne, we obtain a new metric,

ds2 = dτ 2 + α2(τ 2 + b2
0

)
dφ2, (18)

which is analogous to Eq. (10) with the extra factor α which
brings conical features to this effective geometry as will be
seen in Sec. V.

B. Optical metric for radial disclination on the catenoid

For the nematic liquid crystal configuration where the
molecules is along the catenary lines (see Fig. 2) we have

�n = d

dτ

[(
τ 2 + b2

0

)1/2
(cos φ0 î + sin φ0 ĵ)

+ b0 sinh−1(τ/b0)k̂
]
, (19)

for a given φ = φ0. Thus, we get

�n = 1(
τ 2 + b2

0

)1/2 [τ (cos φ0 î + sin φ0 ĵ) + b0k̂]. (20)

Hence, from Eqs. (2), (12), and (20) we obtain

cos2 β =
(

dτ

d�

)2

, (21)

and then the refractive index is given by

N2 = n2
o − n2

e(
τ 2 + b2

0

)2

(
τ 2 cos φ + b2

0

)2 + n2
e . (22)

Therefore, from Eq. (3) we find

ds2 = n2
o

[
dτ 2 + α−2

(
τ 2 + b2

0

)
dφ2

]
, (23)

where α is given by Eq. (17). Rescaling ds → ds/no, we
obtain

ds2 = dτ 2 + α−2
(
τ 2 + b2

0

)
dφ2, (24)

analogous to (18) but now with inverted α. Both metrics
represent then effective conical wormhole geometries.

Since for nematic liquid crystals composed of elongated
molecules, typically no < ne (optically positive nematic) [20],
then α < 1. For τ � b0 (far from the throat), the metrics (18)
and (24) approximate the optical metrics of a +1 disclination
in nematics [11,23] in the circular and radial configurations,
respectively. The isotropic case (no defect) is obtained when
no = ne, or α = 1. In this case, the metrics (18) and (24)
reduce to the one of the Morris-Thorne wormhole t = const,
θ = π/2 section, embedded in 3D Euclidean space [1]. For
0 < α < 1 the metrics (18) and (24) are similar to the ones of
an asymptotically conical wormhole with a global monopole
charge [24] and of cosmic string wormholes [15,25]. This will
be discussed in detail in Sec. V.

III. RAY OPTICS IN THE EFFECTIVE CONICAL
WORMHOLE GEOMETRY

From this point on, we examine the light propagation in the
geometric background given by the metrics (18) and (24) with
0 < α < 1. We start studying the geodesic equation in order to
find the light ray trajectories. Since both metrics are formally
the same except for a multiplicative factor in their angular
part, we perform the calculations with (18). The results for
metric (24) are immediately obtained by replacing α → α−1.

To find the geodesics we follow Ref. [26], where the author
determines null and timelike geodesics in terms of elliptic
integrals. We shall develop the same procedure considering
the angular deficit-surplus factor α. We take the Lagrangian
as

L = gμν

dxμ

dλ

dxν

dλ
, (25)

where the geodesics are obtained as solutions of Euler-
Lagrange equation:

∂L
∂xμ

− d

dλ

(
∂L
∂ ẋμ

)
= 0. (26)

Even though we are interested in the light trajectories, we
solve this equation for the generic geodesic case [cf. Eq. (37)].
To do so, we set [26] L = κc2, where c is the speed of light
in vacuum, which, from here on, we consider to be unitary.
The choice κ = 0 gives the lightlike geodesics while κ = −1
yields timelike geodesics (particles trajectories). From the line
element in Eq. (18) with the added time contribution −dt2, we
can write the Lagrangian as

L = −ṫ2 + τ̇ 2 + α2
(
τ 2 + b2

0

)
φ̇2, (27)
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FIG. 4. Effective potential for l = 1 [green (dotted line)] and l =
2 [blue (dashed line)]. We consider here b0 = 1 and κ = 0 for light
rays.

where the derivatives are taken with respect to the
parameter λ.

Now let us define a new angular variable ϕ = αφ. The
Lagrangian (27) becomes

L = −ṫ2 + τ̇ 2 + (
τ 2 + b2

0

)
ϕ̇2. (28)

Since L does not depend explicitly on t and ϕ, ∂L
∂ ṫ and ∂L

∂ϕ̇
are

constants of motion, that we label 2K and 2l , respectively. It
follows that

K = ṫ and l = (
τ 2 + b2

0

)
ϕ̇, (29)

such that we get the differential equation

τ̇ 2 = κ + K2 − l2

τ 2 + b2
0

. (30)

From this equation, we can identify the effective potential

Ueff = −κ + l2

τ 2 + b2
0

. (31)

The behavior of the effective potential Ueff is plotted in Fig. 4
for l = 1 and l = 2, respectively. It is clear that there is no
stable equilibrium point.

The orbital motion can be obtained in terms of the angular
variable as τ = τ (ϕ). In this case, from Eq. (30) and using
Eq. (29), we get(

dτ

dϕ

)2

= τ̇ 2

ϕ̇2
= (κ + K2)

l2

(
τ 2 + b2

0

)2 − (
τ 2 + b2

0

)
. (32)

Defining

ρ = b0

a

√
τ 2 + b2

0, (33)

and with

a = b0

l

√
κ + K2, (34)

Eq. (32) is changed into(
dρ

dϕ

)2

= (1 − a2ρ2)(1 − ρ2). (35)

Considering the original angular variable φ, we have

φ(ρ) = φ(ρi ) ± 1

α

∫ ρ

ρi

dρ√
(1 − a2ρ2)(1 − ρ2)

, (36)

whose solution is given by

φ(ρ) = φ(ρi ) ± 1

α
[F (sin−1ρ, a2) − F (sin−1ρi, a2)], (37)

where F is the elliptic integral of the first kind [27,28]. Recall
that Eq. (37) gives both the trajectories of particles (κ = −1)
as well as light trajectories (κ = 0) in the conical 2D worm-
hole geometry of metric (18). By making α → α−1, it gives
also the trajectories in the geometry of metric (24).

In Figs. 5(a), 5(b), and 5(c) we plot geodesics for different
values of a and α. In each case, the geodesics start at the
same point and with the same shooting angle. Notice that
when the defect parameter α = 1, which corresponds to no
angular deficit or surplus, the trajectory is due only to the
catenoid geometry. The role of α is clear in Fig. 5(a), bending
the trajectory away from the α = 1 case as if there was less
(deficit angle defect) or more (surplus angle defect) available
space. We note that, by adjusting α, it is possible to mini-
mize or maximize the effects of the catenoid curvature on the
geodesics. It is instructive to compare Fig. 5(a) with Fig. 5 of
Ref. [23] which gives a picture of the deflection of light by
disclinations. This corresponds to a top view of Fig. 5(a) far
from the catenoid mouth. In Fig. 5(b) is a situation where the
geodesics wind around the catenoid neck and then go away.
Finally, in Fig. 5(c), we present the geodesics for a > 1. As
Eq. (31) indicates, l is an effective angular momentum, and,
from Eq. (31) we see that a becomes larger as l decreases. The
limit case l = 0 corresponds to trajectories along catenaries
on the surface. Figure 5(c) shows geodesics with low angular
momentum thus approaching the shape of catenaries.

IV. WAVE OPTICS IN THE EFFECTIVE CONICAL
WORMHOLE GEOMETRY

In the previous section, we obtained the trajectories of light
in the effective geometry of a catenoid with a film of oriented
nematics. Now we examine the corresponding propagating
wave modes. We start with Helmholtz equation in the effective
geometry,

(�g + k2)� = 0, (38)

where �g is the Laplace-Beltrami operator, replacing the
usual Laplacian, and k is the wave number [29]. For a generic
line element ds2 = gi jdxidx j , the Laplace-Beltrami operator
acting on the scalar function � is given by

�g� = 1√|det(gi j )|
∂i[

√|det(gi j )|gi j∂ j�]. (39)

Keeping in mind that we can go from the circular to the radial
disclination by making α → α−1, and using metric (18) we
get

�g = ∂2

∂τ 2
+ τ

τ 2 + b2
0

∂

∂τ
+ 1

α2
(
τ 2 + b2

0

) ∂2

∂φ2
, (40)
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FIG. 5. Geodesics for (a) a < 1, (b) a = 1, and (c) a > 1. The blue (gray) lines represent the isotropic case α = 1. The red (light gray)
and black lines represent, respectively, circular (deficit angle) and radial (surplus angle) disclinations with α = 0.85 for (a) and (b) and with
α = 0.98 for (c).

for the catenoid with the circular disclination. From Eq. (38)
we obtain then

∂2�

∂τ 2
+ τ

τ 2 + b2
0

∂�

∂τ
+ 1

α2
(
τ 2 + b2

0

) ∂2�

∂φ2
+ k2� = 0. (41)

Using the ansatz �(τ, φ) = eimφZ (τ ), where m =
0,±1,±2, . . . due to the periodic boundary condition
on φ, it follows that

d2Z

dτ 2
+ τ

τ 2 + b2
0

dZ

dτ
+

[
k2 − m2

α2
(
τ 2 + b2

0

)]
Z = 0. (42)

Following the work of Kar et al. [30] on scalar waves
in a wormhole geometry in 2 + 1 dimensions, we can write
Eq. (42) in reduced form with the change Z (τ ) = (τ 2 +
b2

0)−1/4χ (τ ), resulting in an effective 1D Schrödinger-like
equation

d2χ

dτ 2
+ [k2 − Veff (τ )]χ = 0, (43)

with the effective potential (see Fig. 6)

Veff (τ ) = 2b2
0 − τ 2

4
(
τ 2 + b2

0

)2 + m2

α2
(
τ 2 + b2

0

) . (44)

The second term in Eq. (44) is a centrifugal term for the effec-
tive angular momentum m2/α2. As we can see, this potential
goes to zero when τ → ±∞, has a maximum at τ = 0 for
any values of m and α, and has minima at

τ = ±
(

5α2 + 4m2

α2 − 4m2

)1/2

b0, (45)

for |m| < α/2 (circular disclination) or |m| < 1/2α (radial
disclination). The effect of the liquid crystal is evident here:
the α/2 (or 1/2α) factor determines for which values of m
the effective potential has attractive regions. For the values
that we use here, the effective potential Veff (τ ) has attractive
regions only for m = 0, as shown in Fig. 6.

Turning our attention again to Eq. (42), we obtain for
τ � b0

τ 2 d2Z

dτ 2
+ τ

dZ

dτ
+

(
k2τ 2 − m2

α2

)
Z = 0, (46)

that is, when far from the throat the wave equation is a Bessel
equation. On the other hand, we get for τ � b0

d2Z

dτ 2
+

(
k2 − m2

α2b2
0

)
Z = 0. (47)

FIG. 6. Effective potential for the catenoid with a circular discli-
nation, for a few values of m and α = 0.85. In graph (a), for m = 0
[red (solid line)], there are two minima at τ = ±√

5 (we are setting
b0 = 1) and a maximum at τ = 0. In graph (b), for m = 1 [green
(dotted line)] and m = 2 [blue (dashed line)], the potential has only
a maximum at τ = 0. For the three curves, the potential goes to zero
asymptotically and has successive increasing values of the barrier
with increasing m. The shape of the potential is similar for the radial
disclination case (not plotted here).
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Thus, Eq. (46) is equivalent to the radial part of Helmholtz
equation in polar coordinates, which agrees with the fact that
far from the throat the wormhole spacetime is essentially flat.
This behavior is in agreement with Ref. [12]. Near the throat,
from (47), light perceives (approximately) the metric of a
cylinder and a repulsive centrifugal potential, m2

α2b2
0
. This is

indeed expected from either metric (18) or (24): as τ � b0

we have a metric that approximates the one of a cosmic
string (liquid crystal disclination), and as τ � b0 we have
an approximate metric with constant coefficients describing
a cylinder.

Now, if we take τ = b0 sinh (z/b0) (arc length of the cate-
nary) in Eq. (42), we get in terms of z

d2Z

dz2
+

[
k2 cosh2 (z/b0) − m2

α2b2
0

]
Z = 0. (48)

Introducing the dimensionless quantity z̃ = z/b0, we get
from (48), after some algebraic manipulations,

d2Z

dz̃2
+ [2q cosh(2z̃) − ε]Z = 0, (49)

which is known as the modified Mathieu equation [27] with

parameters ε = m2

α2 − k2b2
0

2 and q = k2b2
0

4 . We point out that
Eq. (49) has Bessel functions as asymptotic solutions. For
α = 1, an equivalent equation was found in Ref. [30]. In terms
of z̃, the even solution for (49) is

Ze(z̃) = A1MathieuC(ε, q, iz̃), (50)

and the odd solution is

Zo(z̃) = −iA2MathieuS(ε, q, iz̃), (51)

with MathieuC and MathieuS being the Mathieu cosine and
sine functions [31–33], respectively, and where A1 and A2 are
multiplicative constants (amplitudes).

For q � 1 (small values of k2b2
0), the solutions in (50)

and (51) can be expressed in terms of hyperbolic functions.
At the limit when q → 0, we get Ze ∼ A1 cosh ( mz̃

α
) and Zo ∼

A2
α
m sinh ( mz̃

α
), so that both lose their oscillatory character. The

solutions become considerably more complicated for q � 1,
substantially increasing the computational cost for numeri-
cal calculations [27,33,34]. The modified Mathieu functions
behavior is complex, particularly due to the dependence of
the functions on the parameter q [31]. The case when q <

0 (that is k2 < 0) is possible only for exotic particles like
tachyons [35], which we will not discuss here. We can now
draw some graphs to better represent the structure of the wave
modes.

In Fig. 7 we present the wave modes Ze for a few values of
m. The incoming waves approach the throat visibly increasing
their amplitudes. We can also see that the bigger the value of
m, the stronger the oscillations become, and the smaller the
amplitude is. When we set m = 0 or m = 1, the amplitude
of the wave rapidly decreases as it is close to the throat. In
this case, there is a greater probability to localize the wave
near the throat, but not exactly at it. For m = 2, there is a
greater probability to localize the wave at the throat. In Fig. 8
is shown the wave modes Zo for different values of m. In
this case, the incoming waves arrive at the throat increasing
their amplitudes and then decreasing to reach null amplitude

FIG. 7. The radial wave modes Ze (even solutions) for α = 0.85,
q = 2, and a few values of m. Graph (a) is for the circular discli-
nation, and graph (b) is for for the radial disclination. We are using
arbitrary multiplicative constants.

at τ = 0, since these are the odd solutions. We also see that
the bigger the value of m, the stronger the oscillations become,
and the smaller the amplitude is. There is a greater probabil-
ity to localize the wave near the throat, but probability zero
exactly at the throat. The intensity profiles of the radial wave
modes |Ze|2 and |Zo|2 on the catenoid surface for some values
of m and α = 0.85 are shown in Figs. 9 and 10, respectively.

V. ON EMBEDDING DIAGRAMS AND CONICAL METRICS

Wormholes in spacetime are usually represented by “em-
bedding diagrams,” which are 2D slices of the 4D structure
immersed in Euclidean 3D space. The embedding diagram
of the Morris-Thorne wormhole is obtained by taking a t =
const, θ = π/2 section of the spherically spacetime described
by the metric

ds2 = −c2dt2 + dr2

1 − b2
0/r2

+ r2(dθ2 + sin2 θdφ2). (52)

The restricted metric, ds2 = dr2

1−b2
0/r2 + r2dφ2, can be embed-

ded in a 3D Euclidean space with metric ds2 = dz2 + dr2 +
r2dφ2 such that z = z(r) is the equation of the embedded
surface of revolution. Thus, the metric on the surface is

ds2 =
[

1 +
(

dz

dr

)2]
dr2 + r2dφ2. (53)
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FIG. 8. The radial wave modes Zo (odd solutions) for α = 0.85,
q = 2, and a few values of m. Panel (a) is for the circular disclination
and panel (b) is for for the radial disclination. We are using arbitrary
multiplicative constants.

It follows that

dz

dr
= ±

(
1

r2/b2
0 − 1

)1/2

, (54)

whose straightforward integration yields

z(r) = b0 cosh−1(r/b0), (55)

which is the equation of a catenary. Therefore the embedded
section of the wormhole is a catenoid obtained by rotation
of the catenary around the z axis. Using the arc length of
the catenary τ = b0 sinh(z/b0), as measured from the throat,
where r = b0 and τ = 0, we get [see Eq. (5)]

z(τ ) = b0 sinh−1
(
τ/b0

)
. (56)

In terms of the catenary arc length, the line element on the
catenoid writes

ds2 = dτ 2 + (
τ 2 + b2

0

)
dφ2. (57)

In the previous sections, we used a catenoid as a physical
support for ordered nematic films whose optical metric is
given either by Eq. (18) or (24), depending on the liquid
crystal configuration. We consider first the metric (18), that
is,

ds2 = dτ 2 + α2
(
τ 2 + b2

0

)
dφ2, (58)

where 0 < α < 1. Now, if we assume that this is the metric of
a t = const, θ = π/2 section of a wormhole in 4D spacetime,

we might ask what is the shape of its embedding diagram.
To answer this we need to compare Eqs. (53) and (58). Be-
fore doing it, let us write (58) in terms of the coordinate
r =

√
τ 2 + b2

0 :

ds2 = dr2

1 − b2
0/r2

+ r2α2dφ2. (59)

By adjusting the length scale, making rα → R, and
b0α → B0, we get

ds2 = dR2

α2
(
1 − B2

0/R2
) + R2dφ2. (60)

Now, comparing Eqs. (60) and (53), we have

dZ
dR = ±

(
1

1 − B2
0/R2

− α2

)1/2

, (61)

for the embedding in the Euclidean 3D space using cylindrical
coordinates (R,Z, φ), where Z = αz. Equation (61) reduces
to (54) for α = 1. When R → ∞, Eq. (61) describes a cone
of opening angle cot−1(

√
1 − α2). Noting that R � B0, the

integration of Eq. (61) is obtained with the coordinate trans-
formation B0/R = cos x. Thus,

Z (x) = ±B0

∫ √
1 − α2 sin2 x

cos2 x
dx, (62)

which gives us

Z (x) = ±B0[F (x, α2) − E (x, α2) +
√

1 − α2 sin2 x tan x],
(63)

where F (x, α2) and E (x, α2) are elliptic integrals of first and
second kind, respectively.

While the catenoid asymptotically tends to a plane, the
surface of revolution given by Z (R) becomes a cone, as
seen in Fig. 11. This brings us back to our Fig. 1 and to
Fig. 3 of Ref. [24]. We see that our liquid crystal model
simulates conical wormholes, like the ones associated with
cosmic strings [15] or global monopoles [24].

Equation (59) reduces to

ds2 = dr2 + r2α2dφ2, (64)

when r → ∞. When 0 < α < 1 (our case) this is the metric
of an ordinary cone in cylindrical coordinates, in agreement
with the embedding diagram shown in Fig. 11. For α > 1
metric (64) describes a surplus cone, a saddle-shaped surface
of negative curvature. This is the case of the radial disclination
configuration which is described by metric (58) with α →
α−1. In this case, the embedding as a surface of revolution
does not work since, for R > B0/

√
α2 − 1, we would end up

with imaginary Z in Eq. (61) after the substitution α → α−1.
The cone metric (64) is a t = const, z = const, section of

the cosmic string spacetime metric

ds2 = −c2dt2 + dz2 + dr2 + r2α2dφ2, (65)

as well as a t = const, θ = π/2, section of the global
monopole spacetime metric

ds2 = −c2dt2 + dr2 + r2dθ2 + α2 sin θdφ2. (66)

In both cases α < 1, meaning a deficit angle, either dihedral
or solid depending on the case, is related to a positive mass
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FIG. 9. Intensity profiles of the radial wave modes Ze (even solution) on the catenoid surface for α = 0.85, q = 2, and some values of m.
(a) For m = 0 (in this case both circular and radial disclination cases have the same plot). (b) Circular disclination case for m = 1. (c) Circular
disclination case for m = 2. (d) Radial disclination case for m = 1. (e) Radial disclination case for m = 2.

distribution. Conversely, α > 1, meaning a surplus angle, is
related to a negative mass distribution, usually associated with
exotic matter.

Comparing Eqs. (54) and (61) we see that, for α = 1, our
model describes the Morris-Thorne wormhole. For 0 < α < 1

the model with the circular disclination describes an asymp-
totically conical wormhole, which could be associated either
with a cosmic string or with a global monopole. In contrast,
the model with the radial disclination can be associated with
an exotic matter string or monopole.
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FIG. 10. Intensity profiles of the radial wave modes Zo (odd solution) on the catenoid surface for α = 0.85, q = 2, and some values of m.
(a) For m = 0 (in this case both circular and radial disclination cases have the same plot). (b) Circular disclination case for m = 1. (c) Circular
disclination case for m = 2. (d) Radial disclination case for m = 1. (e) Radial disclination case for m = 2.

VI. CONCLUSIONS AND PERSPECTIVES

In this paper, we studied the propagation of light on the sur-
face of a catenoid coated with a nematic liquid crystal in two

different configurations, corresponding to +1 disclinations
without the core singularity. The effective optical metric found
is comparable to the metrics of conical wormhole sections
embedded in 3D Euclidean space. In the limit where the liquid
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FIG. 11. Left: The embedded conical surface for 0 < α < 1.
Right: Same surface as viewed from a different perspective.

crystal film becomes isotropic, that is, when the respective
ordinary and extraordinary refractive indices become equal,
we reproduced the trajectories of light in the Morris-Thorne
wormhole 3D embedding. Otherwise, the effective geometry
obtained is that of an asymptotically conical wormhole, whose
conicity could be due either to a cosmic string or to a global
monopole. In fact, the optical metrics found here matches
the geometry of a planar section of the traversable wormhole
with a topological charge given by Eq. (48) of Ref. [36].
The trajectories, found in terms of elliptic functions of first
kind, are shown for some choices of the initial conditions.
The propagating wave modes were found in terms of Mathieu
functions and are depicted both as functions of the position or
as intensity profiles on the catenoid.

It is well known that both wormholes and cosmic strings
act as gravitational lenses [37,38]. Similar to cosmic strings,
disclinations in nematic liquid crystals also present lens be-
havior [23]. The asymptotically conical analog wormhole
studied here combines these features in such a way that the
wormhole lensing (isotropic case, α = 1) is enhanced by the

circular (deficit angle case, α < 1) disclination while it is
reduced by the radial (surplus angle case, α > 1) disclination,
as is clearly seen in Fig. 5(a). Due to azimuthal symmetry,
the overall shapes of the radial wave modes are not affected
by the type of disclination, nevertheless, their amplitudes and
nodes are (see Figs. 7 and 8). Both ray and wave pictures
are therefore sensible to the presence and type of disclination,
making this analog conical wormhole an auxiliary tool in the
study of its gravitational namesake.

The radial disclination on the catenoid deserves further
investigation since it may become a valuable analog model
for wormholes involving exotic cosmic strings. As suggested
in Refs. [39] and [40], negative mass cosmic strings wrapped
around primordial wormholes would stabilize and therefore
permit them to survive up to present time. The strings would
act as struts impeding the wormhole mouth to close. Further-
more, an issue for future research to explore is the relation
between the propagation of light studied here and bouncing
tachyons [41] which obey essentially Eq. (49). Also, Fig. 6(a)
suggests the possibility of bound states, something that should
be further investigated. In particular, cases with m 
= 0. Fi-
nally, a refinement of our model can be done by the inclusion
of a geometry-induced potential [42] in the wave equation, as
done in Ref. [43] for the Schrödinger equation on the catenoid.
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