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Evolution of the Stokes parameters, polarization singularities, and optical skyrmion

Hiroshi Kuratsuji 1,* and Satoshi Tsuchida2

1Office of Professor Emeritus, Ritsumeikan University-BKC, Kusatsu City, Shiga 525-8577, Japan
2Department of Physics, Osaka City University, Osaka, Osaka 558–8585, Japan

(Received 3 October 2020; accepted 22 January 2021; published 12 February 2021)

A physical theory is presented for polarized light from an aspect of polarization singularity. This is carried out
by analyzing the evolution equation of the Stokes parameters that is derived from the nonlinear Schrödinger type
equation. The problem is explored from two aspects: The first is concerning the single-mode Stokes parameter
that is described by the propagation distance z. The trajectory of the polarization singularities is simply given
by the points satisfying a rule, S3(z) = ±S0 and 0 (S3 represents the third component of the Stokes parameters),
which form a tubelike surface centered with the C line surrounded by L surfaces in the presence of the linear
as well as the nonlinear birefringence. It is pointed out that the optical activity (or chirality) plays an “obstacle”
to reveal the polarization singularity. As the other aspect, we consider the field theoretic aspect of the Stokes
parameters, for which a special solution, called an optical skyrmion, is constructed to explicate the polarization
singularity. The skyrmion forms a tube, the dynamical content of which is briefly discussed. On the basis of the
work presented here, further analysis would be expected to reveal hidden aspects of polarization optics.
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I. INTRODUCTION

The zero point of a complex wave function plays a peculiar
role in physics. Among others, the striking consequence is an
emergence of a nodal singularity accompanying the quantized
monopole [1]. Now what happens if this is extended to a com-
plex wave consisting of two components? A typical problem
is the light polarization [2,3], which is described by a two-
component wave or spinor. Hence one expects that a concept
of the singularity is hidden in the light polarization. Indeed
the polarization singularity was recognized in Refs. [4,5] and
thoroughly discussed in the articles [6,7]. The essence is that
the singularities are given by two kind of objects; one is the
circular polarization point (or line) which is named the C point
or line, and the other is the linear polarization line (or surface)
called the L line or surface. The C point is given by the north
(or south) pole on the Poincaré sphere representing the Stokes
parameters. As is well known, if the point on a sphere is co-
ordinated by the angular parameters (θ, φ), we have difficulty
defining the angle φ at both poles. Namely, the axis of rotation
loses its meaning at the poles, which corresponds to circular
polarization. As for the linear polarization, the situation is a
little bit simpler: An equatorial circle divides the Poincaré
sphere into two hemispheres and by this division the chirality
of polarization suddenly changes.

In the works of Refs. [6,7] great detail of the behavior of
polarization singularities has been given with special empha-
sis on the topological classification of the singularities. More
specifically, in Ref. [6], the polarization singularities were
analyzed in paraxial fields with applications to morphology
and statistics, and in Ref. [7], the optical singularities of
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birefringent dichroic chiral crystals were analyzed. Further-
more, the structure of lines of circular and linear polarization
in three-dimensional ellipse fields was given in Ref. [8].

However, apart from such morphological analysis, it is in-
triguing to address the problem of how the singularity evolves
during the propagation through anisotropic media. To explore
this topic is the aim of the present article. This is carried out
by analyzing the evolution equation of the Stokes parameters,
which is based on the Maxwell equation that is expressed in
terms of the paraxial scheme assisted by the envelope approx-
imation.

We treat the problem from two aspects: one is the single-
mode polarized wave and the other is the field theory aspect
as is explained below. In Secs. II and III, we consider the
single-mode Schrödinger type equation, which is described
by the single coordinate z, i.e., the propagation distance, while
the Hamiltonian depends on the transversal coordinates (x, y)
(see Sec. II). This is transcribed to the equation of motion for
the single Stokes parameters [9–11]. Here the crucial point is
that the coordinates (x, y) should be treated only as parameters
which control the polarization singularity. Subsequently, in
Sec. III an analysis of the Stokes parameters is given in the
presence of the linear and nonlinear birefringence which are
induced by the external Kerr effect and/or nonlinear coupling
of polarization components [9,12]. The trajectory of the C
point, which is just the C line, is simply given by the point
set satisfying S3(z) = ±S0. Similarly, the L surface, which
is traced by the L line, corresponds to the point set satis-
fying S3(z) = 0. Here S3 means the third component of the
Stokes vector. It is important to mention here that the optical
activity gives rise to difficulty in controlling the polarization
singularity.

In Sec. IV, as a complementary aspect to the single mode,
we consider the field equation for the Stokes parameters,
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which is arranged so as to include the distribution over the
transversal plane (x, y) [13–15]. Within this framework the
polarization singularity is treated as a special solution, similar
to the “skyrmion” [16]. This object implies a common view-
point that could be shared with the trajectory of polarization
singularity for the single-mode Stokes parameters. A dynam-
ical content of the optical skyrmion is briefly discussed.

II. PRELIMINARY

A. The Stokes parameters in paraxial scheme

Here we adopt the well-known procedure of the “paraxial
approximation.” Let E be the light field (electric field) which
is traveling through the anisotropic medium in the z direc-
tion. We suppose the modified plane wave [2]: E(x, y, z) =
f (x, y, z) exp[ikn0z], where k = ω

c and n0(≡ √
ε0) is the re-

fractive index of the isotropic medium that is just used for
reference. We choose the z direction as one of three principal
axes of the dielectric tensor ε̂ (see below). The amplitude
f (x, y, z) is written in terms of the linear polarization ba-
sis: f = t ( f1, f2) = f1e1 + f2e2, with the mutual orthogonal
basis e1,2. Alternatively, we transform the basis vectors to
the circular polarization basis: f = ψ1e+ + ψ2e−, with e± =
(1/

√
2)(e1 ± ie2). The corresponding two-component wave is

given by

ψ ≡
(

ψ1

ψ2

)
= 1√

2

(
1 −i
1 i

)(
f1

f2

)
≡ T

(
f1

f2

)
. (1)

Now we introduce the Stokes parameters, for which it is
efficient to use the wave (1) written in terms of the circular
polarization basis [6,11] in contrast to the linear polarization
basis (see, e.g., Ref. [17]). The former is particularly suitable
to discuss the polarization singularity as is seen below. Using
the Pauli-spin σ̂i, the Stokes parameters are written as

Si = ψ†σ̂iψ, S0 = ψ†1ψ, with (i = 1, 2, 3), (2)

or, explicitly,

S1 = ψ∗
1 ψ2 + ψ∗

2 ψ1, S2 = i(ψ∗
2 ψ1 − ψ∗

1 ψ2),

S3 = ψ∗
1 ψ1 − ψ∗

2 ψ2. (3)

The vector S [= (S1, S2, S3)] satisfies the relation S2
0 = S2

1 +
S2

2 + S2
3 , namely, S0 represents the field strength, S0 ≡ |E|2.

Using the complex polar representation [18]

ψ1 = √
S0 cos

θ

2
, ψ2 = √

S0 sin
θ

2
exp [iφ], (4)

we obtain the polar form

S = (S0 sin θ cos φ, S0 sin θ sin φ, S0 cos θ ). (5)

This parametrization is used for the pictorial representation
of the polarization on the Poincaré sphere, which is shown in
Fig. 1.

Singular feature of the Stokes parameters. The expressions
(4) and (5) bear the polarization singularity in an apparent
way. This is shown by introducing the stereographic coordi-
nate [20]

w = S1 + iS2

S0 + S3
= tan

θ

2
exp [iφ], (6)

FIG. 1. Schematic image of the Poincaré sphere. N and S de-
note left-handed and right-handed circular polarization, respectively.
“LH” and “RH” mean left-handed and right-handed polarization,
respectively. The red line (equator) is the linear polarization.

which is the projection from the south pole. From this ex-
pression one sees that the phase φ cannot be defined at the
point w = 0 or θ = 0, which corresponds to the Stokes vector
S3 = +S0. We have another form of the stereographic coordi-
nate that means the projection from the north pole:

w = S1 − iS2

S0 − S3
= cot

θ

2
exp [−iφ], (7)

for which the phase φ is also indefinite at w = 0 or θ = π ,
which corresponds to the Stokes vector S3 = −S0.

The above observation is reminiscent of the fact that the
phase loses the meaning at the zero of wave function. This im-
plies that the two circular polarizations reveal the singularities
of the polarized light, called the C point. On the other hand,
at the equatorial circle θ = π

2 , there do not reveal any singu-
larities, and this circle divides the Poincaré sphere into two
hemispheres corresponding to left-handed and right-handed
polarizations. So we call the equatorial circle the L line.

B. Evolution equation

In the paraxial scheme, the Maxwell (Helmholz) equation
is written for the electric field E:

∂2E
∂z2

+ ∇2E +
(

ω

c

)2

ε̂E = 0, (8)

where ∇2 means the Laplacian in the transverse plane, ∇2 ≡
∂2

∂x2 + ∂2

∂y2 . The dielectric tensor ε̂ stands for the 2 × 2 Hermi-
tian matrix.

First we consider the special case that the Laplacian can be
discarded, which means that the modulation of the light field
E in the transverse plane (x, y) changes slowly compared with
the change in the longitudinal direction z. This procedure may
be called the single-mode approximation, for which the mod-
ulated amplitude depends only on the propagation distance z,
namely, E(z). Hence we write

∂2E
∂z2

+
(

ω

c

)2

ε̂E = 0. (9)
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By applying the approximation of slowly varying amplitude
(alias the envelope approximation) [21], namely, | ∂2 f

∂z2 | �
k| ∂ f

∂z |, we keep only the first derivative term ∂ f
∂z . Writing it

in terms of the circular polarization basis, we arrive at the
two-component nonlinear Schrödinger equation for ψ :

iλ
∂ψ

∂z
= Ĥψ. (10)

Here, λ(= 2π
k ) is the wave length. The transformed Hamilto-

nian is given by Ĥ = − π
n0

T (ε̂ − n2
0)T −1. In terms of the Pauli

spin, we write

Ĥ = ασ̂1 + βσ̂2 + γ σ̂3, (11)

which may depend in general on the field (ψ†, ψ ) as is shown
below. In what follows the wave equation (10) is transcribed to
the evolutional equation for the Stokes parameters (see, e.g.,
Refs. [9–11]). The concise way to carry this out is given by
using the action principle [12]. That is, we introduce the action
function I = ∫

Ldz with the “Lagrangian”

L = ψ†

(
iλ

∂

∂z
− Ĥ

)
ψ

= −S0λ

2
(1 − cos θ )φ̇ − H (θ, φ). (12)

The variational equation δI = 0 leads to

θ̇ = 2

S0λ

1

sin θ

∂H

∂φ
, φ̇ = − 2

S0λ

1

sin θ

∂H

∂θ
. (13)

Using the Stokes vector, we have

dS
dz

= −2

λ

(
S × ∂H

∂S

)
, (14)

with the expectation value of the Hamiltonian H = ψ†Ĥψ .
The evolution equation (14) determines the orbit on the
Poincaré sphere once the parameters (α, β, γ ) are provided.

Following the conventional terminology, the meaning for
the parameters appearing in the Hamiltonian is explained as
follows: α and β represent the linear birefringence, whereas
γ represents the optical activity or chirality. The crucial point
here is that these parameters depend on the spatial coordinate,
generally such that α(x, y, z), etc. In what follows, we restrict
the argument to the special case in which these parameters
have dependence only on the transversal coordinates, such
that α(x, y).

III. TRAJECTORY OF THE POLARIZATION
SINGULARITIES

Now we come to the first topic: to trace out the singu-
larity of polarization in the linear birefringent medium. The
birefringence concerned here is not the one that is inherent
in the nature of media, e.g., the crystal structures, but it is
caused by an external electromagnetic field or self-induced
birefringence, which are discussed separately in what follows.

A. Linear birefringence caused by an external Kerr effect

This case is realized in such a way that the electric field
is applied in the transverse plane: E (x, y) = (Ex, Ey), which

is arranged to depend on the transversal coordinates (x, y). In
this way, the coordinates (x, y) could be treated as if they were
constant during manipulation of the evolution of the Stokes
vectors.

As the dielectric tensor, we adopt the one coming from an
external Kerr effect [2], namely,

εi j = n2
0δi j + GEiE j . (15)

Hence the wave equation for the amplitude f (namely, the
linear polarization basis) is written as

iλ
∂

∂z

(
f1

f2

)
=

(
a b
b −a

)(
f1

f2

)
, (16)

with a = π
n0

G[
E2

x −E2
y

2 ] and b = π
n0

GExEy. We have here omitted
the term arising from the conventional Kerr effect, which
is proportional to G|E |2, with |E |2 = E2

x + E2
y . In terms of

the circular polarization basis, this results in the following
Hamiltonian:

Ĥl = aσ̂1 + bσ̂2 ≡
(

0 a − ib
a + ib 0

)
. (17)

Now it is instructive to examine the wave equation (16),
for which there are two independent solutions: f±(z) =
exp [±i G

2n0
|E |2kz]. By combining these with the reference

plane wave, one gets the total polarization wave:

f‖(z) = exp [in‖kz], f⊥(z) = exp [in⊥kz], (18)

which correspond to two refractive indices, namely: n‖ =
n0 + G

2n0
|E |2 and n⊥ = n0 − G

2n0
|E |2, where the symbol ‖

means the polarization parallel to the applied field, while ⊥
means the polarization perpendicular to the applied field [22].
As such the emergence of two refractive indices represents
the literal meaning of birefringence, which is in contrast to
the optical activity.

We now examine the evolution of the Stokes parameters.
The corresponding Hamiltonian reads H = aS1 + bS2, which
is transformed to

H = cS′
1 (19)

by using the orthogonal transform:

S′
1 = cos �S1 + sin �S2,

S′
2 = − sin �S1 + cos �S2, S′

3 = S3, (20)

with tan � = b
a . Here, for the sake of simplicity of notation,

we write c = √
a2 + b2. Then the evolution equation becomes

λ
dS′

1

dz
= 0, λ

dS′
2

dz
= −2cS3, λ

dS3

dz
= 2cS′

2, (21)

leading to

S3(z) = S0 cos

[
2cz

λ

]
, S′

2 = −S0 sin

[
2cz

λ

]
, (22)

with the initial phase being chosen to be zero.
We summarize a type of polarization, a “quantization rule,”

and a trajectory for each typical value of S3(z) in Table I.
Thus, noting that c (≡ √

a2 + b2) ∝ G(E2
x + E2

y ), the
above rule forms a surface in (x, y, z) space. From Table I, for
the particular case n = 0, we have Ex = 0 and Ey = 0. These
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TABLE I. The type of polarization, quantization rule, and trajec-
tory for each typical value of S3(z) with integer n.

The value Polarization Quantization
of S3(z) type rule Trajectory

+S0 Circular (left-handed) 2cz
λ

= 2nπ C point
−S0 Circular (right-handed) 2cz

λ
= (2n − 1)π C point

0 Linear 2cz
λ

= (n + 1
2 )π L line

two equations determine the point in the transversal plane
(x, y). In other words, the zero point of the external electric
field forms a C line in three-dimensional space. For nonzero
n, the corresponding trajectory forms the objects; the C points
become the “C surface,” whereas the L line the “L volume.”
If cutting these objects by the plane z = const., we have a
cocentric pattern according to the value n. These represent the
L surface and the C circle, so to speak, which are arranged
according to the numbering of n.

At this point it is natural to consider the case such that
E = |E0|

√
f (r)r̂ (r =

√
x2 + y2, r̂ = r

r ), namely, the radial
vector in the transverse plane, which is axially symmetric
with respect to the z axis. In what follows we demonstrate the
simplest choice, f (r) = r. The corresponding profile is given
in Fig. 2, which represents the rotational body around the z
axis. It is apparent that the z axis (that is r = 0) forms a C
line.

Furthermore the following point must be mentioned: The
configurational structure of polarization singularity can be
controlled from an external condition through modulation of
an electric field, for example, by allowing the time variation
of the amplitude E0(t ).

Remarks on the role of optical activity. In the above ar-
gument, it is essential that the Hamiltonian does not include
the term coming optical activity or chirality governed by S3,
which causes S3 to be invariant under Eq. (20). So one may
wonder how about the effect of chirality or optical activity. It
is easy to examine this effect: Instead of Eq. (19) let us con-
sider H = aS1 + γ S3 = �S′

1, with γ = vB (B is the magnetic
field and v is the Verde constant), � =

√
a2 + γ 2. One has the

orthogonal transform corresponding to Eq. (20):

S′
1 = cos �S1 + sin �S3,

S′
3 = − sin �S1 + cos �S3, S′

2 = S2, (23)

FIG. 2. Outline of the polarization singularity: rz = const. The z
axis, namely r = 0, indicates the C line.

with tan � = γ

a . Then the evolution equation becomes λ
dS′

1
dz =

0, λ dS2
dz = −2�S′

3, λ dS′
3

dz = 2�S2, from which one gets S3(z) =
C sin � + S0 cos � cos [ 2

λ
�z], where C is the constant of mo-

tion S′
1 = C. The trajectory of the C line (or L surface) is thus

derived from

cos

[
2

λ
�z

]
= ± 1

cos �
− C tan �

S0
(Circular),

= −C tan �

S0
(Linear). (24)

From this expression one sees that the additional term, which
depends on the angle � as well as arbitrarily chosen constant
of motion C, violates a simple quantization rule leading to the
polarization singularities. This fact suggests that the optical
activity plays the role of an obstacle for forming the polariza-
tion singularities. The exceptional case is that � = 0 (which
means γ vanishes), for which the problem is reduced to the
case of the pure birefringence.

As an extreme case, we consider the pure optical activity,
for which the evolution equation reads Ṡ1 = − 2

λ
γ S2, Ṡ2 =

2
λ
γ S1, Ṡ3 = 0. From this we have the constant of motion

S3 = C. Here the points C = ±S0 and 0; the circular and
linear polarization should be careful. Namely, the circular
polarization consists only of “isolated points” on a Poincaré
sphere arbitrarily chosen in three-dimensional space, whereas
the linear polarization describes the equatorial circle on the
same sphere.

B. Including the nonlinear birefringence

Turning to the nonlinear Kerr media, it is known that the
dielectric tensor is modified to be expressed in terms of the
complex components of the spinor [2,23]. Namely this is
given as

εi j = n2
0δi j + g(E∗

i E j + E∗
j Ei ). (25)

The corresponding Hamiltonian operator becomes

V̂nl = −g

(−|ψ1|2−|ψ2|2
2 ψ∗

2 ψ1

ψ∗
1 ψ2

|ψ1|2−|ψ2|2
2

)
, (26)

which results in the expectation value ψ†V̂nlψ = − g
2 (S2

1 +
S2

2 − S2
3 ) ≡ gS2

3 up to additional constants. By taking account
of this term, the Hamiltonian (19) is modified as

H = cS′
1 + gS2

3 . (27)

By this modified Hamiltonian, the equation of motion turns
out to be [9,12]

λ
dS′

dz
=

⎛
⎝ −4gS′

2S3

−2cS3 + 4gS′
1S3

2cS′
2

⎞
⎠, (28)

for which we have the two constants of motion:

S′2
1 + S′2

2 + S2
3 = S2

0, cS′
1 + gS2

3 = E . (29)

One sees that by choosing the energy constant as E = gS2
0 ,

the equation of motion is derived for the third component S3.
According to the ratio between the linear birefringence and
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TABLE II. The type of polarization, quantization rule, and tra-
jectory for each typical value of S3(z) with integer n.

The value Polarization Quantization
of S3(z) type rule Trajectory

+S0 Circular (left-handed) 2cz
λ

= 4nK (κ ) C point
−S0 Circular (right-handed) 2cz

λ
= 2nK (κ ) ( �= 4nK ) C point

0 Linear 2cz
λ

= (2n − 1)K (κ ) L line

nonlinear coupling, namely, κ = gS2
0

c (called the moduli pa-
rameter), we have two cases of equations for S3: (A) c > gS2

0
and (B) c < gS2

0 [24]. By putting S3 = S0X and τ = 2cz
λ

, these
are written as

(
dX

dτ

)2

= (1 − X 2)(1 − κ2 + κ2X 2) for case (A), (30)

(
dX

dτ

)2

= κ2(1 − X 2)(X 2 − κ̄2) for case (B), (31)

with κ̄ =
√

1 − 1
κ2 . Hence the corresponding solutions of S3

are given by

S3(τ ) = S0 cn(τ, κ ) for case (A), (32)

S3(τ ) = S0 dn(κτ, κ̄ ) for case (B), (33)

where cn and dn represent the Jacobi elliptic functions.
The former solution indicates S3 oscillates between −S0

and S0, while the latter exhibits the small oscillation in the
vicinity of the north (or south) poles; this feature is implied
from κ̄S0 � |S3| � S0. In what follows we give analysis for
the trajectory of the C points and the L lines, S3(τ ) = ±S0, 0.

For case (A), κ < 1, we summarize a type of polarization,
quantization rule, and trajectory for each typical value of S3(z)
in Table II.

In Table II, K (κ ) denotes the period of the cn function,
which is given by the complete elliptic integral:

K (κ ) =
∫ 1

0

dτ√
(1 − τ 2)(1 − κ2τ 2)

. (34)

The contents of Table II correspond to the contents obtained
for the case of pure linear birefringence.

The trajectory revealing these singularities is rather com-
plicated to display, because of the highly sophisticated nature
of the elliptic functions. Here we note that n = 0 is not
allowed, because it yields c ∝ G(E2

x + E2
y ) = 0, but this con-

tradicts the constraint c > gS2
0 > 0. In other words, there does

not appear the case that E = (Ex, Ey) vanishes leading to the
C line. This feature is in contrast to the case of the linear
birefringence.

We discuss the trajectory of left-handed circular polariza-
tion by adopting the same profile as the linear birefringence
for the applied external field, namely, |E |2 = |E0|2r. We take
up the case n = 1, that is, the period 4K (κ ). Then, we write

r̄

(
≡ π

2n0

G|E0|2r

gS2
0

)
= 1

κ
. (35)

FIG. 3. The trajectory in the (r̄, z̄) plane.

On the other hand, the trajectory of left-handed circular polar-
ization is also written as

z̄

(
≡ 2gS2

0

λ
z

)
= 4κK (κ ). (36)

With the aid of these two relations, one can eliminate the
moduli parameter κ to get a trajectory in the (r̄, z̄) plane (see
Fig. 3). Note that in the limit κ → 0 (g → 0), we recover the
trajectory for the linear birefringence.

Now turning to the case (B), κ > 1, we see that there
appear two orbits, for which we give a brief sketch. These are
determined by dn = ±1, which turn out to be 2cz

λ
= 4K (1/κ )

for S3 = +S0 and 2cz
λ

= 2K (1/κ ) for S3 = −S0. There are
no orbits for the linear polarization, S3 = 0, because the dn
function takes never zero.

Remarks. If the term coming from the optical activity
is added to the Hamiltonian, the equation of motion is not
reduced to a simple form that is described by the third com-
ponent of the Stokes parameters. This implies that one has
the same problem as in the linear birefringence case; that
is, the optical activity destroys a simple quantization rule to
extract the configurational structure revealing the polarization
singularities.

IV. NONLINEAR FIELD AND OPTICAL SKYRMION

We now consider the case that the polarized field extends
over the transversal plane; the field is described by ψ (x, y, z);
that is, the Laplacian is recovered [25]:

iλ
∂

∂z

(
ψ1

ψ2

)
=

(
− λ2

2n0
∇21 + V̂nl

)(
ψ1

ψ2

)
, (37)

with 1 being the 2 × 2 unit matrix. The corresponding Hamil-
tonian is written in terms of the angular field [θ (x, y), φ(x, y)]
[25]:

H̃ =
∫ [

S0λ
2

2n0

{
1

4
(∇θ )2 + sin2 θ

2
(∇φ)2

}
+ gS2

0 cos2 θ

]
d2x,

(38)
where we have omitted an additional constant term. Then the
problem is what is expected for the polarization singularity
in the framework of this field equation. A plausible way to
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answer this question may be given by utilizing the special
solution that is inherent in the nonlinear field equation (37). If
we consider the characteristics of the nonlinear birefringence,
this can be achieved by the vortex type solution, which is
called the optical skyrmion in terms of the current terminology
[26]. By this specific solution the structure of the polarization
singularity of the C line and the L surface could be naturally
incorporated. Actually the same solution has been discussed
in the previous work [27], but the argument from the polariza-
tion singularity remains untouched. Here we give a discussion
from this renewal point of view.

To construct the special solution we need to settle its pro-
file. First, taking into account the topological characteristics,
the phase function is chosen such that φ = n tan−1 ( y

x ), with
n = 1, 2, . . ., being the winding number, which follows the
idea of the usual vortex [28]. Next the angular function θ ,
which determines the profile of the skyrmion, is chosen as
a function of the radial variable r (=

√
x2 + y2). Keeping

these characteristics in mind, we write the Hamiltonian (38)
in terms of the field θ (r):

H = S0λ
2

8n0

∫ [{(
dθ

dr

)2

+ 4n2

r2
sin2 θ

2

}
+ g′ cos2 θ

]
rdr.

(39)

Here, we put g′ = 8gn0S0

λ2 , which means that g′ takes a positive
value. The profile function θ (r) may be derived from the
extremum of H ; namely, the Euler-Lagrange equation leads to

d2θ

dξ 2
+ 1

ξ

dθ

dξ
− n2

ξ 2
sin θ + 1

2
sin 2θ = 0, (40)

where we adopt the scaling of the variable: ξ = √
g′r. An

efficient way to extract the polarization singularity is given by
checking the behavior of θ (ξ ) at specific boundary conditions
at ξ = 0 and ξ = ∞.

The behavior near the origin ξ = 0 is controlled by the
differential equation that serves as the Bessel equation; thus
we obtain θ (ξ ) � Jn(ξ ), which satisfies θ (0) = 0. This means
that the optical state is left-handed circular polarization at
the origin. On the other hand, the behavior at ξ = ∞ is seen
by checking the stationary feature of the solution; if putting
θ (ξ ) = π

2 + α, with α being the infinitesimal deviation, then
we have the linearized equation α′′ − α � 0 near ξ = ∞,
which results in α � exp[−ξ ]. This means that the solution
should approach θ (∞) = π

2 . Thus, the state becomes linear
polarization at infinity.

From the above construction of the optical skyrmion, we
see that this reveals a three-dimensional object, if it is ex-
tended in the propagation direction. The center line forms a
C line, whereas the boundary forms an L surface. From the
pictorial viewpoint (see Fig. 4), there is somehow similarity
with Fig. 2 which profiles the polarization singularity for the
linear birefringence. Specifically, to be noted is that the C
line, the central axis r = 0, corresponds to the center line
of the optical skyrmion. The C line may be deformed by an
action coming from externally driving (pinning) force. In the
presence of such an external force, the behavior of the C line
becomes like that in Fig. 4(b), which is rather intricate in
general to extract the analytical solution for the behavior of
the C line.

FIG. 4. Conceptual image of the skyrmion tube. The surface of
the tube, namely, the L surface, corresponds to the equator of the
Poincàre sphere. The center of the tube represents the C line. (a) No
external force. (b) Including external force.

Apart from the configurational aspect of the optical
skyrmion, which is quoted as ψSK, the more interesting aspect
is its dynamical content, following the original idea of Skyrme
[16]. Namely, the tube domain carries a kinetic energy along
with the propagation direction z. This can be added to Eq. (38)
as a form that is written in terms of the spinor wave ψ :

T ∝ | ∂ψ

∂z |2, which is the energy corresponding to the second

derivative ∂2E
∂z2 of the starting Maxwell equation (8), which is

discarded in the envelope approximation. [Note that in terms
of the Stokes parameter, it is written as T ∝ ( ∂S

∂z )
2
]. This term

implies that the Stokes vector gives rise to the structure of the
spinning (or rotational) degree together with the translational
mode. Indeed the quadratic term of ψ may bring about the
kinetic energy; that is, if we write the wave incorporating the
collective degree � and R (here, � means the global phase,
and R is the coordinate, which represents the trajectory of the
C point),

ψ (x, y, z) = exp [i�(z)]ψSK[x − R(z)], (41)

it follows that T ∝ A�̇2 + BṘ
2
, the sum of the spinning and

translational energy of the optical skyrmion. Here we note
that there appears an essentially different term inherent in the
spin degree, called the gyration term, that is proportional to
Ṙ, which comes from the first-order derivative of the Stokes
parameter [27].

Here a remark is given on the stability of the skyrmion
against the various kinds of external perturbations. In order
to examine this feature, let us consider the dynamical and
topological aspects. The dynamical stability of the skyrmion
will be carried out by the eigenmode analysis for the
linearized equation, which describes the deviation from the
solution (θ, φ). It is crucial that, in the present context, with-
out detailed analysis of this linearized equation, the feature of
polarization singularity is kept even in the presence of external
perturbation. That is, there is a stability from a topological
aspect, which may be described by the topological charge.
The main feature of the skyrmion can be topologically pro-
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tected against the external disturbance [16]. The details of the
eigenmode analysis will be left for future study.

We further mention the other aspect of skyrmions, e.g., the
occurrence of multiple skyrimions in analogy with the multi-
ple vortices that appear in the conventional single-component
nonlinear Schrödinger equation. Such an aspect could not
be expected in the dynamics of the single-mode Stokes
parameters.

V. DISCUSSION AND SUMMARY

A brief remark on a possible experimental realization.
(i) For the single mode case, the first thing is to arrange

the linear birefringence by using the electric field. This is
provided in such a way that the electric charge is uniformly
distributed on a “line” (or rod) so as to be in an axially sym-
metric way about the line; then an axially symmetric electric
field may be produced according to the law of electrostatics,
which is as given in Sec. III A. This can be extended to the
case where there is nonlinear birefringent media; that is, the
charged line is inserted in the media. Having given the setting,
one can observe the C line (L line) in principle. Namely,
appropriately arranged polarized light is transmitted through
the birefringent apparatus, and then the output polarization
is expected to be observed with the aid of an analyzer (e.g.,
Berry and Dennis [7]). Here particularly mentioned is the
time variation of the birefringence, which is controlled by
the time-varying amplitude of the electric field. According to
the formula given in Tables I and II, the period c, which stands
for the change of the C point, depends on time explicitly. The
time variation would give rise to a direct modulation of the C
point for fixed coordinates (r, z). A similar argument can be
applied to the case for L lines.

(ii) On the other hand, for the case of the optical skyrmion,
the following setting will be supposed. According to the ex-
perimental setting of Ref. [14], let us consider the circular
polarized beam passing through a nonlinear birefringent me-

dia. During the propagation through the media, the vortex
(skymion) will be produced. The crucial point is that the
vortex mode somehow forms the waveguide (tube). If probe
light that is circularly polarized is injected through this tube,
then one could observe the output circularly polarized light by
the analyzer at the end. So the actual occurrence of this event
may be evidence of the optical skyrmion.

Summary. The circular and linear polarizations play a
peculiar role in the light polarization, which is represented
symbolically by the terminology of “polarization singularity.”
In particular the circular polarization is characterized by the
feature that the azimuthal angle φ is indefinite at the north
and south poles. Under this standpoint we have explored the
polarization singularity from two aspects: On the one hand,
the configurational structure of polarization singularity, which
is manifested by the single-mode Stokes vector, is given by the
trajectory satisfying S3(z) = ±S0 and 0 that is induced by the
linear as well as the nonlinear birefringence. Here particularly
mentioned is that the optical activity plays a role in preventing
the formation of the polarization singularity. The polarization
singularity may be manipulated by modulating the external
electric field. On the other hand, as a supplement to the single
Stokes parameters, we have discussed the nonlinear field by
taking account of the transverse coordinate, which generates
a spontaneous structure of the polarization singularities in the
form of optical skyrmions. This provides a self-organized po-
larization singularity that is caused by the collaborated effect
of nonlinear birefringence and the field effect extended over
the transverse plane. A further analysis would be expected to
reveal hidden aspects of polarization optics on the basis of the
attempt presented here.
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