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Optomechanical gradient forces arise from evanescent fields of guided waves in parallel photonic waveguides.
When designed to be of an attractive nature, they increase exponentially as the gap between the waveguides
decreases. Moreover, the amplitude of the gradient force can be well controlled due to its linear dependence
on the input laser power. Here, we propose to exploit the intrinsic nonlinear nature of the optomechanical
gradient force to induce a tunable three-wave coupling between the fundamental modes of two doubly clamped
nanophotonic beams. For one of the beams having half the width of the other beam, the 1:2 internal resonance
between the fundamental modes supports degenerate spontaneous parametric down conversion (SPDC). We
theoretically explore the main feature of the dissipative phase diagram of the underlying degenerate parametric
oscillator model to show that the critical point of the SPDC occurs at parameters which are well in reach of
state-of-the-art experiments.
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I. INTRODUCTION

In the 1970s Ashkin and colleagues observed that strong
electromagnetic field gradients in close vicinity to dielectric
materials induce mechanical forces that result in measurable
nanometer-scale displacements. This observation ultimately
led to the conceptual development of what is known today as
optical tweezers, which were awarded the Noble prize in 2018
[1] and inspired optical trapping experiments [2,3]. Since
then, optically induced gradient forces were widely used to
manipulate microparticles, and therefore enabled a multitude
of applications in biology; especially in manipulating living
cells [4–8].

The same effect has been exploited in physics and engi-
neering, e.g., for accurate levitation, actuation, and assembly
of particles and nanostructures [9–13], and opened the door
to the field of optical binding, where microparticles bind to
form arrays under the influence of a laser pump [14–16].
Optically induced gradient forces also enabled fundamen-
tal cavity optomechanical experiments [17] cooling levitated
microparticles to sub- and millikelvin temperatures [18–20].
Even more, electrically induced gradient forces have been em-
ployed to actuate and control nanoelectromechanical systems
[21–25].

Optically induced gradient forces in waveguides are scal-
able to the nanoscale and thus promise a broad range of
technological applications [26–29]. In addition to silicon pho-
tonic applications ranging from optical phase shifters [30–32]
to optically tunable mechanical Kerr coefficients [33], and
all-optical switches [34], the vision is to exploit the optome-
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chanical gradient forces on a complementary metal-oxide-
semiconductor -compatible platform [26,35–37] and enable
all optical operation of nano- and micro-electromechanical
systems (NEMS/MEMS). Such a physical operation principle
generates design opportunities to improve in terms of per-
formance, cost and reliability of NEMS and MEMS devices.
In particular, for sensing applications on the nanoscale, op-
tomechanical working principles will have advantages over
electrical principles such as, for example, nanoscale resolution
and operation speed [38].

Microelectromechanical systems have a longstanding his-
tory of academic research [39] and industrial applications
[40], ranging from sensors such as pressure sensors, gyro-
scopes, and accelerometers to actuators such as micro mirrors
[41–43]. In many cases the capacitive electrostatic forces have
been used to actuate and sense the mechanical motion and
operate the MEMS device in the linear regime. However,
many ideas exploit the fundamental phenomena of nonlinear
oscillations to achieve improved device performance [44,45],
as for example, parametrically amplified gyroscopes [46,47],
or ultrasensitive force sensors [48,49].

Motivated by proof of concept experiments of nano-
optomechanical actuation [37,38], we show in this paper that,
just like NEMS and MEMS in the electrical domain, optome-
chanically coupled waveguides can also be engineered such
that the light forces induce significant nonlinear phenomena
for the mechanical modes. In contrast to purely mechanical
nonlinearities, the nonlinearities induced by the optomechani-
cal gradient forces are easily tunable via the input laser power
during the operation of the device.

In particular, we discuss a certain geometry which exempli-
fies the nonlinear mode coupling of two mechanical or rather
acoustic modes mediated by light forces. These two mechan-
ical modes with frequency ratio 1:2 describe the fundamental
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FIG. 1. Dipoles accelerated as a result of gradient forces in an
inhomogeneous electromagnetic field.

modes of two beams with a 1:2 cross-section ratio. If the wider
beam, which acts as a waveguide, is actuated by the optome-
chanical gradient force, via a modulated optical input power,
the induced nonlinear three-wave coupling between the two
mechanical modes leads to the excitation of the nonactuated
thinner beam. Such a nonlinear phenomenon is well known
as spontaneous parametric down-conversion (SPDC) in the
context of nonlinear optics [50,51].

The methods in our work are generic showing that impor-
tant concepts widely used in NEMS and MEMS design such
as frequency tuning and parametric modulation are within
reach of currently available technology. Remarkably, with the
typical geometric dimensions, optical gaps and mechanical
quality factors the required optical powers do not exceed the
milliwatt range.

The remainder of the paper is organized as follows: We
start with a discussion on the basics of optomechanical gra-
dient forces and spontaneous parametric down-conversion in
Sec. II before Sec. III introduces the proposed photonic sys-
tem and several excitation scenarios in detail. In Sec. IV
we propose an optical read-out method to observe the me-
chanical dynamic behavior by implementing the system into
a phase-sensitive optical integrated circuit, a Mach-Zehnder
interferometer (MZI). Section V discusses the theoretical de-
scription of the resulting optomechanical system and presents
the critical amplitudes for different quality factors and drive
detuning parameters of the nanostring (NS) and the waveguide
(WG).

II. THE OPTOMECHANICAL GRADIENT FORCE AND
SPONTANEOUS PARAMETRIC DOWN-CONVERSION

Qualitatively, the optically induced gradient force on a
dielectric slab exposed to an imhomogeneous electromagnetic
field arises from unbalanced forces acting on the oppositely
charged ends of induced dipoles. Figure 1 illustrates how
dipoles are accelerated towards strong field gradient regions.
A suspended dielectric nanobeam will thus be mechanically
deflected. In essence, the resulting optomechanical gradient
force mutually couples the mechanical deflection and the op-
tical excitation, and effectively produces an optical element,
that responds to changes in optical pump parameters.

The system under our investigation is composed of two
suspended dielectric beams of the same height but widths
differing by a factor of 2. The wider beam, referred to as
the “waveguide” (WG), supports propagation of an optical
mode at the pumping wavelength. The closely spaced thinner

beam, referred to as the “nanostring” (NS), does not support
any propagating mode at the given wavelength but can be
manipulated by the optical pump. For a sufficiently small gap
between the WG and the NS, the evanescent portion of the
guided mode propagating through the WG will lead to an
attractive force pulling the NS towards the WG, given that
the excited optical mode propagating through the WG is a
symmetric transverse electric mode [32].

We theoretically demonstrate a three-wave coupling be-
tween the mechanical modes of the WG and the NS that is
promoted and tuned by the optomechanical gradient force. As
a result of the three-wave coupling, the system can no longer
be solely described as an optically nonlinear element, but must
also include mechanical nonlinearities. In fact, we show that
our effective mechanical model resembles the well-known
degenerate parametric oscillator (DPO) model in full analogy.

DPOs have been widely studied in the context of nonlinear
optics [50]. where an optical nonlinear material with χ2 sus-
ceptibility decomposes optically pumped photons at ω0 into
photons having frequencies ω1 such that ω0 = 2ω1. The con-
version, however, only occurs above a certain threshold power
of the pumped photon intensity. This phenomenon known as
spontaneous parametric down-conversion (SPDC) constitutes
a paradigmatic example of a dissipative phase transition [52].
SPDC has triggered both technological advances [53–55], and
fundamental insights in the field of quantum optics [52,56–58]
ranging from quantum information [59–62] to modern hybrid
optomechanical devices [17,63,64] and even found use in
industrial applications of micro- and nanoelectro-mechanical
systems [65,66].

Our system is able to explore the full dissipative steady
state phase diagram of the DPO model in an optomechanical
setup. The WG and the NS are represented by Euler-Bernoulli
beams which are actuated by the optomechanical gradient
force. The nonlinearity mediating the coupling of the two
beams enters via the gap- or rather deflection-dependent force.
The controllability of the proposed scheme originates from the
proportionality of the optomechanical gradient force on the
optical input power.

Figure 2(a) schematically depicts the system under investi-
gation. Its steady state phases are illustrated in Figs. 2(b) and
2(c). In the trivial phase displayed in Fig. 2(b), the fundamen-
tal beam mode of the WG oscillates at the drive frequency of
an external actuation, while the NS remains mainly at rest. In
the nontrivial, symmetry-broken phase shown in Fig. 2(c), the
NS oscillates at exactly half of the drive frequency due to the
nonlinear three-wave coupling mediated by the optomechan-
ical gradient force. The critical point of the dissipative phase
transition occurs at a critical oscillation amplitude Acr

WG of the
WG.

III. WAVEGUIDE SYSTEM

Previous works have proposed and demonstrated gradient
force-based optomechanical interaction in silicon photonics
using a WG and a parallel NS that are released to have an air
cladding [30,37]. Our work builds upon the same platform.
In this section, we introduce the nomenclature as well as the
specific geometrical parameters and excitation conditions to
be used throughout the paper.
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FIG. 2. Scheme of the nanophotonic system and its steady-state phases. (a) The waveguide (WG) and the nanostring (NS) connected by
a spring symbolizing the optomechanical interaction which mediates the three-wave coupling required for SPDC. (b) Trivial phase below the
critical oscillation amplitude AWG < Acr

WG. (c) Nontrivial, symmetry-broken phase above the critical oscillation amplitude AWG > Acr
WG. Note:

Under constant optical pumping both the waveguide and the nanostring exhibit a finite static deflection, which is not included in the figure for
the sake of clarity.

Our waveguide system is formed of two silicon beams
denoted WG and NS of the same height h and length L as
illustrated in Fig. 3. WG refers to the wider beam of width
WWG, and NS denotes the thinner beam of width WNS. The
gap g refers to the distance between two opposite points along
the WG and the NS. Initially at zero optical power, the gap
has a value of G0. Table I lists the geometric parameters of the
WG and the NS.

The optical excitation is done through the input port of
the waveguide as also illustrated in Fig. 3. In practice, the
waveguide inputs and outputs can be connected to optical
grating couplers for optical excitation and read-out.

We consider three excitation and pumping conditions: (1)
The WG is only pumped by an unmodulated optical power.
(2) The WG is optically pumped with a constant unmodulated

FIG. 3. Our system formed of two parallel silicon nano-beams of
length L, both of the same height h, the wider is named Waveguide
(WG), and the thinner is named Nanostring (NS). �1,2 symbolize
oppositely facing boundaries of the waveguide and the nanostring.
g is the variable gap between the boundaries �1 and �2 is defined as
a function of the spatial direction z.

optical power, and simultaneously excited by a mechanical
shaker force with a drive frequency ωd ≈ ωWG. (3) The WG is
optically excited with an amplitude modulated optical power,
that is superimposed over a constant biasing optical power,
with a modulation frequency ωd ≈ ωWG, and no direct me-
chanical driving.

IV. OPTICAL READ-OUT OF MECHANICAL RESPONSE

The optical input power injected into the WG determines
the gradient force and thus the gap to the NS. When the
waveguide system consisting of the WG and the NS is inserted
in one side of an optical MZI, a change of the size of the
gap will affect the the excited optical mode refractive index.
The output of the MZI, therefore, presents the optically tuned
phase and transmission response of the waveguide. This was
experimentally verified for a silicon nitride-based system hav-
ing a WG and a NS suspended parallel to each other [67]. The
work targeted and demonstrated optical phase measurements,
thus showing the possibility of a tunable optical device based
on optomechanical gradient forces in such a system.

We propose to exploit the same idea to read out the me-
chanical response of the waveguide system: Both the WG and
the NS are suspended parallel to each other in one arm of the
MZI as shown in Fig. 4. The optical phase dependence of the
output optical signal as a function of the input optical power
is recorded. By formulating the optical transmission in terms
of the optical phase shift, we directly correlate the mechanical
deflection to the optical phase shift and transmission signals
to provide a read-out method for the proposed excitation
schemes.

TABLE I. Geometric parameters of the WG and the NS.

L (μm) G0 (nm) WWG (nm) WNS (nm) h (nm)

100 130 450 225 225

023513-3



MOHAMED ASHOUR et al. PHYSICAL REVIEW A 103, 023513 (2021)

FIG. 4. Mach-Zehnder interferometer with one of its sides hav-
ing the proposed optomechanical system of the WG and the NS.

The optical phase response can be defined in terms of the
input optical power in the proposed system (See Appendix A
for detailed derivation) by

δφ = 2π

λ

(∫ L

0
neff{G0 − [uWG(z) + uNS(z)]}dz − neff(G0)L

)
,

(1)

where neff is the function relating the effective optical refrac-
tive index of the WG and the NS to the gap in-between. This
will be further discussed in Sec. V.

The resulting optical transmission as a function of the
optical phase shift is defined by

T = Pout

Pin
= 1

2
{1 + cos[δφ(Pin) − δimbalance]}. (2)

Therefore, the optical phase shift is a direct function of the
input power, and consequently the optical transmission. We
later predict the optical phase shift response for the proposed
excitation cases, which can be inferred from experimental
measurements of optical transmission using Eq. (2). Note that
there is an initial optical imbalance between the two optical
paths of the MZI due to the possibly different initial optical re-
fractive indices; we denote this imbalance by δimbalance, which
we set to zero without loss of generality.

V. OPTOMECHANICAL MODEL

The optomechanical gradient (OMG) force is defined as
[32]

FOMG(t ) = −LP(t )

c

∂neff

∂g
, (3)

where P is the optical power, which can be in general time
dependent, neff is the total effective optical refractive index
of a guided propagating optical mode promoting the gradi-
ent field through its evanescent tail, L is the length of the
dielectric nanostring exposed to the evanescent field, c is the
speed of light in vacuum, and g is the z-dependent distance
from boundary �1 of the waveguide to boundary �2 of the
nanostring, see also Fig. 3.

The deflection resulting from a gradient optomechanical
force in a system of a NS suspended parallel to a suspended
WG is governed by coupling the Euler-Bernoulli beam equa-
tion with the optomechanical gradient force introduced in
Eq. (3). This yields

FOMG

L
{G0 − [uWG(z, t ) + uNS(z, t )]}

= ρAiüi(z, t ) + diu̇i(z, t ) + YAiWi
2

12L4
ui

′′′′(z, t )

−
(

T0

L2
+ �Ti

L2

)
ui

′′(z, t ), (4)

where ρ represents the material’s density, Ai the cross-
sectional area of the beam, di the mechanical damping per
length, Y the Young’s modulus, h and L the height and the
length of the beam respectively, and ui(z, t ) is the time-
dependent absolute spatial deflection of the beams along the z
axis, where i={WG,NS}.

We have introduced Eq. (4) such that the coordinate z ∈
[0, 1] denotes the dimensionless length and the dot and prime
denote the derivative with respect to time and the dimen-
sionless length z, respectively. Moreover, we consider the
case of clamped-clamped boundary conditions with ui(0, t ) =
u′

i(0, t ) = ui(L, t ) = u′
i(L, t ) = 0. In Eq. (4) we keep the sign

of the force positive for both the WG and the NS. The at-
tractive nature of this force is accounted for by using the
time dependent gap definition g(z, t ) = G0 − (uWG(z, t ) +
uNS(z, t )), which reflects a decreasing gap value as the optical
power increases.

It is essential to note that the term �T representing the
bending tension is the main source of geometric nonlinearity
(GNL) with

�Ti = YAi

2L2

∫ 1

0
[u′

i(z, t )]2dx. (5)

We also consider an initial stress-free material with T0 = 0
in our analysis. Relaxing this assumption, however, will not
have an impact on the following proposal.

The full transient deflection described by Eq. (4) can be nu-
merically solved. However, this approach is computationally
expensive and the essential physics remains mostly illusive. In
this work, we rewrite the equations of motion in the basis of
the linear normal modes of the beams [68] and approximate
the overall mechanical deflections by the fundamental modes
of the WG and NS only. Within our approximation we are,
however, still able to account for the relevant nonlinearities.

In the following subsections, we will perform (1) A static
solution, that sweeps across time-invariant optical power val-
ues to obtain the deflection of the WG and the NS from the
time-invariant Euler-Bernoulli equation. This static solution
allows us to define the regions of stable device operation and
determine the bias points which ultimately define the coupling
strength of the beams induced by the OMG forces. We show
that our modal reduction scheme can accurately determine
the instability point of the nonlinear system by verifying the
results with nonlinear finite element static simulations. (2)
A dynamic analysis around the static deflection point of the
beams. Here, we illustrate how our system resembles the well-
known model of degenerate optical parametric oscillators
[58,69] with a tunable three-wave coupling strength between
the fundamental modes of the waveguide and nanostring.

A. Gap-dependent refractive index

The first step of our analysis requires us to determine the
OMG force as a function of the gap. Therefore, we obtain
the total effective refractive index comprising the effective
optical mode of the guided part in the WG and the evanescent
component interacting with the NS from an optical mode
simulator. The obtained refractive index is then fitted against
the gap between the NS and the WG. We found that the gap
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dependent refractive index function can be well fitted to

neff(G0 − Ut(z)) = aoe(bo(Go−Ut (z))) + coe(do(Go−Ut (z))), (6)

where the fitting parameters a0, b0, c0, and d0 are dependent
on the width and the height of the NS and the WG, but they
are independent of the waveguide length or the input optical
power, and Ut (z) = uWG(z) + uNS(z) as the total deflection
magnitude of both the WG and the NS. For obtaining these
parameters the c-band center wavelength of 1550 nm was
used, and we employed Lumerical Mode—a commercial soft-
ware for obtaining refractive indices and profiles of optical
modes—to obtain the refractive index for the specific geome-
try summarized in Table I.

Within our fit function the parameters a0, and c0 turn out
to be positive constants, while the parameters b0, and d0 are
negative constants. This reflects a negative slope of the fit
function as the gap value decreases, or as the deflection of
the WG and the NS increases due to their mutual attraction.

B. Modal projection

The field variable ui(z, t ) in the Euler-Bernoulli equation
denotes the deflection at every material point of the WG
and NS and therefore varies along the z direction due to the
clamped boundaries and the WG and the NS being subjected
to a lateral optomechanical force. In the following, we will
determine the dimensionless modal shape functions Si,n(z)
with i={WG,NS} which form an orthonormal basis and there-
fore allow us to introduce the modal representation of the
deflection, given by

ui(z, t ) =
∞∑
n

qi,n(t )Si,n(z). (7)

The modal amplitudes are formally defined by

qi,n
def=

∫ 1

0
dzSi,n(z)ui(z, t ). (8)

The shape functions, for which we use the convention that
SWG,n(z) = −SNS,n(z), since they are identical for the WG and
the NS but of opposite sign, are determined by the eigenvalue
problem

YAiWi
2

12L4
S′′′′

i,n(z) = ω2
i,nρAiSi,n(z), (9)

with the boundary conditions Si,n(1) = Si,n(0) = S′
i,n(1) =

S′
i,n(0) = 0 for the clamped-clamped case for all values

of n. The integer n denotes the mode number and the

eigenvalues ωi,n = r2
n

Wi
2πL2

√
Y

12ρ
for n ∈ {1, 2, 3, . . .} the cor-

responding angular resonance frequencies of the modes, with
the roots rn determined from the transcendental equation
cosh(rn) cos(rn) − 1 = 0. The roots and consequently the an-
gular frequencies are monotonically increasing with r1 ≈ 4.7,
r2 ≈ 7.9, r3 ≈ 11, . . ..

The closed form of the modal shape functions are specified
in Appendix B. Note that the angular frequencies scale lin-
early with the width of the beams in the bending direction, and
therefore in the ideal design case we have ωWG,1 = 2ωNS,1.

In order to rewrite the Euler Bernoulli equation (4), into its
modal representation for the n-th modal amplitude qi,n(t), we

employ a prodecure referred to as modal projection: We insert
Eq. (7) into Eq. (4), multiply by the linear normal mode shape
Sn(z) and then integrate the equation over the length of the
beams according to

∫ 1
0 Ldz. We find

F i
OMG,n(qWG,n, qNS,n) = mi,nq̈i,n(t ) + di,nq̇i,n(t )

+ Ki,nqi,n(t ) +
∞∑

m,l,k=1

β i,GNL
n,m,l,kqi,m(t )qi,l (t )qi,k (t ), (10)

with the modal mass, modal damping, modal stiffness, modal
amplitude dependent modal optomechanical gradient force,
and modal four-wave couplings induced by the geometric
nonlinearity denoted by mi,n, di,n, Ki,n, F i

OMG,n, and β i,GNL
n,m,l,k ,

respectively. The exact definitions of these quantities can be
found in Appendix B. The modal stiffness relates to the angu-
lar frequency and modal mass as Ki,n = mi,nω

2
i,n.

The modal representation of the Euler-Bernoulli equation
is exact. However, it requires to solve an ordinary differential
equation for infinitely many modal amplitudes if no further
approximations are made. In contrast to the Euler-Bernoulli
equation in its continuous form, Eq. (4), the modal represen-
tation allows us to perform a drastic complexity reduction
by approximating the dynamics only with the fundamental
modes of the beams. Thus, we set qi,n(t ) = 0 for all n > 1
and therefore simplify the deflection by ui(z, t ) ≈ qi,1(t )s1(z).
This ultimately reduces the complexity to an ordinary dif-
ferential equation with only two variables. Moreover, the
optomechanical gradient force reduces to F WG

OMG,1(qWG,1 +
qNS,1, t ) = −F NS

OMG,1(qWG,1 + qNS,1, t ), where F i
OMG,1(qWG,1 +

qNS,1) is the time-dependent modal projection of the op-
tomechanical gradient force in the modal domain using the
fundamental mode of the Euler-Bernoulli clamped-clamped
beam. The derivation of the static form of F i

OMG,1 and the need
of a modal force representation is detailed in the following
section.

C. Static analysis

As we will elaborate on in the following, one of the key
ingredients of our proposal is the tunable three-wave coupling
strength between the two beams. In fact, the three-wave cou-
pling is linearly proportional to the static input laser power
Pdc. However, the input power is upper bounded by a certain
threshold at which our system will collapse due to the attrac-
tive nature of the optomechanical gradient force. The goal of
this section is to determine this threshold, i.e., the snapping
power and snapping deflection to identify the regime of safe
device operation.

One possibility to find the snapping power is to substi-
tute Eq. (6) into Eq. (3) and solve for the static spatial
deflection with u̇(z, t ) = ü(z, t ) = 0 according to the static
Euler-Bernoulli equation

YAih2

12L4

∂4ui(z)

∂z4
= Pdc

c
∗ (aoboe(bo(Go−Ut (z)))

+ codoe(do(Go−Ut (z))) ). (11)

The exponentials on the right-hand side of Eq. (11) render
the equation as a partial differential equation of infinite order.
This hinders obtaining an analytic solution without further
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FIG. 5. (a) Nanostring and waveguide deflections vs constant input laser power from the single mode approach (SMA) shown by the solid
red and blue lines, respectively, and the FE analysis shown by the dashed red and blue lines, respectively. (b) Optical phase shift vs constant
input laser power. The snapping power is found to be at Psnap

dc ≈ 5.8 mW. The green asterisk marks the nonanalytical points in both the SMA
as well as the FEM solutions. The gray vertical line at Pdc = 3 mW marks the bias laser power around which we perform the dynamic analysis.

approximations. One possible approximation involves the lin-
earization of the exponential around a gap value of interest
[30,32]. For large beam deflections or rather large input pow-
ers, however, fully numerical finite element (FE) approaches
have been proposed [70]. We have also implemented a FE
model (FEM), which we detail in Appendix C, to verify our
modal approximation [71].

Within the modal approximation, we can fit the optome-
chanical gradient force to

F i
OMG,1(qtot ) = −LPdc

c
(c1ec2(G0−qtot ) + c3ec4(G0−qtot ) ) (12)

with width and height dependent negative fit coefficients
c1, c2, c3, and c4, and the total modal amplitude qtot = qNS,1 +
qW G,1. The modal equations, see Eq. (11), simplify to

F i
OMG,1(qtot ) = Ki,1qi,1 + β i,GNL

1,1,1,1q3
i,1. (13)

1. Maximum nonlinear static deflection

We define the physically meaningful static stability by the
maximum deflection values corresponding to Pdc where the
mechanical restoration forces can balance the attractive opti-
cally induced mechanical force. This can be represented by
defining an effective stiffness matrix of the whole mechanical
system including the WG, the NS, and the optical gradient
force using

Kstiffness = KGNL − KOMG, (14)

with equations

(KOMG)i, j = ∂F i
OMG,1

∂q j,1

∣∣∣∣
qtot=qsol (Pin )

, (15)

and

(KGNL)i, j = Kiqi,1 + βNSq3
i,1

∂q j,1

∣∣∣∣
qtot=qsol (Pin )

, (16)

representing the stiffness matrices of the optomechanical gra-
dient force and the geometric nonlinearity of the WG and the

NS, respectively. Moreover, qsol is given by the solution of
Eqs. (12) and (13) for different optical powers.

The eigenvalues of Kstiffness have negative values. They are
nonphysical and represent unstable solutions. In other words,
negative eigenvalues indicate an optically induced attraction
force exceeding the mechanical stiffness forces of the WG
and the NS and which leads to the snapping of the WGs.
Consequently, the snapping power as well as the snapping de-
flections are determined by the first appearance of a negative
eigenvalue of the stiffness matrix.

2. Static analysis results

Figure 5(a) plots the deflection of the WG and the NS
as a function of the input optical power Pdc, while Fig. 5(b)
displays the reachable optical phase shift.

The solid and dashed curves show a very good agreement
between the modal approach and the FE method, validating
the description of the essential nonlinear behavior with the
fundamental modes only. The deflection calculated using FE
has been evaluated at the node lying exactly in the middle of
the beams to be comparable to the modal amplitudes qWG,1,
and qNS,1. However, we have also verified that the overall
beam deflection shapes from the static FEM result coincide
almost perfectly with the fundamental mode shapes.

The nonanalytic points in Fig. 5(a) mark the snapping
power Psnap

dc ≈ 5.8 mW and correspondingly the snapping am-
plitudes qsnap

WG,1 ≈ 5 nm and qsnap
NS,1 ≈ 35 nm. Below these points

the system will remain stable. Moreover, the modal approxi-
mation will accurately describe the system which we exploit
further for the dynamic analysis in the next section.

D. Dynamic analysis

Within our dynamic analysis we first state the equations of
motions in their modal representation for both the WG and
the NS in Sec. V D 1. In Sec. V D 2 we introduce a Taylor
expansion of the exponential function in Eq. (12) to account
for nonlinearities up to the third order of the optomechanical
gradient force, and thus for the whole optomechanical system.
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We then apply a rotating wave approximation to the equations
of motions, to illustrate the equivalence of our model to degen-
erate parametric oscillators, and calculate the critical points
and loads for the dissipative phase transition for the relevant
parameter ranges of our system.

1. Equations of motion

The equation of motions for the WG and NS are introduced
in their modal representation to read

F WG
OMG,1(qtot ) + Fvib = mWG,1q̈WG,1 + mWG,1ωWG,1

QWG
q̇WG,1

+ mWG,1ω
2
WG,1qWG,1

+β
WG,GNL
1,1,1,1 q3

WG,1, (17)

F NS
OMG,1(qtot ) = mNS,1q̈NS,1 + mNS,1ωNS,1

QNS
q̇NS,1

+ mNS,1ω
2
NS,1qNS,1 + β

NS,GNL
1,1,1,1 q3

NS,1, (18)

where QWG and QNS denote the quality factors of the fun-
damental modes of the WG and the NS, respectively. The
external vibratory force at the drive frequency ωd is denoted
by Fvib, which we only include in the equation of the WG since
it is highly off-resonant for the NS.

We then use a Taylor expansion to expand the optomechan-
ical force, Eq. (12), up to third order keeping only resonant
terms, thus accounting for three-wave, Kerr and, cross-Kerr
nonlinearities in

F WG
OMG,1(qWG,1, qNS,1) ≈ LPdc

(
g0 + g1qWG,1(t )

+g2q2
NS,1(t ) + g3q3

WG,1(t ) + 3g3q2
NS,1(t )qWG,1(t )

)
, (19)

and

F NS
OMG,1(qWG,1, qNS,1) ≈ LPdc

(
g0 + g1qNS,1(t )

+ 2g2qNS,1(t )qWG,1(t ) + g3q3
NS,1(t )

+ 3g3q2
WG,1(t )qNS,1(t )

)
, (20)

where the parameters g0, g1, g2, and g3 represent the Taylor
coefficients of the projection of FOMG upon the fundamental
mode shapes of the clamped-clamped beams. The quantity
PdcLg2 is of utter importance in this analysis, as it is the
three-wave coupling strength or rather the analog of the
down-conversion rate that induces degenerate spontaneous
parametric down-conversion between the fundamental modes
of the two beams. Once again, we stress that this coupling
is mediated by the OMG force and as such depends on the
geometry parameters of the system and most importantly it
scales linearly with the optical input power Pdc. Therefore, in
contrast to the down-conversion rate in nonlinear optics which
is proportional to the crystal’s nonlinear susceptibility, it is
tunable via the bias optical power.

2. Rotating wave approximation

We use a rotating wave approximation to calculate the
stationary or rather steady state amplitudes of the WG and
the NS. We start with defining the modal amplitudes of oscil-
lations in terms of complex normal coordinates aWG and aNS

and the drive angular frequency ωd , by [72]

qWG,1 =
√

h̄

2ωWG,1mWG,1
(aWG(t )e−iωd t + a∗

WG(t )eiωd t ),

(21)

qNS,1 =
√

h̄

2ωNS,1mNS,1
(aNS(t )e−i

ωd
2 t + a*

NS(t )ei
ωd
2 t ). (22)

Following standard steps [72], we derive the equations of
motion for the normal coordinates given by

ȧWG = ( − iδWG − dRWA
WG

)
aWG − iε* − i

α

2
a2

NS, (23)

ȧ∗
WG = (

iδWG − dRWA
WG

)
a*

WG + iε + i
α

2
(a*

NS)2, (24)

ȧNS = ( − iδNS − dRWA
NS

)
aNS − iαaWGa*

NS, (25)

ȧ*
NS = (

iδNS − dRWA
NS

)
a*

NS + iαa*
WGaNS, (26)

where the three-wave coupling term α of the NS and the
WG promoted by FOMG is found to be linearly proportional to
the input optical power amplitude as

α := −PdcLg2

√
h̄√

2ωWG,1ω
2
NS,1mWG,1m2

NS,1

. (27)

The external excitation term ε is defined in the case of an
external vibratory excitation at angular frequency ωd as

ε = i0.52ρLAWGavib√
8h̄ωWG,1mWG,1

, (28)

and for an externally modulated optical power at the angu-
lar frequency ωd as

ε = iPacLg0√
8h̄ωWG,1mWG,1

, (29)

where Pac denotes modulated optical power.
As we excite the WG either with a mechanical shaker or

a modulated optical input power of angular frequency ωd , the
mechanical oscillations will nonlinearly detune the frequen-
cies of the fundamental modes of the WG and the NS from
the drive frequency and its half-wave component, respectively.
We model this detuning for the WG and the NS by

δWG := ωWG,1 − ωd + δωOMG
WG + δβWG + δVNS, (30)

δNS := ωNS,1 − ωd/2 + δωOMG
NS + δβNS + δVWG. (31)

We account for three factors that contribute to the fre-
quency detuning. First the linear frequency shift due to the
OMG force power, that is independent of the oscillation am-
plitude. We denote this term by

δωOMG
i := − PdcLg1

2ωi,1mi,1
. (32)

The second detuning component is nonlinearly propor-
tional to the deflection amplitudes due to the Duffing or rather
Kerr nonlinearity. In our system the geometric nonlinearities
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and FOMG both contribute to this Duffing term. Both compo-
nents are defined by

β i,GNL,RWA
1,1,1,1 := 3h̄

(
β i,GNL

1,1,1,1

)
4
(
ω2

i,1m2
i,1

) , (33)

β
i,OMG,RWA
1,1,1,1 := −3h̄(PdcLg3)

4
(
ω2

i,1m2
i,1

) . (34)

Both are eventually summed to yield the Duffing or rather
Kerr nonlinearity contribution to the detuning according to

δβ i := (
β i,GNL,RWA

1,1,1,1 + β i,OMG,RWA
1,1,1,1

)|ai|2. (35)

To avoid confusion with the nonscaled β i,GNL
1,1,1,1 , we add the

superscript (RWA) to denote that they are the coefficients after
rescaling according to Eqs. (33) and (34).

The third component contributing to the detuning is the
Cross-Kerr nonlinearity which also nonlinearly detunes the
WG oscillation frequency as a function of the NS oscillation
deflection and vice versa. However, unlike δβ i it is solely
promoted by FOMG and does not have a geometric nonlinearity
component. We formulate the Cross-Kerr contribution to the
detuning as

V OMG := −3h̄PdcLg3

2ωWG,1ωNS,1mWG,1mNS,1
, (36)

and rescale it for for the WG and the NS further in

δVWG := V OMG|aNS|2, (37)

δVNS := V OMG|aWG|2. (38)

To complete the definitions used in Eqs. (23)–(26) we
finally define the damping of the beams by

dRWA
i = ωi,1

2 ∗ Qi
. (39)

Overall, Eqs. (23)–(26) reproduce the equations of the
well-known degenerate optical parametric oscillator (DOPO).
The steady-state phase diagram of the DOPO has been ex-
tensively studied [52,57]. Most importantly, we differentiate
between the trivial phase with aNS = 0 and the non-trivial
phase with aNS �= 0. For parameter cases satisfying δWGδNS >

dRWA
WG dRWA

NS the steady state phase diagram shows bistability
of the two phases. Moreover, for parameter cases satis-
fying δWGδNS < −dRWA

WG dRWA
NS − (dRWA

WG
2 + δ2

WG)/2 the phase
diagram exhibits regions with amplitude modulated stationary
states or rather limit cycles. In order to study such a rich
phase diagram on an actual physical device, it is essential to
reach the so-called critical point which separates the trivial
and the nontrivial phases within the operational ranges of
the device. Therefore, we calculate the critical steady state
oscillation amplitude of the WG by setting the time deriva-
tives in Eqs. (23)–(26) to zero. At this point it makes most
sense to state the critical amplitude in terms of the actual
oscillatory deflection AWG at angular frequency ωd defined via
qWG = AWG sin(ωdt ). It is given by

Acr
WG = 2

ωNSmNS

g2PdcL

(√
δ2

NS + dRWA
NS

)
. (40)

Further, it is possible to transform the critical amplitude
into critical mechanical acceleration acr

vib and modulated opti-

FIG. 6. Critical waveguide oscillation amplitude as a function of
the NS detuning δNS with Pdc = 3 mW for different quality factors
QNS.

cal power amplitudes Pcr
ac —which are considered as external

excitation sources in the equations of motion— using the
following relations:

acr
vib = KWG,1

0.52ρAWGLQWG
Acr

WG, (41)

Pcr
ac = KWG,1

g0LQWG
Acr

WG. (42)

3. Dynamic analysis results

For all the results presented in this subsection, we use a
constant biasing optical power Pdc = 3 mW to set the system
to an operating point where a nonlinear optical response is
expected, yet, not too close to the collapse point, as indicated
by the gray line in Fig. 5. This is essential to have a measurable
nonlinear optical phase or transmission responses modulated
by the optical input power or the external vibratory force.

The fundamental mode frequencies ωWG,1, and ωNS,1 are
calculated from Euler-Bernoulli’s equation to be of 346 and
173 KHz, respectively. For dynamic excitation, the excitation
pump frequency is assumed to match the waveguide funda-
mental mode frequency such that ωd = ωWG,1. Figure 6 shows
the critical oscillation amplitude of the waveguide against the
detuning δNS following Eq. (40) at different quality factors.
At zero detuning the critical amplitude drops far below 1 nm
making it easier to practically reach the SPDC regime. How-
ever, even away from perfect resonance, i.e., δNS = 0, the
critical amplitude remains below 1 nm, thus well within reach
of the stable operation regime as well as within the validity of
our approximative model.

Next, we use Eqs. (23)–(26) to determine the steady state
amplitudes for the perfectly mode matched case, i.e., δWG =
δNS = 0. Figure 7 shows the results for the WG and the NS as
a function of either the external vibratory excitation avib or the
modulated light power Pac.

The dissipative phase transition from the trivial to
the nontrivial solution occurs at the bifurcation point
which scales as 1/α. For the given geometry, α/dWG ≈
2
3 10−7QWGPdc 1/ mW. For a static input optical power Pdc =
3 mW and a modulated optical power Pac = 1.2 μW, and for
mechanical WG and NS quality factors of 103, the bifurcation
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FIG. 7. Steady state phase diagram of the nanostring and the
waveguide for QNS = 103. The abscissa shows the two proposed
dynamic excitation conditions: (1, Top axis) Mechanical shaker ac-
celeration. (2, Lower axis) Optical AC power. The marked points, 1
and 2 represent the parameters used further to plot optical phase shift
in Fig. 8.

point is reached at an acceleration of 5 m/sec2. This corre-
sponds to a critical amplitude only of 0.5 nm.

Finally we plot the time-transient response of the optical
phase shift produced form the waveguide system under dy-
namic excitation in Fig. 8. Before the phase transition the
output optical phase oscillation is dominated by ωd , or the full
wave component. However, after the phase transition, the NS
dominates the optical phase shift response and we see that not
only the amplitude of the phase response increases but also
the frequency drops to the half wave component ωd/2. For
a sufficiently large observable difference between the phase
response after the onset of the SPDC, and before, we plot the
case after SPDC with an oscillation amplitude of 3 nm occur-
ring at Pac = 8 μW or mechanical external vibration with an
acceleration of 28 m/s2, when QNS = 103. In Fig. 8 the x axis
is in terms of the of the excitation period Tdr = 2π/ωd .

FIG. 8. Optical phase shift under oscillatory excitation. Red: Be-
fore SPDC, the oscillation is dominated by ωd , corresponding to
point (1) on the phase diagram (Fig. 7). Black: After SPDC, the
oscillation is dominated by ωd/2 and the full wave component ωd is
observed as an envelope at the peaks and troughs of the oscillation,
corresponding to point (2) on the steady state phase diagram (Fig. 7).

TABLE II. Detuning parameters.

Detuning component WG NS

Linear frequency shift from FOMG −722 −2891
(Hz/mW)
Duffing shift from to GNL
(Hz/nm2) 0.46 0.92
Kerr shift from FOMG

(mHz/(nm2 mW)) −14.5 −58
Cross-Kerr shift from FOMG

(mHz/(nm2 mW)) −29 −116.1

Due to fabrication imperfections it is very difficult to reach
the perfectly mode matched situation (δWG = δNS = 0) in an
experiment just from the design conception of the beams. In
addition, the effective resonance frequencies will also be in-
fluenced by the deflection amplitudes and laser powers. These
effects have to be considered in order to have full experi-
mental control over the detuning parameters which ultimately
determine the dissipative phases of our system. Therefore, we
list the values of the different contributions to the detuning
parameters in Table II. The largest contributing components
to the detunings are the linear frequency shifts originating
from the optomechanical gradient force. Remarkably, we find
that with the optical bias power Pdc in the mW range, we
can shift the frequency on the order of kHz. In contrast,
the deflection-dependent nonlinear frequency shifts (Duffing,
Kerr, and cross-Kerr) are negligible within our parameter
ranges, thus the drive frequencies do not necessarily need to
be adjusted during a ramp-up of the oscillation amplitudes.
While, the WG detuning δWG can be adjusted by the external
drive frequency, the NS detuning is hard to control simultane-
ously. However, one can imagine using an electrode beneath
the NS to electrostatically control the resonance frequency of
the NS [22].

VI. CONCLUSION

We theoretically explored a waveguide system consist-
ing of two suspended, parallel nanobeams, a light-carrying
waveguide, and a nanostring of half the wave guide’s width.
As a result of the attractive optomechanical gradient force
exerted by the evanescent field of the waveguide onto the
nanostring, the input optical power injected into the waveg-
uide can be employed to control the nonlinear coupling
between the fundamental vibrational modes of the two
nanobeams. More specifically, we show that a tunable three-
wave coupling between the fundamental modes of two doubly
clamped nanophotonic beams arises, which is proportional to
the input power.

We find that the model describing the response of the
optomechanical waveguide system corresponds to the well-
known model of the degenerate parametric oscillator. For
the nanobeam width ratio of 1:2 under investigation, the 1:2
internal resonance between the fundamental modes supports
SPDC. For beams with a length of 100 μm and an initial
separating gap 130 nm, we show that for mechanical quality
factors in the range of 103 the critical point of SPDC lies
below 1 nm of the wider beam’s oscillation amplitude for
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an input optical power in the range of milliwatts. This is
well in reach of state of the art experiments, such that our
proposal can be well implemented with currently available ex-
perimental techniques [28,29,31,67]. Its physical realization
with mechanical structures allows for a high control of the
system parameters, therefore, enabling the study of the full
dissipative phase diagram.

From a general point of view, the investigations presented
in this paper show that the optomechanical gradient forces
in nanophotonic waveguides are sufficiently strong already
for reasonable light intensities. In addition to actuation and
readout [38], the exploitation of concepts such as frequency
tuning for mode matched operation [45,47] or mechanical
parametric amplification [44] allow the possibility to design
sensors [73] and actuators with different functionalities such
as, for example, gyroscopes or accelerometers based on all
optical or maybe even hybrid electrical/optical working prin-
ciples. Overall, the high controllability via the input laser
powers and the in situ tuneability of the optical-gap depen-
dent nonlinearities offer large design flexibilities which are
comparable with traditional NEMS and MEMS design but
with possible advantages in performance, cost, and reliability
especially when aiming for designs on the nanoscale.
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APPENDIX A: OPTICAL-READ OUT EQUATIONS

We start by representing the output field amplitude at the
side of the MZI without the system of the WG and the NS by

E1 = E0

2
e−i 2πL

λ
neff0,1 . (A1)

On the side with the WG and the NS, a geometry dependent
field amplitude would be produced at its output represented by

E2 = E0

2
e−i 2π

λ

∫ L
0 neff (z)dz, (A2)

assuming a constant input power of Pin. E0 is the amplitude of
the input optical power to the MZI, and neff0,1 is the refractive
index of the optical waveguide in a silicon slab within silicon
dioxide, thus representing the side of the MZI without the WG
and the NS.

We then add a trivial term of neff2,0L − neff2,0L to the expo-
nents in Eqs. (A1) and (A2) while summing both to obtain

E3 = E0

2
e−i 2π

λ
(
∫ L

0 neff0,2 (Z )dz+neff0,2L−neff0,2L)

+ E0

2
e−i 2π

λ
(neff0,1L+neff0,2L−neff0,2L). (A3)

This equation represents the output electric field. neff2,0 is
the total effective index at the initial gap in the side with the
optomechanical system. L is the coupling length between WG
and NS, which is also identical to the length of the other side
of the MZI.

Now we define the quantity δφ representing the optical
phase shift between both sides of the interferometer as de-

scribed earlier by Eq. (1). The other quantity that is relevant
here is the initial phase shift acquired by a propagating mode
through the system of the WG and the NS which is formulated
using

φ0 = 2π

λ
neff0,2. (A4)

The notation δimbalance denotes the phase-shift imbalance
between both sides of the MZI at the initial gap and is defined
as

δimbalance = 2π

λ
(neff0,2 − neff0,1)L. (A5)

We then obtain the total electric field at the output port of
the MZI using

E3 = E0

2
e−i(��(P)+φ0 ) + E0

2
e−i(φ0+δimbalance ). (A6)

By substitution of Eqs. (1), (A4), and (A5) into Eq. (A3),
we simplify further to arrive at the form

E3 = E0

2
e−i(φ0+δimbalance )(1 + e−i(�φ−δimbalance ) ). (A7)

Next we obtain the output transmission at the output port
using

T =
∣∣∣∣E3

E0

∣∣∣∣
2

= 1

4
|e−i(φ0+δimbalance )|2

|1 + e−i(�φ−δimbalance )|2, (A8)

which is further simplified to

T (Pin ) =
∣∣∣∣E3

E0

∣∣∣∣
2

= 1

4
|1 + cos(�φ(Pin) − δimbalance)

+ isin(�φ(Pin) − δimbalance)|2. (A9)

Finally the transmission reduces to

T (Pin) =
∣∣∣∣E3

E0

∣∣∣∣
2

= 1

2
(1 + cos(�φ(Pin) − δimbalance)). (A10)

We then multiply the transmission by the input power to
get the following nonlinear response of the system:

Pout = Pin
1
2 (1 + cos(�φ(Pin) − δimbalance)). (A11)

Note that for the analysis we included the imbalance term
stemming from the different refractive indices at both sides of
the MZI. However, it results in merely offsetting the position
of the full π phase shift, thus we can safely neglect it in our
analysis presented in the main text of the paper.

APPENDIX B: MECHANICAL PARAMETERS FOR
MODAL REPRESENTATION OF EULER-BERNOULLI’S

BEAM EQUATION

The modal shape functions of the doubly-clamped Euler-
Bernoulli beam are given by

Sn(z) = Nn(cosh(rnz) − cos(rnz)

− cosh(rn) − cos(rn)

sinh(rn) − sin(rn)
(sinh(rnz) − sin(rnz)), (B1)

023513-10



SPONTANEOUS PARAMETRIC DOWN-CONVERSION … PHYSICAL REVIEW A 103, 023513 (2021)

with the normalization factors Nn such that the maximal de-
flection of Sn equals unity. We illustrate the first three shape
functions in Fig. 9.

In order to represent the equations of motions in the modal
form for the n-th modal amplitude qi,n, we multiply the field
form of the equation of motions shown in Eq. (4) for the WG
and the NS by the linear normal mode shape Sn(z) and then
integrate the equations according to

∫ 1
0 Ldz. We can then de-

fine the modal mass mi,n, damping di,n, stiffness ki,n, Duffing
β i

n,m,l,k , and Fi,OMG using the following set of equations:

mi,n := ρAiL
∫ 1

0
S2

n (z)dz, (B2)

di,n := dAiL
∫ 1

0
S2

n (z)dz, (B3)

Ki,n := YAih2

12L3

∞∑
m=1

∫ 1

0
Sn(z)S′′′′

n (z)dz, (B4)

β i,GNL
n,m,l,k := YAi

2L3

∫ 1

0
S′

n(z)S′
m(z)dz

∫ 1

0
S′

l (z)S′
k (z)dz, (B5)

F i
OMG,n(z, t ) := L

∫ L

0
Sn(z)F i

OMG(G0

− (uWG(z, t ) + uNS(z, t )))dz. (B6)

Due to the orthogonality, the modes completely decouple
in the linear regime. The geometrical symmetry as well of the
beams makes three-wave forces αGNL

n,m,l qnqmql originating from
geometric nonlinearity negligible. The three-wave coupling
term is, however, promoted by the optomechanical gradient
force and is calculated in Sec. V D 2.

APPENDIX C: FINITE ELEMENT ANALYSIS

To verify the effectiveness of the modal approximation,
we implement a two-dimensional FEM to simulate the static
deflection of the beams in the system of the WG and the NS

FIG. 9. Mode shapes of the doubly-clamped Euler-Bernoulli
beam.

under static optical pumping. We compare our static deflection
obtained from the simulation to the modal approach.

To address the need for the input power-dependent gap
between the WG and the NS, two opposite mesh points
in boundaries (�1, �2) in (Fig. 3) are treated as dependent
variables rather than independent inputs. As a highly non-
linear problem arises from this setting, a single iteration will
only converge if the restoration forces across the waveguides
have completely balanced the optical force in a specific it-
eration. The solution will be stable as long as this condition
is achieved. Once a case occurs where the restoration forces
are unable to balance the increasing optical force, the beams
would collapse and the minimum gap between the two waveg-
uides would be higher than the initial gap between them.

We used COMSOL Multiphysics as it provides boundary
coupling and the desired solver parameters. The maximum
number of iterations per power value was set to 500 to avoid
premature divergence, while allowing enough iterations to
reach a stable solution. The numerical damping factor of the
values used in the nonlinear solver from iteration to iteration
was set to 10−9.
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