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Analytic instability thresholds in folded Kerr resonators of arbitrary finesse
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We present analytic threshold formulas applicable to both dispersive (time-domain) and diffractive (pattern-
forming) instabilities in Fabry-Perot Kerr cavities of arbitrary finesse. We do so by extending the gain-circle
technique, recently developed for counterpropagating fields in single-mirror-feedback systems, to allow for
an input mirror. In time-domain counterpropagating systems, walk-off effects are known to suppress cross-
phase modulation contributions to dispersive instabilities. Applying the gain-circle approach with appropriately
adjusted cross-phase couplings extends previous results to arbitrary finesse, beyond mean-field approximations,
and describes Ikeda instabilities.
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I. INTRODUCTION

Diffractive optical pattern formation in driven nonlinear
media has been studied extensively since the 1980s, espe-
cially in ring resonators. While spontaneous pattern formation
is particularly rich in two transverse dimensions, there is
an important and close analogy between diffraction in one
transverse dimension and dispersion in the time domain, with
sideband instabilities leading to spontaneous oscillations anal-
ogous to one-dimensional patterns, both describable in the
high-finesse limit by the Lugiato-Lefever equation (LLE) [1].
Dispersive instabilities have a close connection to the gen-
eration of frequency combs and cavity solitons, topics of
enormous current interest, and importance [2].

An important group of pattern-forming systems are double-
pass schemes, including counterpropagating (CP) beam
configurations with two input beams [3,4], single feedback
mirror (SFM) configurations with a single input beam [5], and
Fabry-Perot (FP) resonators (Fig. 1), which is our main topic
of investigation.

A simple but very powerful and general technique to obtain
thresholds for pattern formation in SFM systems has been re-
cently proposed and demonstrated [6]. It basically shows that
the ratio f /b of the relative perturbations of the forward- and
backward-traveling fields always lies on a circle as the input
phase of b is varied, even in highly lossy nonlinear media. It is
then a matter of simple geometry to identify conditions under
which this f /b gain circle allows the instability threshold con-
dition (e.g., f = b at the mirror) to be met. Here we develop
and extend this technique, demonstrating its applicability to
cavities and to dispersive instabilities. Previous results in this
area have limited scope and applicability but the gain-circle
method is fully general, spanning existing models and unify-
ing previous results. In particular, it applies to microresonator
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systems, which are the leading technology in frequency comb
and soliton generation [2]. Important potential applications
include the optomechanical control of Bose-Einstein conden-
sates in optical cavities of lower [7] and higher [8] Purcell
factors as well as polariton microcavities [9].

II. FABRY-PEROT CAVITY MODEL

We start by considering the case of a FP cavity with a
Kerr nonlinearity, as shown in Fig. 1. The mirror reflectivities
are assumed real, any reflection phase being subsumed into
the linear cavity phase φ0. The evolution equations for the
forward, F , and backward, B, fields in the Kerr medium are
given by

∂F

∂z
+ β1

∂F

∂t
= −iD̂F + i(|F |2 + G|B|2)F, (1a)

−∂B

∂z
+ β1

∂B

∂t
= −iD̂B + i(G|F |2 + |B|2)B. (1b)

Cross-phase modulation (XPM), i.e., the extent to which
the standing-wave modulation of the cavity field generates a
corresponding modulation in the nonlinear index, is described
by the grating-parameter G, as in Ref. [4]. To allow for prop-
agation effects, we include first-order dispersion (β1 = v−1

g ,
where vg is the group velocity). In general, the operator D̂
is given by (β2/2)(∂2/∂t2) − ∇2

⊥/2k, where β2 is the GVD
coefficient and t is the (fast) time in (1), while the operator
∇2

⊥/2k, acts on the transverse coordinate(s) with k being
the light wave number. The governing equations are supple-
mented with the appropriate boundary conditions at the left
(z = −L) and right (z = 0) mirrors

F (−L) =
√

1 − r2Fin + reiφ0 B(−L), (2a)

B(0) = √
R0F (0), (2b)

where Fin is the input field, r2 and R0 are the reflectivities of
the input and back mirrors. Solving (1) subject to (2) at zero
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FIG. 1. A FP cavity of length L, filled with a nonlinear Kerr
medium. A uniform pump field Fin enters at z = −L through a mirror
of reflectivity r and drives forward (F ) and backward (B) fields in the
cavity, establishing zero-order cavity fields F0 and B0, whose stability
depends on relative perturbations f and b. A transmitted field Ftr exits
the cavity at z = 0.

order, with F = F0(z), B = B0(z), we find that both |F0|2 = I
and |B0|2 = R0I are conserved through the medium, resulting
in

F0(−L) =
√

1 − r2Fin + r
√

R0ei(φ0+φnl )F0(−L) (3)

The nonlinear phase φnl = (1 + R0)(1 + G)IL.
We examine the stability of the homogeneous zero-order

solution by linearizing (1) and (2), and seeking a nontriv-
ial first order solution. Using the ansatz F = F0(1 + f (z, t )),
with a similar form for B, we obtain the linearized evolution
equations,

∂ f

∂z
+ β1L

∂ f

∂t
= −iθ f + iIL( f + f ∗ + GR0(b + b∗)),

−∂b

∂z
+ β1L

∂b

∂t
= −iθb + iIL(G( f + f ∗) + R0(b + b∗)),

(4)

where we have scaled z by L. Although the evolution Eqs. (4)
are general, the dimensionless parameter θ depends on what
type of instability we are considering. For example, dispersive
instabilities with frequency ±� give θ = −β2�

2L/2. Phys-
ically, θ is then a dimensionless measure of the dispersive
phase mismatch between the sidebands and the zero-order
field over distance L.

These propagation equations are essentially identical to
those in the CP analysis of Ref. [4], which suggests a unified
approach to all configurations of Kerr media. We emphasize
that (4) are local equations, holding throughout any disper-
sive or diffractive Kerr medium independent of any particular
boundary conditions.

The boundary conditions for ( f , b) follow from lineariza-
tion of (2) and use of the zero-order solution (3):

f (−1) = rei(φ0+φnl )b(−1), f (0) = b(0) (5)

The usual nonlinear and dispersion length scales can be recog-
nized in (4), but also a third length scale |β1�|−1, the walk-off
length [10]. It reflects the fact that the CP field encountered in
a round trip of the cavity is up to a round trip ahead or behind
in time.

For any finite �, the XPM cross coupling of the CP fields
will suffer a phase-mismatch on walk-off length scale. This
complicates the analysis of the dispersive case and so it will

be convenient to postpone a detailed discussion until we have
solved the diffractive problem. We will now use the gain-circle
technique to develop analytic solutions for the diffractive case
and will then show that the dispersive problem can be well
approximated within the same framework.

III. GAIN-CIRCLE MODEL FOR DIFFRACTIVE
INSTABILITY

The walk-off problem does not arise for pure transverse in-
stabilities, which are zero frequency. The perturbation Eqs. (4)
then simplify because we can ignore the time-derivative terms.
With D̂ as a purely diffraction operator, θ = K2L/2k now
characterizes the transverse wave vector K . Physically, θ cor-
responds to the diffractive phase shift between the sidebands
and the zero-order field over the length L of the cavity, analo-
gous to the dispersive case.

After dropping the time derivatives, the resulting propaga-
tion equations can be solved exactly and have been extensively
analyzed in relation to CP and SFM pattern formation but
not for two-mirror (resonator) problems. In SFM problems,
there is no input perturbation and so f (0) = 0, meaning
that f /b is a measure of gain. The gain f /b at the mirror
traces out a circle as the phase of b at the input plane is
varied [6]. We now extend this gain-circle approach to the
solution of the FP problem, which requires cavity bound-
ary conditions. Step-by-step calculations are presented in the
Appendix.

Threshold formulas for any such problem can be found
with the gain-circle method. Starting from one mirror, with the
phase of b arbitrary, we integrate the propagation equations
and determine the parameters of the gain circle at the other
mirror. An instability occurs if any point on the gain circle
satisfies the boundary condition there. This procedure works
for any Kerr cavity and can also cater for losses and other
complications (see Ref. [6] and Appendix), using numerical
methods in general. Here we concentrate on the particular case
R0 = 1 of the FP cavity in Fig. 1. As we will show, it also
allows an exact solution, giving analytic threshold formulas.
While both directions of integration lead to the same analytic
formula, backward integration is neater, and so we present that
approach here.

Dropping the time derivatives in (4) and setting R0 =
1, b = − f ∗ and b = f ∗ are self-consistent special modes.
Labeling them f1, f2, respectively, we find

d2 fn

dz2
= −ψ2

n fn, n = 1, 2, (6a)

ψ2
n = θ (θ − 2(1 + (−)nG)IL). (6b)

The key parameters ψ1, ψ2 are precisely the parameters
defined in the stability analysis of the diffractive CP problem
for a Kerr medium [4]. Because the ψ2

n are real, f ∗
n obeys

the same differential equation, enabling construction of two
linearly independent solutions of the system (4) and hence
of gain circles. The boundary conditions at the z = 0 mirror
is f = b, but the phase of f and b is not fixed and we can
match on to modes 1 and 2 with the choices f1(0) = b1(0) = i
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FIG. 2. Unit circle (thick) centered on the origin of the complex
plane. A gain circle (dashed) intersects the unit circle at points
(g1, g2) given by (7). The center Cg and radius Rg of the gain circle are
given by (8) for a FP Kerr cavity. Intersection of the gain circle and
any loss circle of radius r, 1 > r > rcrit enables threshold condition
(9) to be satisfied for two different values of φ at that reflectivity
r. At r = rcrit, the gain and loss circles touch, marking the limit of
instability. (θ, IL) = (0.4, 0.1).

and f2(0) = b2(0) = 1. Solving, we readily obtain for the
resultant gains gn = fn(−1)/bn(−1):

g1 = cos ψ1 + iθ sin ψ1/ψ1

cos ψ1 − iθ sin ψ1/ψ1
= eiφ1 , (7a)

g2 = cos ψ2 + iψ2 sin ψ2/θ

cos ψ2 − iψ2 sin ψ2/θ
= eiφ2 . (7b)

The real and imaginary terms are explicit in (7), because
all expressions are even in ψn and so are real. Because both
modes obey | f | = |b| by definition, |gn| = 1 and so the φn are
real. As in Ref. [6], g1 and g2 define a gain circle. Its radius
Rg and center Cg are given by

Rg =
∣∣∣∣eiφ1 − eiφ2

eiφ1 + eiφ2

∣∣∣∣, Cg = 2

e−iφ1 + e−iφ2
. (8)

Note that Cg is outside the unit circle (unless g1 = g2, when
Rg = 0). Since both g1 and g2 lie on the unit circle, the
gain-circle arc between them lies inside the unit circle, and
so can pass through the point g = reiφ , fulfilling the boundary
condition (5). Figure 2 illustrates the geometry of the gain
circle intersecting the unit circle and smaller loss circles of
various radii r.

At instability threshold, the distance from reiφ to the center
of the gain circle must equal its radius Rg. Imposing this
condition leads to the desired formula:

1 + r2

2r
= Re(Cge−iφ ). (9)

This threshold formula is our key result. It holds for all values
of r and φ and matches all previous special case analyses. It is
also valid for all values of the XPM parameter G [11], and thus
(9) holds for Kerr liquids, or indeed any Kerr-like material, as
well as for dielectrics where G = 2.

For a given input reflectivity r, cavity phase φ0, and input
intensity Iin, IL is known from the zero-order solution, and so

(9) is effectively an analytic formula from which the threshold
values of θ , and hence the transverse wave vector K , can
be calculated. There are no solutions unless the gain circle
intersects a circle of radius r centered on the origin. The
marginal case is when the latter circle touches the gain circle,
see Fig. 2. This happens at a critical reflectivity rcrit and total
phase φcrit, which from simple geometry equals (φ1 + φ2)/2.
Then (9) simplifies considerably, and one obtains

1 + r2
crit

2rcrit
= 1

| cos((φ1 − φ2)/2)| . (10)

The special case θ = 0, which corresponds to a plane-wave
instability, generates the well-known criterion for vertical
slope in the plot of IL vs Iin and the instability usually termed
optical bistability (OB). In that limit, the analytic formula (9)
yields

1 + r2

2r
= cos(φ0 + φnl) − φnl sin(φ0 + φnl) (11)

This is the OB formula for arbitrary finesse. It reduces to a
mean-field LLE-like formula when 1 − r = δ and the phases
are small. Allowing θ to be finite, but also small, we obtain
the mean-field approximation to (9)

(φ − 2θ )
(
φ − 2ψ2

2

/
θ
) + δ2 = 0. (12)

Only if φ lies between 2θ and 2ψ2
2 /θ can this real equa-

tion have real roots. It is quadratic in any of the underlying
parameters (IL, φ0, θ ). The transition from zero to two real
roots of the equation can be identified with contact, and then
intersection, between the gain and loss circles.

Far from the mean-field limit, i.e., for r → 0, (9) remains
valid provided the radius Rg of the gain circle diverges. Taking
appropriate limits leads to the SFM threshold condition for
Kerr media:

cos ψ1 cos ψ2 +
(

ψ2

ψ1

)
sin ψ1 sin ψ2 = 0 . (13)

This formula matches the results of Ref. [6] for an SFM sys-
tem with no free-space section (D = 0). It is actually identical
to the even instability mode of the mirrorless CP instability
[4], for which f = b (in our notation) holds in the center of
the medium. This points the way to further generalizations of
our present analysis.

IV. GAIN-CIRCLE MODEL FOR DISPERSIVE
INSTABILITY

A fuller discussion of the transverse problem would di-
vert us from our other topic, which is dispersive instabilities.
The gain-circle method relies on ( f , b) being dependent on
z alone. For an oscillatory instability with frequencies ±�,
retarded time transformations on f and b easily eliminate the
time derivatives from (4), but at the expense of introducing
explicit time dependence into the XPM terms (those prefixed
by G). This is a manifestation of the walk-off associated with
the counterpropagation that was mentioned earlier.

Close enough to zero GVD (β2 ∼ 0) the walk-off length
dominates, enabling (4) to be solved exactly. Firth analyzed

023510-3



FIRTH, GEDDES, KARST, AND OPPO PHYSICAL REVIEW A 103, 023510 (2021)

this case for a number of resonator problems in Ref. [12] with
particular emphasis on our present configuration of a Kerr
FP with R0 = 1. He found threshold conditions for OB and
for side-mode (P1) and period-doubling (P2) instabilities of
Ikeda type [13,14]. Only P2 could occur on the positive-slope
branches of the characteristic. The P1 thresholds occurred ex-
clusively on the unstable negative-slope steady-state branches
because the walk-off effect reduces the effective nonlinearity
compared to (zero-frequency) OB. Yu et al. [10,15] recovered
and confirmed these results as a special case of a very general
(and rather complex) analysis.

It is clear that walk-off means that the XPM contribution
of the perturbations in (4) will be weakened. Indeed, Yu
et al. [10] find that XPM is essentially negligible whenever
the external mirrors provide the dominant coupling between
the forward and backward intensities. This will usually be the
case in a FP resonator.

This suggests setting G = 0 in (4), thereby eliminating
XPM in these equations. Then the f and b equations decouple,
and the β1 terms can be removed from each by (separate)
phase transformations. We can thus apply the same gain-circle
technique as for the transverse problem but now with ψ1 =
ψ2 = ψ , where ψ2 = θ (θ − 2IL). This degeneracy does not
make (7) trivial, and all the gain circle considerations still
apply for G = 0, as do the threshold formulas (9), (10), (12).
However, because there is no walk-off at zero order we re-
tain G = 2 in the nonlinear phase shift φnl, which enters the
boundary conditions (5) and the OB equation (11).

Recently, Cole et al. [16] presented a mean-field model
of LLE type for a dispersive Kerr FP, aimed at ultrafinesse
microresonator systems. As with the LLE, both losses and
pumping are distributed. The major difference from the ring
cavity LLE is that there is an additional Kerr-like term pro-
portional to the cavity-averaged intensity. This is directly
comparable to Eq. (6) of Ref. [12] where the cavity-averaged
term explicitly describes XPM due to counterpropagation.

We can directly compare the mean-field threshold formula
of Ref. [16] with our expression (12) by setting G = 0 in ψ2

(only). There is perfect agreement once the parameters of the
two models are matched up using the vertical-slope condition
(11). For zero GVD, we note that all finite-frequency instabil-
ities occur on the negative-slope branch, as for the non-Ikeda
instabilities in Ref. [12]. It follows that the sideband instabil-
ities observed in the model of Ref. [16] are entirely due to
finite β2, as is clear from the fact that the frequency formulas
of Ref. [16] diverge as GVD approaches zero.

This adapted gain-circle model is not limited to high fi-
nesse or mean-field approximations. Used in (9), it leads to a
general dispersive instability formula:

cos φ cos 2ψ − 2(IL − θ ) sin φ sinc2ψ = (−1)n 1 + r2

2r
.

(14)

This generalizes the results of Ref. [12] to finite GVD: For
zero GVD, θ = 0 and both cos(2ψ ) and sinc(2ψ ) go to unity,
recovering Firth’s results.

The factor (−1)n multiplying the right side arises because
the boundary conditions require only that instabilities occur at
frequencies which obey �tR = nπ , with n being an integer

and tR the cavity round-trip time. For n even, (14) extends
LLE-type sideband instability expressions beyond the mean-
field limit. For n odd, there is no mean-field limit to (14)
because at least one of the parameters must be O(1) to allow
the left side to match its right side, which is < −1. This is
consistent with the physical picture of the Ikeda instability,
in which two adjacent cavity modes are driven by a pump
field halfway between them, leading to a 2tR oscillation. These
Ikeda instabilities are present on the positive slope branch
of the characteristic but, because the driving is antiresonant,
the input field Fin must be much larger than for mean-field
instabilities.

V. CONCLUSION

In summary, we have, by adapting and extending a recently
developed gain-circle technique, obtained analytic dispersive
and diffractive instability threshold formulas for Kerr FP cav-
ities. We have thereby unified and greatly extended the results
of four decades of research into counterpropagating fields in
Kerr media. In the diffractive case, our gain-circle approach
is valid from arbitrarily high finesse all the way to arbitrarily
low, or even zero, finesse. In the last limit, our model correctly
reproduces SFM instability threshold formulas. In the disper-
sive case, we neglected walk-off and obtained a dispersive
instability threshold formula which holds for any practical
FP cavity. Our formula agrees with recent results in the LLE
limit, while generalizing them to arbitrary finesse, and also
allows consideration of Ikeda instabilities. Because the gain-
circle method is both general and well-suited to numerical
implementations, it should prove widely applicable for the
determination of key instabilities, leading to nonlinear modes
and solitons, in photonics and quantum technology devices
based on optical resonators.

APPENDIX

The linearized governing Eqs. (4) of the main text con-
stitute a boundary-value problem after the time derivative
has been resolved in either the diffractive or dispersive case.
The two-point boundary conditions (5) in the main text sug-
gest a solution based on the principle of superposition, and
we choose two linearly-independent solutions, ( f1(z), b1(z))
and ( f2(z), b2(z)), that satisfy the boundary condition at
z = 0. The cavity boundary conditions (5) of the main text
mean that there is only one free parameter in the initial
conditions, and so the general solution of the perturbation
equations (4) can be found as a linear superposition of
any two linearly independent solutions. Since only numer-
ical solutions may be available, construction of the locus
of such output solutions is an effective method of finding
a solution satisfying the other boundary condition, i.e., the
locus of f (−L) = (1 − u) f1(−L) + u f2(−L) and b(−L) =
(1 − u)b1(−L) + ub2(−L) on variation of the real parameter
u ∈ [0, 1]. We recently showed (see Ref. [7] in the main text)
that framing this problem in terms of the gain g = f /b leads
to intuitive results since the gain at the mirror (z = −L) traces
out circles in the complex plane as the parameter u is tuned.

To demonstrate the existence of the gain circles, we note
that a little algebra shows that g = f /b is given by a simple
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analytic formula in terms of g1 = f1/b1 and g2 = f2/b2,

g(u) = g2 + (g1 − g2)/(1 + Weiφb ), (A1)

where W = u(1 − u)−1|(b2/b1)| is real, while φb is the phase
of b2/b1. All parameters in (A1) are z dependent, but explicit
z dependencies have been suppressed here for clarity.

All possible gain values as u is varied can thus be calcu-
lated from the variation of (1 + Weiφb )−1. This locus turns out
to be a circle in the complex plane, with center (1 − e2iφb )−1

and radius |1 − e2iφb |−1. Since a circle in the complex plane
remains a circle when multiplied by any complex number
and translated by any other, it follows that the locus of the
gain function is also a circle, which we term the gain circle.
Clearly, g(u) = g1, g2 for u = 0, 1, so both these values lie
on the gain circle, as they must. The center Cg of the gain
circle lies at g2 + (g1 − g2)/(1 − e2iφb ), while its radius Rg is
|g1 − g2|/|1 − e2iφb |, which is a general result that applies to
any gain-circle analysis.

To match the boundary conditions at z = −L, we must set
the gain g = reiφ , where r is the mirror reflectivity and φ is
the total cavity phase. It is therefore convenient to express the
points on the gain circle with center Cg and radius Rg in terms
of polar coordinates (r, φ):

r2 − 2rRe(Cge−iφ ) = R2
g − |Cg|2. (A2)

For this FP cavity problem, exact expressions for the center
Cg and radius Rg of the gain circle can be determined:

Re(Cg) = cos ψ1 cos ψ2 − (ψ2/ψ1) sin ψ1 sin ψ2

cos ψ1 cos ψ2 + (ψ2/ψ1) sin ψ1 sin ψ2
,

Im(Cg) = (θ/ψ1) sin ψ1 cos ψ2 + (ψ2/θ ) cos ψ1 sin ψ2

cos ψ1 cos ψ2 + (ψ2/ψ1) sin ψ1 sin ψ2
,

R2
g = |Cg|2 − 1.

The last of these equations eliminates Rg from the general
threshold formula (A2) above, leading to the simple and el-
egant form of (9) in the main text.

The real and imaginary parts of Cg can be written in the
alternative form

Re(Cg) = 1 − ψ2
2 tancψ1tancψ2

1 + ψ2
2 tancψ1tancψ2

,

Im(Cg) = θ tancψ1 + (ψ2
2 /θ ) tanc ψ2

1 + ψ2
2 tancψ1 tancψ2

,

where tancx = sin x/(x cos x) is an even function of x with
tanc(0) = 1. Using this form, Cg is clearly given to second
order by Cg = 1 − 2ψ2

2 + i(θ + ψ2
2 /θ ), which directly leads

to mean-field threshold formula (12). Note that ψ2
2 /θ = θ −

2(1 + G)IL and that dispersive instability is well approxi-
mated by setting G = 0 in the above expressions for Cg.
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