
PHYSICAL REVIEW A 103, 023506 (2021)

Universality of photon counting below a local bifurcation threshold
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At a bifurcation point, a small change of a parameter causes a qualitative change in the system. Quantum
fluctuations wash out this abrupt transition and enable the emission of quantized energy, which we term photons,
below the classical bifurcation threshold. Close to the bifurcation point, the resulting photon counting statistics
is determined by the instability. We propose a generic method to derive a characteristic function of photon
counting close to a bifurcation threshold that only depends on the dynamics and the type of bifurcation, based
on the universality of the Martin-Siggia-Rose action. We provide explicit expressions for the cusp catastrophe
without conservation laws. Moreover, we propose an experimental setup using driven Josephson junctions that
exhibits both a fold and a pitchfork bifurcation behavior close to a cusp catastrophe.
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I. INTRODUCTION

Universality is a central theme in modern statistical me-
chanics. A prime example is the universality of the critical
exponents that describe the divergence of observables close
to a second-order phase transition [1–3]. Catastrophe theory
offers insights into the universality as it categorizes how small
changes in external parameters can lead to qualitative changes
in the behavior of the system [4]. As such, it also provides
a suitable framework to study phase transitions in driven-
dissipative systems [5–8]. In these system, finite frequency
excitations are studied—which we call photons in the follow-
ing. At the bifurcation threshold, a small change of the system
parameters leads to a condensation of these photons [9]. Typ-
ical examples are the lasing [10] and the Dicke transition [11]
in optical systems.

In the vicinity of a bifurcation point, a characteristic long
time scale emerges in the dissipative dynamics of the system.
As a result, the qualitative properties of phase transitions
can be described only by a small number of relevant de-
grees of freedom exhibiting the slow dynamics. Moreover, a
(quasi)classical treatment of the dynamics is appropriate since
the number of photons becomes large in the vicinity of the
bifurcation threshold. Note that the dynamics of slow classical
degrees of freedom has been grouped into universality classes
by Halperin and Hohenberg [12].

Different types of bifurcations and dynamics in driven-
dissipative systems lead to a variety of critical exponents
and correlation behaviors that have been the focus of many
studies in recent years [13–24]. So far, mirroring the dis-
cussion of equilibrium physics, these exponents are derived
for low-order cumulants of physical observables. Note that
in equilibrium physics the central limit theorem leads to a
Gaussian statistics of all relevant observables and, moreover,
the fluctuations are connected to the amount of dissipation. On
the other hand, in driven-dissipative systems the fluctuation-
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dissipation theorem does not hold and even more importantly
non-Gaussian statistics should be expected in general which
leads to the question of determining the critical exponents of
higher-order cumulants.

Motivated by this insight, we employ a path-integral for-
malism [25–31] to investigate the photon counting statistics
below a local bifurcation threshold. We find that the critical
exponents of all the cumulants only depend on the type of
bifurcation given a Halperin-Hohenberg dynamics. In partic-
ular, this result explains that the full counting statistics of
the degenerate [30,32] and nondegenerate parametric oscil-
lator [33,34] are equivalent close to the threshold, as was
noted in Ref. [34]. Based on the universality of the Martin-
Siggia-Rose action, we propose a generic method to derive a
universal characteristic function of photon counting close to a
local bifurcation threshold. We exemplify our formalism for
a cusp catastrophe with a system dynamics without conserva-
tion laws. We note that the universality of counting statistics in
nonequilibrium systems has been discussed before in different
contexts, e.g., for the statistics of topological defects [35,36],
particle transport [37,38], and the nonequilibrium fluctuation
theorem [39,40].

The article is organized as follows. Our starting point is the
classical description of the bifurcation dynamics by the cor-
responding Martin-Siggia-Rose action. From there, we derive
a universal expression for the characteristic function of pho-
ton counting below the bifurcation threshold by including a
normal-ordered counting term. To demonstrate the formalism,
we analyze the counting statistics and rare-event statistics for
a fold and a pitchfork bifurcation within a cusp catastrophe
framework. Finally, we propose a microwave experiment that
can demonstrate the critical exponents in the higher-order
cumulants of the cusp catastrophe.

II. CHARACTERISTIC FUNCTION

Each model in the Halperin-Hohenberg classification can
be mapped to a corresponding classical Martin-Siggia-Rose
action SMSR. In the following, we want to consider photon

2469-9926/2021/103(2)/023506(6) 023506-1 ©2021 American Physical Society

https://orcid.org/0000-0003-2561-575X
https://orcid.org/0000-0002-8903-3903
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.103.023506&domain=pdf&date_stamp=2021-02-05
https://doi.org/10.1103/PhysRevA.103.023506


LISA ARNDT AND FABIAN HASSLER PHYSICAL REVIEW A 103, 023506 (2021)

radiation with a linewidth � and frequency � � � that em-
anates from a system close to a driven-dissipative phase
transition. For simplicity, we focus on a single harmonic
oscillator whose ‘slow’ dynamics in the rotating frame is
purely dissipative. In the Halperin-Hohenberg classification,
this dynamics corresponds to universality class A, also known
as the Glauber model. Our results apply mutatis mutandis
to dissipative field theories which are relevant to lattices of
coupled cavities (see, e.g., Refs. [20,41,42]).

For our system, the Martin-Siggia-Rose action of the di-
mensionless slow variable x is given by SMSR(x, x̃, μ) =∫

dt x̃[ẋ − f (x) + i
2μ�x̃] with the response field x̃ which

satisfies the commutation relation [x, x̃] = i. This action cor-
responds to a Langevin equation of the form ẋ = f (x) + ξ (t ).
The Gaussian fluctuations ξ (t ) have the correlations 〈ξ (t )〉 =
0 and 〈ξ (0)ξ (t )〉 = μ�δ(t ), with a classical, temperature-
dependent noise parameter μ ∝ kBT/h̄�. The force f (x) =
−V ′(x) includes external driving forces as well as the dissipa-
tive part of the force in the rotating frame [43].

As the first step towards a quantum description of the
system, we introduce a quantum scale α which relates the
classical quadrature x2/2 of the slow dynamics to the pho-
ton number n = x2/2α. In this sense, α plays the role of h̄,
determining the strength of the vacuum fluctuations. Note that
in general the photon number corresponds to the sum of two
quadratures. However, in the vicinity of the phase transition
the ‘slow’ quadrature drastically increases and dominates over
the second quadrature which remains unaffected by the phase
transition. This allows us to limit ourselves to the dynamics of
a single quadrature.

We are interested in the low-temperature limit kBT � h̄�.
Classically, the limit T → 0 corresponds to the absence of
fluctuations. In a quantum description of the system, the ther-
mal fluctuations become negligible as they decrease below the
scale of the vacuum fluctuations. In the Martin-Siggia-Rose
action, this consequence is reflected by replacing the ther-
mal fluctuation strength μ by the vacuum fluctuation strength
α [44]. Additionally, we relate the variable x̃ to the quantum
scale by introducing the conjugate variable p = αx̃ with the
canonical commutation relation [x, p] = iα.

The Martin-Siggia-Rose action describes the quantum
character of the dynamics well as long as we remain in the
quasiclassical regime with α � 1. Here, quantum fluctuations
remain small and the photon number is large. The resulting
differential equation for x corresponds to the quasiclassical
Langevin equation [45,46]. The characteristic function of the
photon counting statistics can be obtained by adding a source
term to the Martin-Siggia-Rose action such that the gener-
ating function of the photon counting statistics is given by
Z (χ ) = ∫

D[x]D[p] exp[iS(χ )] with

S(χ ) = SMSR(x, α−1 p, α) + χ�

α

∫ τ

0
dt

(
x + i

2
p

)2

, (1)

where τ is the detection time. The generating function Z (χ )
represents the characteristic function of the number of pho-
tons, N , detected within the time τ ; from this, all the
cumulants can be obtained via 〈〈Nk〉〉 = dk ln(Z )/d (iχ )k|χ=0.

The special form of the last term in Eq. (1) is one of
the main results of our work. It originates from the normal

ordering of the photon number operator n̂ = x̂2/2α and is a
pure quantum effect [47]. It can be understood as follows:
Using the conventional creation and annihilation operators
b̂† and b̂, the normal-ordered operator is of the form :x̂: =
(α/2)1/2(b̂†

− + b̂+), where the index ± translates to the order
of a respective operator Ô with regards to the density operator
ρ such that Ô+(ρ) = Ôρ and Ô−(ρ) = ρÔ. This can also be
understood in the Keldysh path-integral representation where
the index ± refers to the value of the respective variable along
the forward (backward) part of the Keldysh contour [29].
Since the Keldysh path-integral formalism guarantees the con-
tour ordering of the operators, our choice to measure the
creation operator along the backward part of the Keldysh
contour, while the annihilation operator is evaluated along
the forward part of the contour, ensures the normal ordering
of the photon number operator. In keeping with the Keldysh
formalism, it is useful to introduce “classical” and “quan-
tum” operators with Ôc = (Ô+ + Ô−)/2 and Ôq = Ô+ − Ô−.
Then, an equivalent way of writing the normal-ordered oper-
ator is given by :x̂: = x̂c + i

2 p̂q, with p̂ = i(α/2)1/2(b̂† − b̂).
It is straightforward to check that x̂c and p̂q are conjugate
with [x̂c, p̂q] = iα. Note that both xc and pq correspond to the
same classical quadrature x. In fact, pq encodes the quantum
fluctuations of the variable x but is not connected to the sec-
ond quadrature which is irrelevant for our derivation. In the
notation of the quasiclassical Martin-Siggia-Rose action, the
variables xc and pq correspond to the conjugate variables x
and p [49].

The normal ordering leads to the additional terms ixp −
1
4 p2 when expanding (x + i

2 p)2 that are coupled to the count-
ing field but vanish in the classical limit α → 0 (at fixed x, x̃).
They result from the quantum nature of the measurement.
Note that the Martin-Siggia-Rose action restricts the saddle
point of p to the imaginary axis, ensuring that the counted
photon number and all its moments are always real.

III. CUSP CATASTROPHE

In the first part of this paper, we have shown how the
characteristic function close to bifurcation can be obtained
purely from the knowledge of the classical Martin-Siggia-
Rose action. The resulting action in Eq. (1) is a generic
rotating-frame description of photon radiation with a small
linewidth � � � that emanates from a general system in
the quasiclassical regime α � 1 in the low-temperature limit
kBT � h̄�. In the following, we exemplify this method by
calculating the counting statistics for the explicit choice of the
potential V (x)/� = x4 − ax2/2 + bx, with the dimensionless
parameters a and b. This potential corresponds to a cusp catas-
trophe which enables us to study the two most fundamental
bifurcations: the fold and the pitchfork bifurcation. In the
following, we elaborate on and demonstrate the introduced
method by calculating explicitly the critical exponents and
rare-event statistics for both types of bifurcations.

In the parameter space (a, b), the system can be divided
into two regions: the first region, outside the cusp, where
a single stable solution exists and the second region, inside
the cusp, where two stable solutions exist. The cusp shape is
shown in Fig. 1(a). It is formed by the lines b = ±(a/3)3/2 for
a � 0.
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FIG. 1. (a) Cusp shape in the canonical variables (a, b). The fold
bifurcation lines at b = ±(a/3)3/2 separate the region outside the
cusp, where a single stable solution exists, from the region inside
the cusp (gray) where two stable solutions exist. (b) Evolution of
the fixed points as the systems passes to a > 0 through the cusp
point (0,0) along the vertical line indicated in (a). At the pitchfork
bifurcation, the single stable fixed point splits into two stable (solid
lines) and one unstable (dotted line) solution. (c) Evolution of the
fixed points as the systems passes through the cusp along the hor-
izontal line indicated in (a). At the first fold bifurcation, a second
stable solution (solid line) and an unstable point (dotted line) become
available, while the stability of the upper point remains unchanged.
The classical switch between both solutions takes place at the second
fold bifurcation, where the upper fixed point and the unstable fixed
point merge, forcing the system onto the lower, stable fixed point.

In the symmetrical case with b = 0, the system displays
a pitchfork bifurcation as it passes through the cusp point
(0,0). Here, one stable, classical solution splits into two stable
solutions and one unstable solution as displayed in Fig. 1(b).
Away from the cusp point, the system displays a fold bifur-
cation, where in addition to the single stable solution that
already exists outside the cusp an alternate second solution
that is paired with an unstable solution becomes available.
Disregarding fluctuations, the classical state of the system
does not change upon this transition due to hysteresis. Instead,
the classical switch between both solutions takes place at
the second fold bifurcation as indicated in Fig. 1(c). Here,
the initial classical solution vanishes, forcing the system onto
the second fixed point.

A. Pitchfork bifurcation

First, we want to calculate the counting statistics in the
vicinity of the pitchfork bifurcation at (0,0), with δ = −a > 0
the distance from the bifurcation point. For b = 0, this cor-
responds to the counting statistic of the parametric oscillator
which has already been analyzed in Refs. [30,34]. In the
quasiclassical limit α � 1, vacuum phase fluctuations remain
small. Upon approaching the threshold, the fluctuations in-
crease. However, for sufficiently small α, the crossover region
where the fluctuations become of the order of 1 remains
narrow and can be estimated as δ 	 α. It is therefore valid
to expand the Martin-Siggia-Rose action to quadratic order
around the stationary solution below the instability threshold.
For |b| � δ, the stationary solution is given by x = p = 0.

We focus on the limit of long measurement times �τ �1
and calculate the cumulant-generating function λ(z = iχ ) =
ln[Z (χ )]. In the vicinity of the threshold, we obtain

the result

λ(z) = �τ

2

[
δ −

√
δ2 − 2z + 2b2z

α(δ2 − 2z)

]
, (2)

which corresponds to the cumulants

〈〈Nk〉〉
�τ

= (2k − 3)!!

2 δ2k−1
+ 2k−1 k! b2

α δ2k
. (3)

The counting statistics has two distinct contributions: The first
term is due to the pure pitchfork statistics at b = 0 which has
been previously reported in Refs. [30,34]. The second term is
due to the contribution of the fold at finite b. Note that the cu-
mulants diverge as δ−γk with γk the critical exponent of the kth
cumulant. The pitchfork yields γk = 2k − 1 which, for k = 1,
reproduces the critical exponent of the number of photons in
the cavity in a Dicke model discussed in Ref. [11]. The fold
contribution demonstrates an even stronger divergence with
γk = 2k. At finite but small b, we thus predict a crossover
behavior with the critical exponent changing from 2k − 1
to 2k when approaching the threshold [1]. The Fano factor
F = 〈〈N2〉〉/〈N〉 is a measure of the number of correlated
photons. For the pure pitchfork statistic this factor is given
by F = δ−2 ∝ n2 with n = 〈N〉/2�τ the average number of
photons in the system. Thus, the number of correlated photons
exceeds by far the number of photons present in the system at
any given time [30]. The photons are thus correlated over the
long, divergent time scale τ ∗ = F/Ī = 2/�δ, with Ī = 〈N〉/τ
the average photon current. This is a central characteristic
of the bifurcation behavior. The divergent time scale is also
responsible for the large deviations from the average photon
current. In particular, the probability to measure a photon
current I during the measurement time τ is given by

P(I ) ∝ exp

[
− τ

2τ ∗

(
Ī

I
+ I

Ī
− 2

)]
, (4)

up to exponential accuracy [30,34]. Note that the probabil-
ity distribution is strongly asymmetric with the probability
to measure a current smaller than average currents strongly
suppressed when compared to the Gaussian approximation.

B. Fold bifurcation

Next, we want to compare the results of the pitchfork to
the fold bifurcation which is the instability away from the
cusp point. In this regime, two saddle points contribute to
the counting statistics which correspond to the two stable
solutions above the transition. Note that the second saddle
point is at a finite value of the quantum variable p since there
is only a single stable classical solution below the transition.
Analogously to the calculation at the cusp point, we want to
avoid the crossover region close to the bifurcation point where
phase fluctuations increase without bounds. For the fold bi-
furcation, this narrow region can be estimated as δ 	 α2b−4/3,
where we introduced the measure δ = 3b2/3(3b2/3 − a) > 0
for the distance to the bifurcation [50]. Away from this region,
both saddle points are well separated and the total cumulant-
generating function is given by λ(z) = ln[p1eλ1(z) + p2eλ2(z)],
with λ1(z) and λ2(z) the cumulant-generating functions of the
first and second saddle points, respectively. The probabilities
p j , with p1 + p2 = 1, denote the fraction of time the jth
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FIG. 2. Probability of large deviations of the photon current I
from the average current Ī in the vicinity of the pitchfork bifurcation
(blue, solid line) and the fold bifurcation (orange, dashed line). The
scaling is chosen such that both probabilities have identical Gaussian
expansions around I = Ī as indicated by the thin, dotted line. Note
that both probabilities are strongly asymmetric, leaning towards large
current deviations.

saddle point contributes to the total counting statistics [25].
We find that the second saddle point is exponentially sup-
pressed as compared to the first saddle point with p2 ∝
exp(−�τδ1/2). This is due to the fact that the second saddle
point is at a finite value of the quantum variable such that it is
only probed by rare quantum fluctuations.

Evaluating λ1,2, we find that only the second saddle point
leads to a divergent counting statistics. Because of this, we
require intermediate times, 1 � �τ � δ−1/2, to observe the
critical exponents such that p2 ≈ p1 ≈ 1

2 and the relevant part
of the counting statistics is given by λ(z) = 1

2λ2(z). Note
that at longer measurement times, the probability p2 to be at
the second saddle point decreases exponentially, reducing the
prefactor of the divergences. At intermediate time scales, we
obtain the result

λ(z) = �τb2/3δz

8α(δ − z)
(5)

for the leading-order behavior in δ and b close to the bifurca-
tion threshold with the cumulants

〈〈Nk〉〉
�τ

= k! b2/3

8α δk−1
. (6)

In this case, the critical exponents γk = k − 1 are different
from the pitchfork bifurcation. In particular, the photon cur-
rent at the fold does not show any divergence and only the
Fano factor F = 2δ−1 shows a divergence. The diverging time
scale in this case is given by �τ ∗ = 16αb−2/3δ−1 and only
diverges as δ−1 when compared to δ−2 before. Note that the
condition δ � α2b−4/3 from above makes sure that we are
in the intermediate regime with �τ ∗ � δ−1/2. The rare-event
statistics is given by

P(I ) ∝ exp

[
− 2τ

Īτ ∗ (I1/2 − Ī 1/2)2

]
. (7)

In Fig. 2, we compare the probability of large deviation of both
types of bifurcations. Compared to the Gaussian approxima-
tion, both types of bifurcation show an increased probability
for larger photon currents. At fixed Īτ ∗, the pitchfork leads
to larger fluctuations with | ln P|pitchfork ≈ 1

4 | ln P|fold. For de-
viations below the average current, we observe that for the

fold bifurcation the probability to observe a current I → 0 is
finite, Pfold(I → 0) ∝ exp(−2τ/τ ∗), whereas the correspond-
ing probability vanishes in the pitchfork case.

C. Microwave setup

Before concluding, we want to discuss possible experi-
mental realizations in which the predicted exponents can be
observed. The behavior of a Dicke transition [11] at finite
number of spins can be mapped to a pitchfork bifurcation.
Such a system is realized with cold-atomic gases in a cav-
ity [8]. Measuring the statistics of the photons that are leaking
out of the cavity will enable a comparison to the predicted
critical exponents. The paradigmatic example of the fold bi-
furcation is the laser transitions (in rotating wave) [5,6,51]
whose physical realizations are ubiquitous. We predict the
counting statistics of the photons below the lasing transition
to be universal and to follow Eq. (6).

In the following, we highlight an implementation using
superconducting circuits where the full cusp catastrophe, in
particular the crossover from pitchfork to the fold transition,
can be observed. The setup extends the circuit of Ref. [30]
with an additional ac-current source to account for the asym-
metry in the cusp potential. The total setup is composed of
a Josephson junction with Josephson energy EJ , biased by a
dc-voltage source, that is in series with a microwave resonator
and an ac source. The resonator is characterized by a reso-
nance frequency �, the decay rate �, and an impedance Z0

at low frequency. To observe the cusp catastrophe, we set the
frequency of the current source to the resonance frequency
� with I (t ) = I0 sin(�t ) and tune the Josephson frequency to
twice the resonance frequency by setting the dc-bias voltage
to V = h̄�/e. Additionally, we require the phase between
both drives to be fixed. We assume that the impedance far
from resonance Z0 is small at the quantum scale such that
the vacuum fluctuation strength α = 8e2Z0/h̄ � 1 [52]. The
calculation of the corresponding action follows similar steps
as the derivations in Refs. [30,34], i.e., starting with a Keldysh
path-integral formalism and performing a rotating wave ap-
proximation. The final step is a projection of the resulting
action onto the ‘slow’ direction of the dynamics in the vicinity
of the cusp bifurcation line. It yields the Martin-Siggia-
Rose action of the Glauber model for the force f (x)/� =
8εJ2(x)/x − x − j with the Bessel functions Jm(x) and the
parameters j = αI0/4e� and ε = αEJ/4h̄�. To discuss the
behavior in the vicinity of the cusp catastrophe, it is sufficient
to expand the Bessel function to fourth order in x. Then, the
force is given by f (x)/� = −εx3/12 + (ε − 1)x − j, which
leads to a cusp bifurcation line at j = ± 4

3ε−1/2(ε − 1)3/2 for
ε � 1. For the counting statistic in the vicinity of the pitch-
fork bifurcation, the mapping to the previous parameters is
straightforward with δ = 1 − ε and b = j. For the fold bifur-
cation, we obtain the mapping δ = ( 3

4 j)2/3[( 3
4 j)2/3 − ε + 1]

and b = 48 j to leading order in j.

IV. CONCLUSION

In conclusion, we have outlined a method to derive the
universal characteristic function of photon counting close to
a bifurcation threshold. While our results focused on the
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Glauber model without any spatial dependence, our approach
to derive the characteristic function from the classical Martin-
Siggia-Rose action can be easily mapped to other models or
problems with spatial dependence for which other universality
classes can be studied. The most important step is the ex-
change of the classical counting term by its normal-ordered
quantum equivalent. We have demonstrated the proposed
method by calculating the photon counting statistics below the
cusp threshold for the fold as well as the pitchfork bifurcation.

Superficially, both bifurcations lead to a divergent counting
statistics upon approaching the bifurcation threshold. How-
ever, the critical exponents γk as well as the probabilities of
rare events differ. Possible ways to test the universal statis-
tics include the lasing [51] and the Dicke transition [11].
Additionally, we have proposed a microwave setup based on
the degenerate parametric oscillator [30] that exhibits a cusp
catastrophe and could thus be used to observe both sets of
critical exponents in a single device.
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