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We propose an approach to actively control the formation of the dark solitonic well by adjusting the input
properties of both the dark solitons and probe waves under the fiber-optical analog of the event horizon. An
interesting process of the trapping of a probe wave by the gray solitonic well is demonstrated here, which is
accompanied by a transformation between the gray and black solitonic wells. This solitonic well transformation
and control process originates from the intrinsic competition between the probe-soliton collision-induced
nonlinear phase shift and the internal phase of the dark soliton. The trapping efficiency is sensitive to both
the grayness value of the input dark soliton and the frequency of the launched probe wave. The solitonic well
investigated as a combination of white- and black-hole horizon can be considered as a qualified candidate for
achieving the photonic transistorlike action. The study of a gray-black solitonic well proves the theory basis for
further understanding of the light-by-light controlling in a more controllable manner.
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I. INTRODUCTION

The light-by-light controlling as a research hotspot has
been widely used in high-efficient pulse compression [1,2],
optical rogue wave formation [3-5], as well as all-optical
transistors [6,7]. During these dynamics, the intense soliton
prevents the penetration of the weak probe wave with slightly
different transmission velocities, giving rise to an artificial
event horizon [7-9]. To the probe wave, the soliton boundary
appears as the analog of the white- and black-hole horizon
at the trailing and the leading edge of the energetic soliton,
respectively, where the probe wave can neither enter nor es-
cape [6,10,11]. The underlying physical mechanism for the
interaction between the two pulses was termed as the soliton-
induced Kerr effect, where the intensity-dependent refractive
index leads to the temporal reflection on the edge of the ener-
getic soliton, which further changes the group velocity of the
probe wave [12-14]. The transmission velocity change of the
probe wave is directly due to the nonlinear optical frequency
conversion between the probe wave and the reflected wave,
resulting in the blue- and red-shift at the white- and black-
hole horizon, respectively [15-18]. The frequency conversion
process is reversible when the probe wave is relatively weak
and cannot scatter the soliton in the regime of the optical event
horizon [19]. A vital feature during the collision dynamics is
that the collision affects not only the transmission properties
of the probe wave but also the dynamic of the soliton [15-19].
Previous studies have shown that the underlying physical
principle for generating new frequency components can be
a productive way to generate ultrabroadband and coherent
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supercontinuum without either soliton fissionor modulation
instability [20,21]. Moreover, it has been shown that the soli-
tonic well consisting of two intense solitons can trap a weak
probe wave, via both numerical simulations [13,16,22] and ex-
perimental demonstration [23]. However, investigations on the
collision dynamics and the solitonic well at the optical event
horizon are primarily focused on the active control of funda-
mental [7—11,19-21] and higher-order bright solitons [16,24],
and only a few studies focused on dark solitons [25-28].

The dark solitons only existing in the normal dispersion
regime appear as localized notches over a continuous wave
background with uniform intensity and are modulationally
stable [29]. Research interest in dark solitons was motivated
by the observations of temporal dark solitons in several ex-
periments in optical systems several decades ago [30,31].
Since then the physical mechanisms underlying dark soli-
tons propagation have attracted extensive interest and have
been applied to nonlinear problems with different contexts,
especially in the field of nonlinear optics. The dark solitons
perturbed by both high-order dispersion (HOD) and nonlinear
effects also have been investigated theoretically [29,32,33]
and experimentally [34,35]. It was demonstrated in these stud-
ies that the wavelength and intensity of the emitted DWs can
be adjusted by the soliton grayness, the intensity of HOD,
as well as the Rama effect. In addition, C. Milian et al.
have proposed the possibility to form a continuum with the
dispersion waves (DWs) emitted by dark soliton trains for
the first time in 2009 [33]. Recently, it has been found that
two intense black solitons can form a solitonic well where
DWs can be trapped [18]. The transformation between gray
and black solitons has also been discovered by adjusting the
probe wave parameters through the nonlinear interaction [36].
All this shows that the nonlinear interaction between the dark
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soliton and the probe wave is still an attractive research field.
However, to the best of our knowledge, the basic mechanism
for the transformation process has not been systematically
investigated at the fiber-optical analog of an event horizon,
which is considered to be the cornerstone of the manipulation
of the collision dynamics, the formation of a gray solitonic
well, as well as the transformation of black and gray solitonic
wells.

In this article, we numerically demonstrate mutual manipu-
lation between a dark soliton in the normal dispersion regime
and a DW in the abnormal dispersion regime at the optical
event horizon, which provides a novel view on the manipu-
lation of the collision dynamics to control the formation of
an effective solitonic well. Adjusting the time delay and the
intensity of the probe wave according to the soliton grayness
achieves the soliton manipulation and ultimately realizes the
flexible variation of soliton grayness, including the transfor-
mation between black and gray solitons. In addition, it is
shown that the reflected wave energy conversion efficiency
and the output spectrum of the probe wave after the collision
can be largely regulated by controlling both the input soliton
grayness and the frequency of the incident probe wave. Fi-
nally, we realize the DW trapping by a gray solitonic well and
the transformation between gray and black solitonic wells.

II. THEORETICAL MODEL

The typical collision process between the dark soliton and
the probe wave at the fiber-optical analog of the event hori-
zon in the dispersive nonlinear optical fiber can be governed
by the following normalized nonlinear Schrodinger equa-
tion [37,38]:

i0,A — 107A + isd’A + |APA = 0. (1)

Here, A is the normalized electric envelope, z is the nor-
malized transmission distance along with the fiber, and ¢
is dimensionless time, and they satisfy the following rela-
tions: z =Z/Zy, t = [T — Z/v(wyp)]/To. Among them, Zy =
TO2 /182, wp is the center carrier frequency of the dark soliton,
and v(wy) is the corresponding group velocity. The coefficient
& = B3/(6|B82]Ty) denotes the relative intensity of third-order
dispersion. Particularly, ¢ # 0 is the fundamental condition
for the formation of the fiber-optical analog of the event
horizon. We ignore HOD (n > 3), Raman effect, and self-
steepening to focus only on the main physical factors during
light-by-light controlling. Indeed, this assumption is reason-
able because the Raman effect, self-steepening effect, as well
as the HOD with n > 3 can be neglected in the regime of
propagation dynamics at the optical event horizon [7,16,39].
The input field A(0, t) consists of two pulses—the dark soliton
and the probe wave—that do not overlap both temporally and
spectrally:

A0, 1) = Ags(0,1) + A0, 7). )

Here, A,(0, t) is a hyperbolic secant pulse with a delay #; and
a frequency offset of f.

A,(0, 1) = Apsech[(t + 1)/Ti Jexp(—i27 f). 3)

A, and Ty are the amplitude and the width of the probe wave.
If we consider ¢ = 0, a dark soliton solution A4 (0, ¢) deduced

from Eq. (1) has the following form [29]:
Ags(0, ) = ugl[cose tanh(ugt cos¢) — i sing], 4)

where 1, is the background amplitude of the dark soliton.
Here we pick uy = 1, for simplicity. The effective angle
(phase) ¢(|¢| < m/2) corresponds to the total phase shift (2¢)
across the dark soliton, which is connected with the grayness
value (cos¢) as well as the velocity (sing) of the dark soliton.
The soliton with ¢ = 0 is defined as a black soliton; other-
wise, a gray one. The black soliton has an abrupt 7 phase
jump in the center with an intensity value of zero, while the
gray solitons have a smaller and smoother phase jump, as well
as a nonzero intensity at the pulse center. Furthermore, dark
solitons with ¢ > 0 or ¢ < O travel with a group velocity
slower or faster than that at the central carrier frequency
(¢ = 0), respectively [26].

In the presence of HOD (n > 3), dark solitons emit phase-
matched DWs in the anomalous dispersion region, similar to
bright solitons [40,41]. However, here, the value ¢ = 0.0212
is so small that the influence of HOD on the dark soliton and
the energy emission can be ignored [37].

III. RESULT AND DISCUSSION
A. Mutual manipulation of soliton and probe wave

The nonlinear collision dynamics between a dark soliton in
the normal dispersion regime and a probe wave in the anoma-
lous dispersion regime can create an analog of the optical
event horizon for special soliton grayness and probe wave
parameters, which can provide possible methods for active
manipulation of the interaction process. The wave number
D(8) = 82/2 + &8 (8 =27 f; 8 is the normalized angle fre-
quency), and the relative group delay curve for a black soliton
are shown in Fig. 1, which helps us to establish the main
prerequisite for the optical event horizon, including both an
effective refractive index barrier and copropagation of the two
pulses with a near-identical group velocity. The two curves
can be used as a reference for a gray soliton (¢ = 0), with just
a slightly different group velocity resulting from the different
phases. As shown in Fig. 1, when the frequencies of the probe
wave lie in the light-green (yellow) -shaded area, the probe
wave with a slower (faster) transmission speed will reflect
on the leading (trailing) edge of the dark soliton, imitating
group-velocity-led black (white) -hole horizon and produce an
idle wave (reflected wave) with red (blue) -shift in frequency.
It is worth noting that GVM is the transition point between
the white- and black-hole horizons. Figure 2 summarizes
the simulation results on the collision between a dark soliton
with different grayness and a weak probe wave with varying
intensities. Firstly, based on the phase-matching condition in
Fig. 1, a weak probe wave, with the frequency offset —2.3
[Figs. 2(al) and 2(c1)] or —2.7 [Figs. 2(b1) and 2(d1)], should
temporally trail or precede with the dark soliton at the input
to realize the collision in the regime of the optical event
horizon in terms of their relative frequencies and the resulting
different transmission velocities. A gray soliton traveling with
a slightly different group velocity than that at the central
carrier frequency (black soliton ¢ = 0) acts as a moving re-
fractive index barrier to prevent the low-power probe wave
from passing through. Then the probe wave is elastically
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FIG. 1. The group delay curve (a) and the wave number (b) as
a function of the normalized frequency for a black soliton. A
phase-matched idler wave (reflected wave) is generated with op-
posite group velocity relative to the black soliton. vy is the group
velocity of the black soliton and GVM is the corresponding group-
velocity-matched point in frequency. DW is the phase-matched DW
emitted by the black soliton. The blue arrows and the red arrows
represent the changing trend of uy,s and the corresponding GVM point
when the effective angle ¢ of the incident gray soliton is greater or
less than zero, respectively.

scattered and partially transmitted. The dynamical process,
relating to the analog of the white- or black-hole horizon, is
shown in Figs. 2(al) and 2(cl), and Figs. 2(bl) and 2(dl),
respectively. In all cases, the dark soliton deviates from its
original trajectory, being pushed by the weak but nonvanish-
ing repulsive force from the probe wave. The change of the
gray soliton group velocity is attributed to the change of soli-
ton grayness after the collision, which manifests as a change
in the color of gray solitons as shown in Figs. 3(al)-3(dl).
The probe wave benefiting from the typical “antiparticle”
characteristic of a dark soliton is reflected on the optical event
horizon during the collision. The deflection direction of the
dark soliton trajectory is opposite to that of the probe wave,
which is opposite to the case involving a bright soliton [23].
In addition, the grayness of the dark soliton in Figs. 2(a2)
and 2(d2) increases, while that in Figs. 2(b2) and 2(c2) de-
creases. The change of grayness is determined by the intrinsic
competition between the four-wave mixing (FWM) induced
nonlinear phase shift of the dark soliton during the collision
and the internal phase of the gray soliton. For the cases shown
in Figs. 2(a2) and 2(d2), the nonlinear phase shift offsets a
part of the internal phase when the probe wave collides with
the dark soliton, so the grayness value of the gray soliton
increases. Specifically, in the case for ¢ > 0 in Figs. 2(al)
and 2(a2), the transmission velocity increases as well as the

time delay reduces. The evolution process is referred to as
diametrically driven self-acceleration [42]. The case for ¢ < 0
in Figs. 2(d1) and 2(d2) is opposite from the case of ¢ > 0;
its transmission speed decreases. While for the cases shown
in Figs. 2(b2) and 2(c2), the nonlinear phase shift increases
the internal phase of the gray soliton, so the soliton gray-
ness decreases. The transmission velocity declines (raises)
and the delay increases (reduces) in Fig. 2(b2) [Fig. 2(c2)].
In all cases, we see the dissipation effect of dark solitons,
from the long oscillating tail with a stable amplitude and
a similar period [37]. Subsequently, we adjust the intensity
of the weak probe wave based on Figs. 2(al)-2(d1) and the
corresponding temporal output profiles of the dark soliton are
plotted in Figs. 2(a3)-2(d3). On the one hand, when the peak
power of the probe wave increases to A, = 0.31 in Figs. 2(a3)
and 2(d3), the nonlinear phase shift induced by the collision
exactly cancels the internal phase of the gray soliton, trans-
forming it into a black soliton. However, further increasing the
probe wave power [A, = 0.4 in Figs. 2(a3) and 2(d3)] induces
a dominating nonlinear phase shift, converting the input gray
soliton into another one with antiphase. On the other hand, the
results in Figs. 2(b3) and 2(c3) demonstrate that increasing
the intensity of the probe wave strengthens the internal phase
of the gray soliton and results in the reduction of soliton
grayness. So we can conclude that the interaction of the gray
soliton with ¢ > 0 (¢ < 0) with the leading (trailing) part
of the probe wave can change them into dark solitons with
smaller grayness, while interaction with the trailing (leading)
part of the probe waves converts them into larger grayness
ones. If the probe wave intensity is further increased, a black
soliton and even another antiphase gray soliton can be ac-
quired. In other words, when taking the group velocity at the
center carrier frequency (the group velocity of the correspond-
ing black soliton) as a reference, the collision induced by the
movement between the dark soliton and the probe wave in
the opposite direction increases the dark soliton grayness or
even converts it into a “new” antiphase gray soliton, while the
soliton grayness is reduced if the collision happens in the same
direction. Furthermore, by comparing the results in Figs. 2(a)
and 2(d), as well as Figs. 2(b) and 2(c), one can see clearly that
the collision dynamics has some temporal-phase-frequency
symmetry characteristics. These features are helpful to choose
probe wave parameters according to different soliton prop-
erties to realize the soliton manipulation at the optical event
horizon.

B. Impact of the dark soliton grayness on mutual manipulation

As shown in Figs. 2(al) and 2(c1), as well as in Figs. 2(b1)
and 2(d1), gray solitons with different phases exhibit distinct
behaviors when interacting with the same probe wave in the
regime of an optical event horizon. To analyze the relationship
between this collision dynamics and the grayness value of
the dark soliton, simulations with different ¢ are performed
and the results are reported in Fig. 3 for the grayness value
from ¢ = —m /3 to ¢ = /3. All the other parameters in both
Fig. 3(a) and the blue curve in Fig. 3(b) are the same as those
in Fig. 2(al). The white dashed line represents the position
of the input probe wave. The energy conversion efficiency
of the reflected wave decreases, while the frequency of the
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FIG. 2. Numerical simulations of the collision dynamics between a dark soliton with different grayness and a weak probe wave with
varying intensities. (a) and (b) correspond to ¢ > 0, while (c) and (d) correspond to ¢ < 0. The frequency offset in (a) and (c) is —2.3, while
itis —2.7 in (b) and (d). So the probe wave should temporally trail or precede the soliton to construct the optical event horizon. (al)—(d1) plot
the temporal evolutions as a function of the normalized transmission distance, and the corresponding input and output temporal profiles are
shown in (a2)—(d2). (a3)—(d3) are the comparisons of input temporal profiles and the output temporal profiles for different input probe wave
intensities. The black dashed lines in (al)—(d1) are the original trajectories of the input dark soliton. The other parameters are all the same, as

follows: ¢ = =7 /10, Ty = 3,1, = £10.

reflected wave keeps widening toward the low-frequency re-
gion for the grayness value from ¢ = 0 to ¢ = 7 /4. That is
because the input dark soliton with different grayness alters
the corresponding phase-matching condition, resulting in the
slower dark soliton and the frequency downshifting of both
GVM and the newly generated reflected wave (blue arrow in
Fig. 1), which is beneficial for the generation of supercontin-
uum without either soliton fission or modulation instability.
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FIG. 3. The output spectrum profile (a) and the reflected wave
energy conversion efficiency (b) versus the effective angle ¢. The
other parameters in both (a) and the blue curves in (b) are the same
as those in Fig. 2(al). The red and green curves in (b) correspond to
an increased intensity of the probe wave to 0.31 and 0.4, respectively,
and the white dashed line in (a) represents the input probe wave.
The two black dashed lines and dash-dotted lines in (b) represent
¢ = £m/6 and ¢ = £ /9, respectively.

However, when the effective angle is larger than ¢ = /4,
the group velocities of the two pulses are so different that
there are not many overlapping interactions between them,
and at the same time, the large phases (|¢|) lead to the de-
crease in amplitude of the dark soliton and gradually tend to
a flat continuous wave, both of these will make the energy
conversion efficiency negligible. In that case, the probe wave
is modulated by the dark soliton through FWM and presented
as interference fringes in the frequency domain. Furthermore,
when the effective angle evolves from ¢ =0 to ¢ = —m /4,
the frequency offset of the reflected wave decreases gradually
due to the modified phase-matching condition (red arrow in
Fig. 1, in which the GVM point keeps approaching the probe
wave in frequency and the generated reflected wave moves
to the high-frequency region). When the angle is smaller
than ¢ = —m /4, the group velocities of the two pulses are
very similar and the reflected wave partially overlaps with
the probe wave in the time domain, resulting in the temporal
modulation of two pulses. What is more, the blue curve in
Fig. 3(b) shows that the reflected wave energy conversion ef-
ficiency during the collision process presents a high value for
the effective angle between ¢ = —m /6 and ¢ = 7 /9. When
the effective angle tends to ¢ = 7w /3 or ¢ = —m /3, the re-
flected wave energy conversion efficiency decreases rapidly to
a low value of less than 0.1. With the increase of the intensity
of the probe wave, the energy conversion efficiency curves
show the same trend but move down slightly as a whole.
It is worth noting that the decreasing slope is much steeper
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FIG. 4. The output spectrum (a) and the reflected wave energy
conversion efficiency (b) versus the probe wave frequency offset. The
probe wave with a normalized frequency less or greater than —2.5
initially precedes or trails the gray soliton temporally, corresponding
to the dark soliton with ¢ < O or ¢ > 0. Here, the other parameters in
both (a) and the blue curve in (b) are the same as those in Fig. 2(al).
The red and green curves in (b) show the results for increased inten-
sity of the probe wave to 0.31 and 0.4, respectively. The upper and
lower parts of the black dashed line in (a) are similar to the collision
situation of Figs. 2(d1) and 2(al), respectively.

for an effective angle of less than 0. In Fig. 2, we can see
that the collision dynamics have some time- symmetry, so the
situation is just the opposite for the case of the probe wave
leading.

C. Impact of the probe wave frequency on mutual manipulation

To better understand the collision dynamics in the regime
of the optical event horizon, we studied the relationship be-
tween the probe wave frequency and the collision dynamics.
As the situations show in Figs. 2(a) and 2(d), the gray soliton
and the probe wave move toward each other, which plays a
vital role in the active manipulation of the black-gray soliton
transformation. The evolution of the fiber output spectrum and
the reflected wave energy conversion efficiency as a function
of the probe wave frequency offset are shown in Fig. 4. The
GVM point of the corresponding black soliton is indicated
by the dashed black line in Fig. 4(a). The probe wave with
a normalized frequency less or greater than —2.5 initially
precedes or trails the gray soliton temporally, corresponding
to the soliton with ¢ < 0 or ¢ > 0. Then, these two waves
collide. All the other parameters in both Fig. 4(a) and the
blue curve in Fig. 4(b) are the same as those in Fig. 2. The
spectrum evolutions in the range above —2.5 and below —2.5
are antisymmetric, which obey the phase-matching condition
[in Fig. 1(b)] and are consistent with the results in Fig. 2. As
shown in Fig. 4(a), when the frequency offset of the probe
wave is above —2.2 or below —2.8, the probe wave and dark
soliton penetrate each other due to the large group velocity
difference, resulting in a very weak reflected wave. In addi-
tion, when the frequency offset of the probe wave is between
—2.8 and —2.2, more energy is transferred from the probe
wave to the reflected wave. For a frequency offset between
—2.4 and —2.6, the probe wave is so close to the GVM
point that the frequency offset of the reflected wave is small,
and the weak probe wave and reflected wave are modulated,
indicated by interference fringes in frequency. One can note
that the reflected wave energy conversion efficiency is high
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FIG. 5. (a) Density maps of the temporal evolution of the dark
solitonic well as a function of transmission distance. (b) The tempo-
ral profile of the solitonic well at three representative transmission
distances: z =0, 15, 35. Here, t; =10, t, =20, A,; =0.32, A, =
0.32, fi = —2.4, and f; = —2.6; the other parameters are the same
as those in Fig. 2(al).

when the effective offset is between f = —2.4and f = —2.6
and quickly decreases to almost zero at —2.9 and —2.1.

D. Formation and transformation of black-gray solitonic well

Based on the features obtained above during the evolution
processes of collision dynamics, it is possible to generate a
black-gray solitonic well in an optical fiber, where the white-
and black-hole event horizons are combined. To demonstrate
this, an initial electric field consisting of a pair of temporal-
separated dark solitons and two temporal-frequent-separated
probe waves is chosen:

A0, t) = Apsech[(t + 1)/T lexp(—i2n f)
+Appsech([(t — t1)/Tilexp(—i2n f2) + Ads200.1)»

(%)
with Agg, taking the following form [18]:
—upf{cose tanh[uy(t + t,)cos¢]
) —ising}, t <0
Aa(0,1) = ~+up{cos¢ tanh[ug(t — t)cos¢p] ©)
—ising}, t>0.

Here, t; and 1, stand for the pump position of the probe wave
and the dark soliton, respectively. f; and f, represent the
relative frequency offset of the two probe waves with respect
to the central carrier frequency of the dark soliton. It should
be noted that the grayness of the dark soliton, as well as the
frequency of the probe wave, must be chosen reasonably ac-
cording to the conclusions drawn earlier to ensure the effective
transformation for the collision process. Here the grayness
parameter of the dark soliton is ¢ = =+ /10 and the frequency
offsets of the two probe waves are f; = —2.4 and f; = —2.6,
respectively. Figure 5(a) shows the simulated temporal evo-
Iution of the four pulses copropagating along with the fiber,
which can be divided into three regions. Before the first colli-
sion in the solitonic well, the two gray solitons with the same
grayness value but opposite phase move toward each other
with almost no perturbation due to no nonlinear interactions
between the two pulses. Subsequently, they collide with the
two probe waves at almost the same transmission distance;
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then most of the probe wave energy is reflected by the gray
soliton-induced refractive index barrier and trapped inside the
solitonic well, with only a small part of the energy penetrating
through. The temporal profile of the dark soliton at the nor-
malized transmission distance of 15 in Fig. 5(b) shows that the
pumped gray solitonic well is transformed into a black soli-
tonic well after the collision. The leading and the trailing gray
solitons shifting toward the outside of the solitonic well are
converted into a faster and slower black soliton, respectively.
Ultimately, the two newly generated black solitons colliding
with the reflected waves turn into two gray solitons with oppo-
site phase and larger grayness than the input two gray solitons.
The temporal evolution process is due to the fact that the in-
cident probe waves become the lower-energy reflection waves
in the solitonic well after the first collision and then act as the
probe waves during the next nonlinear collisions. This process
realizes the transformation of the black-gray solitonic well.
Although several similar evolutions are demonstrated in black
and bright solitonic wells [20-22], here the gray solitonic well
is mentioned. In Fig. 5, the gray solitonic well composed of
two oppositely moving gray solitons increases the constraint
distance of the solitonic well to the internal DWs, which is
a significant feature of the solitonic well. Through the above
discussion, the intrinsic manipulation mechanism is believed
to be a wave blocking phenomenon that is also known from
hydrodynamical systems.

IV. CONCLUSION

To conclude, we numerically demonstrate an approach of
mutual manipulation between a dark soliton in the normal dis-
persion regime and a DW in the abnormal dispersion regime at
the optical event horizon. Through the approach, we achieve
both the trapping of DWs by the gray solitonic well and
the transformation of gray and black solitonic wells. The
gray-black soltion well proposed in our work increases the
constraint distance of the solitonic well to the internal DWs,
which is an important performance parameter of solitonic
wells. In addition, the trapping efficiency of the soltion well is
sensitive to both the grayness value of the input dark soliton
and the frequency of the launched probe wave. The approach
demonstrated in our work can be a qualified candidate for
realizing the photonic transistorlike action and provides fur-
ther insights into the collisional dynamics of dark solitons in
a more controllable manner.
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