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Controllable photon-phonon conversion via the topologically protected edge channel
in an optomechanical lattice
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We propose a scheme to achieve the periodically modulated Su-Schrieffer-Heeger model based on a one-
dimensional optomechanical lattice. We show the energy-eigenvalue spectrum and the winding number to
demonstrate two topologically distinct phases of the Su-Schrieffer-Heeger model. Specifically, we realize the
photon-phonon conversion process via the topologically protected edge channel with a controllable conversion
efficiency. By calculating the fidelities of the photon-phonon conversion, we find that our system is more robust
against the on-site defect potential throughout the overall lattice sites than the edge lattice sites. Interestingly,
the large defect added into the edge sites can induce additional quantum channels to achieve the photon-photon
transfer and the phonon-phonon transfer. Our scheme opens an alternative avenue to investigate the topological
phases and the quantum state transfer in optomechanical lattice systems.
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I. INTRODUCTION

A topological insulator [1–4] is a new form of matter
that behaves as an insulator in its interior while behaving
as a metal on its boundary and has been one of the most
intriguing research fields in condensed-matter physics. The
significant difference between traditional insulators and topo-
logical insulators is the presence of the gapless edge states in
the nontrivial phase region accompanied with a nontrivially
topological index. The Su-Schrieffer-Heeger (SSH) model,
as one of the simplest one-dimensional (1D) tight-binding
topological models, is characterized by the robust edge state
immune to disorders and perturbations. Despite its simplicity,
it has attracted extensive studies in the past decades since it ex-
hibits rich physical phenomena, such as the topological phase
transition [5–9], edge state and topological invariants [10–16],
and non-Hermitian bulk-boundary correspondence [17–24].
Furthermore, it is found that the SSH model can be mapped by
various systems, including off-diagonal bichromatic optical
lattice [25], graphene ribbon [26], a p-orbit optical ladder
system [27], circuit QED systems [28–30], etc.

In recent years, tremendous progress has been made in op-
tomechanical systems [31–35], in which optical cavity fields
are coupled to mechanical resonators through the effects of
radiation pressure or optical gradient forces. The optome-
chanical systems have been proposed and become excellent
platforms to investigate diverse quantum physics, such as
quantum information processing [36,37], photon blockade
[38–40], photon-phonon entanglement [41], quantum state
transfer [42–44], etc. Furthermore, another exciting develop-
ment is that the optomechanical lattice system can be used to
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map the topological tight-binding models and study the con-
version between photons and phonons. In an optomechanical
resonator, the optical and mechanical excitations can be co-
herently converted, which induces a transparency window for
a weak probe laser beam [45]. The single photon-phonon con-
verter has been realized by combining the single-bit operation
with the cross-Kerr nonlinear effect in quadratically coupled
optomechanical systems [46]. The observation of parametric
frequency conversion between two microwave modes me-
diated by the motion of a mechanical resonator has been
reported in Ref. [47]. Therefore, optomechanical systems have
become excellent candidates to simulate quantum many-body
systems and manipulate the photon and the phonon.

In this paper, inspired by the matter mentioned above,
we propose a scheme to induce the topological SSH phase
based on an optomechanical lattice, in which the topologically
distinct phases can be characterized by the relation between
the winding and the origin in the momentum space. More-
over, we investigate the photon-phonon conversion process
via the topologically protected edge state with a special dis-
tribution under an appropriate parameter regime. Especially,
the initial photon state can also be converted into the photon
state with an arbitrary conversion efficiency via modulating
the varying rate. When the first optical cavity is excited,
we find that the photon appears in the first optical cavity
and the phonon appears in the last mechanical resonator si-
multaneously with a certain proportion after a certain time
evolution. By numerically calculating the conversion fideli-
ties, we find that the system still possesses a high conversion
efficiency against the on-site defect potential throughout the
overall lattice sites. However, the photon can be localized in
the first site all the time for a nonadiabatic evolution pro-
cess when the varying rate is large enough. Furthermore, we
find that the photon-photon transfer and the phonon-phonon
transfer can be achieved via the additional quantum channels
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FIG. 1. Schematic of the 1D optomechanical lattice, which is
composed by N unit cells. Each unit cell contains an optical cav-
ity, an, and a mechanical resonator, bn. The coupling between the
mechanical resonator bn and two adjacent cavity fields is gn.

induced by the large defect added into the edge sites. Our
scheme reveals a great potential application of topological
matter for photon-phonon conversion in quantum information
processing.

The rest of the paper is organized as follows. In Sec. II,
we propose a method to realize the SSH model based on an
optomechanical lattice and demonstrate the topology of the
system. In Sec. III, we achieve the photon-phonon conversion
via the topological edge channel. In Sec. IV, we discuss the
effect of the on-site defect on photon-phonon conversion.
Moreover, we show that the large defect added into the edge
sites induces the additional topological channels to achieve the
photon-photon transfer and phonon-phonon transfer. Finally,
a conclusion is given in Sec. V.

II. MODEL AND HAMILTONIAN

We consider a 1D optomechanical lattice composed of N
optical cavities and N mechanical resonators, in which each
cavity field is driven by an external laser with frequency ωd,n

and amplitude �n, as depicted in Fig. 1. The Hamiltonian of
the system is described by (h̄ = 1)

H =
∑

n

ωa,na†
nan + ωb,nb†

nbn + �ne−iωd,nt a†
n

+�∗
neiωd,nt an − gn(a†

nan − a†
n+1an+1)(b†

n + bn), (1)

where a†
n(b†

n) and an(bn) are the creation and annihilation
operators of the optical cavity field (mechanical resonator)
with frequency ωa,n(ωb,n), respectively. The first two terms
represent the energy of the cavity fields and the mechanical
resonators, the third and fourth terms correspond to the inter-
actions between external lasers and the cavity fields, and the
last term describes the couplings between cavity fields and
the mechanical resonators. In the rotating frame with respect
to the external laser frequency ωd,n, the Hamiltonian of the
system becomes

H1 =
∑

n

�a,na†
nan + ωb,nb†

nbn + �na†
n + �∗

nan

− gn(a†
nan − a†

n+1an+1)(b†
n + bn), (2)

where �a,n = ωa,n − ωd,n is the frequency detuning of the
cavity fields with respect to the external lasers. Under the
condition of strong laser driving, we perform the standard lin-
earization process by rewriting the operators as an = 〈an〉 +
δan = αn + δan and bn = 〈bn〉 + δbn = βn + δbn. After drop-
ping the notation “δ” for all the fluctuation operators δan (δbn),

the linearized Hamiltonian can be given by

H1 =
∑

n

�′
a,na†

nan + ωb,nb†
nbn − gnα

∗
nanb†

n − gnα
∗
nanbn

− gnαna†
nb†

n − gnαna†
nbn + gnα

∗
n+1an+1b†

n

+ gnα
∗
n+1an+1bn + gnαn+1a†

n+1b†
n + gnαn+1a†

n+1bn,

(3)

where �′
a,1 = �a,1 − g1(β∗

1 + β1) and �′
a,n∈[2,N] = �a,n +

gn−1(β∗
n−1 + βn−1) − gn(β∗

n + βn) are the effective cavity
field detunings originating from the optomechanical coupling.
Then, by performing another rotating transformation with re-
spect to �′

a,na†
nan and ωb,nb†

nbn, we obtain

H ′
1 =

∑

n

[ − gnα
∗
ne−i(�′

a,n−ωb,n)t anb†
n

− gnα
∗
ne−i(�′

a,n+ωb,n)t anbn

− gnαnei(�′
a,n+ωb,n)t a†

nb†
n

− gnαnei(�′
a,n−ωb,n)t a†

nbn

+ gnα
∗
n+1e−i(�′

a,n+1−ωb,n)t an+1b†
n

+ gnα
∗
n+1e−i(�′

a,n+1+ωb,n)t an+1bn

+ gnαn+1ei(�′
a,n+1+ωb,n)t a†

n+1b†
n

+ gnαn+1ei(�′
a,n+1−ωb,n)t a†

n+1bn
]
. (4)

Under the red-detuning condition, the counterrotating wave
terms can be effectively removed, and the final effective
Hamiltonian can be written as

Heff =
∑

n

(Gna†
nbn + Gn+1a†

n+1bn) + H.c., (5)

where Gn = −gnαn and Gn+1 = gnαn+1 are the effective op-
tomechanical couplings. We further modulate the coupling
strengths as Gn = g0(1 − cos θ ) and Gn+1 = g0(1 + cos θ ),
where θ is the modulated parameter in the range of θ ∈
[0, 2π ], and g0 = 1 is the basic effective optomechanical
coupling as the energy unit. Note that we can achieve
the periodic modulation of system by changing the fre-
quency of the driving field in the way of periodic control
[33,48,49]. The optomechanical system can be regarded as
a periodically modulated SSH model possessing only the
nearest-neighboring couplings; thus the Hamiltonian can be
rewritten as

HSSH =
∑

n

[(1 − cos θ )a†
nbn + (1 + cos θ )a†

n+1bn] + H.c.

(6)

It is well known that the SSH model holds two distinct
phases which can be distinguished by the presence or ab-
sence of twofold-degenerate zero-mode edge states. Under
the open boundary condition, we plot the energy-eigenvalue
spectrum of the system with the lattice size of N = 5, in
which the phase in the parameter regimes θ ∈ [0, π/2] ∪
[3π/2, 2π ] characterized by the presence of zero-mode edge
states is topologically different from the phase in the regime
θ ∈ [π/2, 3π/2], as shown in Fig. 2(a). After the Fourier
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FIG. 2. (a) The energy spectrum of the system. The red line and
the blue line represent the N th and (N + 1)th eigenvalue versus the
periodic parameter θ , respectively. (b) Winding numbers for different
parameters θ , including black solid line with θ = 0, red asterisk with
θ = 0.1π , blue pentagram with θ = 0.5π , and green dotted line with
θ = 0.7π . (c)–(f) The state distributions of the zero-energy modes
are defined as ||ψn〉|2, where |ψn〉 is the nth eigenstate of the system.
(c) θ = 0.001π . (d) θ = 0.02π . (e) θ = 0.007π . (f) θ = 0.002π .
The lattice size of the system is N = 5.

transformation ρn = 1√
N

∑
k eiknρk (ρ = a, b), the Hamilto-

nian in the momentum space can be expressed as

HSSH =
∑

k

ψ
†
k h(k)ψk, (7)

where ψ
†
k = (a†

k, b†
k ) and h(k) = hxσx + hyσy with the Pauli

matrix σ acting on the vector ψk , hx = (1 − cos θ ) + (1 +
cos θ ) cos k, and hy = (1 + cos θ ) sin k. The topological prop-
erties of the distinct phases can be characterized by the
winding angle of h(k) as k varies across the Brillouin zone,
i.e., the geometrical meaning of the Zak phase. In Fig. 2(b), we
plot the winding numbers to demonstrate the topological prop-
erties of the system with four different parameter regimes. The
origin is encircled in the winding corresponding to the topo-
logically nontrivial phase, the winding is outside the origin
corresponding to the trivial phase, and the winding passes the
origin corresponding to the gap closing point. The different
winding numbers can characterize the topologically distinct
phases in the standard SSH model. According to the bulk-edge
correspondence, when the above optomechanical lattice is in
a topologically nontrivial phase, the winding number remains
unchanged and the topological edge state exhibits a special
distribution in its boundary. Since the topologically protected
edge states are insensitive to the local defects and disorders,

FIG. 3. (a) The photon distribution in the first cavity and the
phonon distribution in the last mechanical resonator for the evolved
final state versus the varying rate �. (b) The detailed patterns of the
photon distribution and phonon distribution in the two end sites. The
evolution time is t = 2π/�. The lattice size of the system is N = 5.

the topological invariants in our model will endow the edge
states to be topologically protected against the disorders and
defects. Therefore, such edge states can be employed as the
topologically protected quantum channel to realize the robust
photon-phonon conversion. To further clarify the topologi-
cally distinct phases, we plot the state distributions of the
degenerate zero-energy modes in Figs. 2(c)–2(f). Generally
speaking, the degenerate zero-mode edge states are simulta-
neously localized in the two ends of the system with the same
distributions in most regions of θ ∈ [0, π/2] ∪ [3π/2, 2π ],
as shown in Fig. 2(d). Intriguingly, the state distributions of
the two degenerate zero-energy modes can be an arbitrary
proportion in the two ends of the system by modulating the
parameter θ near 0, as shown in Figs. 2(c)–2(f).

III. PHOTON-PHONON CONVERSION IN THE
PERIODICALLY DRIVEN OPTOMECHANICAL LATTICE

In this section, we focus on studying the dynamic process
of the system. We rewrite the periodic parameter θ in Eq. (6)
as θ (t ) = �t , with � being the varying rate and t being the
time. The corresponding time-dependent Hamiltonian can be
written as

HSSH(t ) =
∑

n

[1 − cos(�t )]a†
nbn + [1 + cos(�t )]a†

n+1bn

+H.c. (8)

The time evolution of the system is governed by the
Schrödinger equation

i
d

dt
|ψ〉 = HSSH(t )|ψ〉. (9)

Suppose that the initial state is |ψ〉initial = |1〉a1 ⊗ |0〉b1 ⊗
|0〉a2 ⊗ |0〉b2 . . . |0〉aN ⊗ |0〉bN = |1, 0, 0, . . . , 0, 0〉, where the
first cavity is excited and the overall dynamic of the system
shows a fast-oscillation behavior. As shown in Fig. 3(a), the
red dotted line and the blue solid line represent the distribu-
tions of the photon and the phonon versus the varying rate �,
respectively. When � is large enough, the photon distribution
in a1 gradually approaches 1 and the phonon distribution in
bN is nearly 0. Moreover, we plot the detailed patterns of
the photon distribution in a1 and the phonon distribution in
bN corresponding to � ∈ [0.01, 0.02], as shown in Fig. 3(b).
We find that the distributions of photons and phonons exhibit
a regular periodic pattern. If we choose the varying rate �
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FIG. 4. (a)–(f) The different conversion efficiencies between
photons and phonons for various varying rates �. (a) 100% :0%
with � = 0.019 049. (b) 80% :20% with � = 0.019 172. (c) 60% :
40% with � = 0.019 231. (d) 50% :50% with � = 0.019 259. (e)
20% :80% with � = 0.019 347. (f) 0% :100% with � = 0.019 473.
(g) and (h) The photon-phonon conversion with the larger varying
rate. (g) � = 3. (h) � = 30.

appropriately, the photon distribution in a1 can change from 1
to 0 while the phonon distribution in bN can change from 0 to
1 simultaneously.

Here, we investigate the photon-phonon conversion pro-
cess in an appropriate range of the varying rate, such as
� ∈ [0.019 049, 0.019 473], and the final state distributions
after a certain time evolution are shown in Figs. 4(a)–4(f).
For � = 0.019 049, we find that the photon distribution is
100% in the first cavity and no phonon appears in the last
mechanical resonator, as shown in Fig. 4(a). One can see from
Fig. 4(b) that the photon distribution in a1 decreases to 80%
and the phonons occur in bN with the proportion of 20% when
� = 0.019 172. Similarly, we also exhibit the other different
ratios between photon distribution and phonon distribution by
choosing the appropriate varying rate �, including 60% :40%
[Fig. 4(c)], 50% :50% [Fig. 4(d)], 20% :80% [Fig. 4(e)], and
0% :100% [Fig. 4(f)]. It is indicated that we can achieve the

FIG. 5. (a) The photon distribution in a1 and the phonon distri-
bution in bn for the evolved final state versus the varying rate �.
(b) The detailed patterns of the photon distribution and the phonon
distribution in the two edge sites. The evolution time is t = 2π/�.
(c) The efficiencies of photon-phonon conversion are 50% :50%
for � = 0.000 833 189. (d) The efficiencies of photon-phonon con-
version are 0% :100% for � = 0.000 835 3. The lattice size of the
system is N = 30.

conversion process from photon to phonon with an arbitrary
proportion by continuously modulating the varying rate �. In
addition, we consider two cases where the varying rate � is
larger, as shown in Figs. 4(g) and 4(h). One can see that the
evolved final state is only localized in the first two sites when
� = 3, as shown in Fig. 4(g). In Fig. 4(h), we find that the
evolved final state is completely composed of the photon in
the first optical cavity with � = 30 due to the nonadiabatic
evolution. Therefore, the realization of photon-phonon con-
version needs to satisfy a condition that the varying rate �

should be chosen in an appropriate region near 0.
Furthermore, we study the photon-phonon conversion for

a large lattice size N = 30. In Fig. 5(a), we show the dis-
tributions of the photons and phonons versus the varying
rate �. And we plot the detailed patterns of the photon dis-
tribution in a1 and the phonon distribution in bN within a
minor range of � ∈ [0.0008, 0.001], which still exhibits a
regular pattern, as shown in Fig. 5(b). We take two different
conversion efficiencies between photons and phonons as the
examples, the photon-phonon conversion can be realized by
appropriately choosing the varying rates �, as displayed in
Figs. 5(c) and 5(d). However, the very tiny parameter is not
easy to manipulate compared with the small lattice size in
realistic experiments, and the adiabatic evolution condition
cannot be well satisfied.

In practice, the system parameters cannot be perfectly
tuned to exact values due to the intrinsic fluctuations in
device fabrication. The present scheme can be naturally im-
mune against the local disorder and perturbation because the
photon-phonon conversion is assisted by the topologically
protected zero-energy channel. It is necessary to analyze the
influence of imperfect factors added into our scheme, that is,
adding a disorder item W δ into the effective hopping strengths
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FIG. 6. (a) The fidelity versus the disorder strength with three
different conversion efficiencies between photons and phonons.
(b) The energy spectra of the SSH model vs θ for the disorder
strength W = 0.6g0.

Gn and Gn+1, with W being the disorder strength and δ

being the random number in the range of [−0.5, 0.5]. Taking
three different conversion efficiencies as the examples, we
numerically calculate the fidelity as a function of the disorder
strength W , as shown in Fig. 6(a). It can be seen that the
fidelity of our scheme can exceed 90% when W < 0.1, which
is also a hallmark of the topologically assisted photon-phonon
conversion. Moreover, the energy spectrum with the disorder
strength W = 0.6g0 is shown in Fig. 6(b), which verifies that
the zero-energy edge state is topologically protected. Com-
paring with the previous works [45–47] with respect to the
photon-phonon conversion, we use the optomechanical ar-
ray to achieve the periodically modulated SSH model with
topologically nontrivial phase. Since the zero-energy edge
states hold the special distributions, we can achieve the con-
trolled photon-phonon conversion based on the topologically
protected zero-energy edge channel, and our scheme can be
achieved with a high fidelity against the mild disorder.

IV. EFFECT OF ON-SITE DEFECT ON QUANTUM
STATE TRANSFER

Next, we analyze and discuss the effect of on-site defects
on the current system, where the on-site potential strength
is assumed as V . As depicted in Fig. 7(a), we first plot the
energy-eigenvalue spectrum when the defect is added into
the first cavity with V = 0.3, and the original two degenerate
zero-energy edge states become nondegenerate. Meanwhile,
we plot the fidelity of the photon-phonon conversion versus
the on-site defect V with ignoring the phase, and we find
that the conversion fidelity can exceed 50% when the defect
strength log10(V ) < −1, as shown in Fig. 7(b). Moreover, we
also investigate the effect of adding the defect into the overall
lattice sites on the photon-phonon conversion. In Fig. 7(c), it
can be seen that the energy spectrum only integrally moves
up a certain distance with V = 0.3, and the degenerate edge
states still exist. The corresponding fidelity versus the on-site
defects is shown in Fig. 7(d), we find that the fidelity beyond
99.9% can be achieved for a certain range of defect strength
with −2 < log10(V ) < 2 since the photon-phonon conversion
based on the edge states is still topologically protected. Our
results verify that the photon-phonon conversion is insensitive
to adding the defect into the overall lattice sites compared with
the edge lattice sites.

FIG. 7. (a) Energy spectrum of the system when the defect is
added into the first site with V = 0.3. (b) The fidelity versus the
defect potential with three different conversion efficiencies between
photons and phonons. (c) Energy spectrum of the system when the
defects are added into the overall sites with V = 0.3. (d) The fidelity
versus the defect potential with three different conversion efficien-
cies. Other parameter takes N = 5.

On the other hand, we find the interesting results when a
large defect strength is added into the edge lattice sites with
V = 8, as shown in Fig. 8. When the large defect is added into
the first cavity, the distribution of the gap state versus θ and
the lattice site is displayed in Fig. 8(a). Obviously, the phonon
state is localized in the second site with θ ∈ (π/2, 3π/2),
and it is localized in the last site with θ ∈ (0, π/2) and
θ ∈ (3π/2, 2π ). Accordingly, we also simulate the quantum
state transfer process when the second mechanical resonator is

FIG. 8. (a) The distribution of gap state versus θ and the lattice
site when the defect is added into the first site with V = 8. (b) The
phonon-phonon transfer when � = 0.005 and V = 8. (c) The distri-
bution of the gap state versus θ and the lattice site when the defect is
added into the last site with V = 8. (d) The photon-photon transfer
when � = 0.005 and V = 8.
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excited, and the phonon-phonon transfer can be achieved via
a topologically protected channel when � = 0.005, as shown
in Fig. 8(b). Moreover, when the large defect is added into
the last mechanical resonator, the photon state is localized in
the penultimate site when θ ∈ (π/2, 3π/2), and it is localized
in the first site when θ ∈ (0, π/2) and θ ∈ (3π/2, 2π ), as
shown in Fig. 8(c). Similarly, we also successfully achieve the
photon-photon transfer via a topological channel with � =
0.005 when the penultimate cavity is excited, as shown in
Fig. 8(d). These results reveal that the photon-photon transfer
and the phonon-phonon transfer can be achieved via the ad-
ditional quantum channels induced by the large on-site defect
added into the edge sites.

Before concluding, we briefly discuss the experimental
feasibility of our scheme. Remarkably, the optomechanical
system [35] with excellent tunability and scalability has be-
come a mature platform to investigate the properties of various
quantum systems. In optomechanical crystals, the frequency
of oscillators ωb,n and the effective optomechanical coupling
strength Gn can approach 109 Hz order [42], even the effec-
tive coupling strength between the cavity and the oscillator
can reach the range of THz [50]. Recently, some topological
models have been theoretically provided and experimentally
realized based on optomechanical systems [43,51]. In the
present scheme, we achieve the photon-phonon conversion by
using the topologically protected edge states as the quantum
channels, and the system parameters can be modulated in a
small range by adiabatically controlling the amplitude of the
external laser field, which means that one can easily tune the
parameters to meet the parameter requirement of our scheme
with the state-of-the-art quantum devices [52,53]. Therefore,

our scheme is remarkably feasible with the current optome-
chanics techniques.

V. CONCLUSIONS

In conclusion, we have proposed a scheme to construct
the periodically modulated SSH model based on a 1D op-
tomechanical lattice. We have shown the winding number to
demonstrate the topologically distinct phases. Especially, the
zero-energy edge states can be pumped from the left edge to
the right edge by modulating the parameter θ with θ ∼ 0. It is
indicated that the conversion efficiencies between the photon
and the phonon are controllable by appropriately choosing
varying rate �. However, when � is large enough, the final
quantum state is always localized in the first cavity because
the system undergoes a nonadiabatic evolution process. The
photon-phonon conversion is much more robust against the
defect throughout the overall system than the edge lattice site.
Moreover, the photon-photon transfer and the phonon-phonon
transfer can be realized via the additional quantum channels
induced by the large defect added into the edge sites. Our
scheme provides a controllable platform to engineer the topo-
logical phases and opens up a new path to achieve the different
quantum state transfers.
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