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Disorder and structural imperfections are unavoidable and challenge wave engineering. Therefore, methods to
reduce disorder and its effects are persistently sought for. Here, we theoretically explore a kind of a bulk mode
that is supported by a periodic coupled resonator waveguide with odd length. Although it is a bulk mode, its
eigenfrequency is unaffected by disorder, and furthermore, its corresponding eigenvector is stationary under the
influence of moderate disorder. Therefore, as we prove analytically and demonstrate numerically, the resonant
transmission near its eigenfrequency exhibits substantially reduced sensitivity to disorder compared to any other
frequency in the passband.

DOI: 10.1103/PhysRevA.103.023503

I. INTRODUCTION

Disorder is unavoidable in any analog system, either nat-
ural or manmade, due to impurities, structural defects, and
fabrication tolerances which imply the precision at which the
system may be implemented. An important consequence of
disorder is reduced diffusion and mode localization that were
originally introduced by Anderson [1] for electronic lattices
with on-site disordered potential. However, Anderson local-
ization is a much broader wave phenomenon that applies to
any kind of wave system that exhibits disorder, either photonic
[2–7], acoustic [8,9], elastic [10], etc. Active research on
disorder in discrete one-dimensional (1D) lattices has been
carried out already before Anderson’s work. Dyson [11] ex-
plored analytical solutions for the dynamics of disordered
1D lattices in what he coined as the “one-dimensional glass”
model. Following Dyson, additional aspects of disordered 1D
crystals have been studied by several authors [12–16].

Occasionally, localization is considered as a desired prop-
erty, e.g., for random lasing [17,18] or even, surprisingly, to
induce protected edge states [19,20]. However, typically, it is
regarded as a challenge since it leads to reduced transport.
Therefore, venues to overcome the effect of disorder, as well
as scenarios in which it has weaker influence, are constantly
sought.

Mode localization, and thereby reduced transport, is a
consequence of the coupling between a degenerate pair of
counterpropagating waves along a scattering path. Therefore,
systems with broken time-reversal symmetry are considered
useful to reduce the localization effect as they revoke the
underlying physics behind it. These include strongly nonre-
ciprocal systems such as one-way guiding structures [21–27]
and topologically protected systems with broken time-reversal
symmetry [28–31]. However, breaking time-reversal symme-
try is not a trivial task as it requires the application of external
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biasing, such as static magnetization [21–23], space-time
modulation [24,25,32], or motion [26,27,33]. Therefore, it is
interesting to seek for systems that are time-reversal but yet
exhibit weaker effect by the presence of disorder. Thus, in this
paper we explore the transmission through one-dimensional,
time-reversal, coupled resonator waveguides with disorder
present in their coupling coefficients.

One dimensional lattices with disordered off-diagonal cou-
pling coefficients have been studied for decades already. They
were first introduced as the “Case I” disorder in Dyson’s work
[11] and later explored in the context of the one-dimensional
XY model [34]. In photonics, Anderson localization in opti-
cal waveguides with off-diagonal coupling disorder has been
shown in Ref. [6]. Interestingly, it has been argued that the
zero-energy (midband) state is delocalized regardless of the
probability distribution of the coupling coefficients [35], and
their density of states at that energy vicinity is singular [36].
Nevertheless, Soukoulis and Economou [37] have established
that, although the localization length of the zero-energy state
diverges at infinity, it should yet be considered as localized
since the transmission coefficient approaches zero as the size
of the system approaches infinity. Leaving aside the infinite
lattice, for a finite lattice, by calculating the Landauer con-
ductance of electrons, the delocalization effect at the midband
energy has been shown to be present if and only if the lattice
size is odd [38], and the density of states at that center en-
ergy exhibits significantly different behavior for odd and even
lattice lengths [39].

In recent years the topologically protected zero-frequency
(midgap) edge modes of the dimer lattice, the Su-Schreifer-
Heeger (SSH) model, have been suggested for disorder
immune analog signal processing [40] and have been shown
to be robust also in terms of input impedance [41]. In contrast
to the use of topologically protected disorder immune edge
modes, and in accord with Refs. [38,39], in this paper we
revisit the problem of resonant wave transmission through a
finite lattice with disordered coupling coefficients, this time
based on a bulk mode. As a case study we focus on the
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FIG. 1. (a) Unit cell of the trimer lattice. (b) Typical dispersion
for κ1 = 0.1ω0, κ2 = 0.08ω0, and ν = 0.09ω0.

trimerized unit-cell lattice, and we calculate the transmission
between two wave ports that are connected at the edges of the
lattice. We express the transmission in the disordered lattice
and show that the transmission at a narrow frequency band
about the passband midfrequency is stationary with respect
to substantial disorder. Moreover, we study numerically by
Monte Carlo simulations the robustness of the wave transmis-
sion through the lattice and explore not only the magnitude
of the transmission coefficient but also the group delay, which
is important in the context of disorder immune optical and
acoustic coupled resonator waveguides.

II. THE TRIMERIZED LATTICE

We explore the transmission through a coupled resonator
lattice with trimerized unit cells as illustrated in Fig. 1(a).
Each unit cell in the lattice consists of three identical res-
onators, resonating at ω0, bonded by two intracell coupling
coefficients, κ1 and κ2, and one intercell coupling coefficient,
ν. The lattice dynamics obeys the following:

iȧ(1)
n = ω0a(1)

n + κ1a(2)
n + νa(3)

n−1, (1a)

iȧ(2)
n = ω0a(2)

n + κ1a(1)
n + κ2a(3)

n , (1b)

iȧ(3)
n = ω0a(3)

n + κ2a(2)
n + νa(1)

n+1, (1c)

where a( j)
n (t ) denotes the mode amplitude of the jth resonator

in the nth unit cell, and ȧ( j)
n (t ) = da( j)

n /dt . See, e.g., Ref. [42]
for electronic circuit implementation of a similar model. The
dispersion of the lattice guided modes is derived in Appendix
A and a typical dispersion diagram is shown in Fig. 1(b)
for κ1 = 0.1ω0, κ2 = 0.08ω0, and ν = 0.09ω0. In Fig. 1, ϕ

stands for the Floquet-Bloch phase, and ω̄ = ω − ω0 is the
tuned radial frequency about the resonance frequency of an
isolated resonator. The trimer lattice is particularly interest-
ing as it gives rise to various modal properties. It may be
inversion symmetric when two of the three coupling coef-
ficients are identical, e.g., κ1 = κ2 �= ν. In that case it can
be either topologically trivial, supporting no edge modes, or
topologically nontrivial, supporting four edge modes, two at
each edge. However, for the general case κ1 �= κ2 �= ν, due to
its broken inversion symmetry, integer topological numbers
cannot be associated with its band structure [43] (see also
Appendix B). And therefore, as opposed to the SSH model,
the bulk-boundary correspondence [44,45] becomes invalid,
where the edge states in the inversion-symmetry broken phase
only appear at a single edge. This implies that the idea of
topological protection in this system is in general indirect, if
applicable at all. Nevertheless, these chiral edge states still

remain relatively robust to substantial disorder [46]. However,
as in the SSH model, their exponential nature imposes chal-
lenges on their practical use.

A. Disorder insensitive bulk mode

For a finite trimer lattice with N unit cells, Eq. (1) can be
used to write the system’s Hamiltonian, H, as a tridiagonal
3N × 3N matrix. Consider the eigenvalue problem Hx j =
ω̄ jx j with eigenvalues ω̄ j and eigenvectors x j ( j ∈ [1, 3N]).
The eigenvalues may be found by solving det(H − ω̄I ) = 0,
where I denotes the 3N × 3N identity matrix. In this case
the determinant can be easily calculated using the recurrence
formula f j = ω̄ f j−1 − b j−1c j−1 f j−2, where f−1 = 0, f0 = 1,
and f1 = ω̄. Here, b j and c j denote the elements on the first
sub- and superdiagonals, respectively. Moreover, bj = c j as
can be easily verified by the requirements for time reversibility
and energy conservation [47]. For the ordered lattice {b j} =
{. . . , κ1, κ2, ν, κ1, . . .}. Since we have N trimerized unit cells,
det(H − ω̄I ) = f3N . In light of the recursion formula above,
clearly, f j ∼ ω̄ for any odd j. Therefore if the lattice consists
of an odd number of unit cells it is certain that there exists
a mode, say with index j = m, with zero eigenvalue ω̄m = 0
[48]. In the following, this mode is termed the zero-frequency-
mode. Note that the eigenvalue ω̄m = 0 exists regardless of the
actual values of the Hamiltonian off-diagonal terms bj and
c j . Consequently, it remains an eigenvalue in the presence of
any disorder in the lattice coupling coefficients. In the follow-
ing we show that the eigenvalue robustness implies weaker
sensitivity of the corresponding eigenvector and thereby of
the transmission about that frequency. To that end we employ
eigenvalue perturbation theory. We stress that here we do not
follow the typical perturbation theory analysis which starts
by postulating the invariance of the eigenvector under per-
turbation in order to evaluate the effect on the corresponding
eigenvalue. Here, instead, as a mathematical fact we know, as
we discuss above, that the mth eigenvalue is invariant under
the influence of disorder, and we seek to find the effect on the
eigenvector.

Resorting to the theory of eigenvalue perturbation [49], let
us denote by Ĥ the perfect lattice Hamiltonian and by δH
an additive random perturbation that is caused by disorder in
the lattice’s coupling coefficients. Under the definitions above,
the Hamiltonian of the disordered lattice reads H = Ĥ + δH.
Assuming that the eigenvalues and eigenvectors of the unper-
turbed Hamiltonian Ĥ are denoted by an “over-hat,” ˆ̄ω j and
x̂ j . Then, for the distorted system H, up to the first order in
δH we may approximate the eigenvalues as

ω̄ j ≈ ˆ̄ω j + x̂T
j δHx̂ j (2)

and their corresponding eigenvectors as

x j ≈ x̂ j +
∑
k �= j

[
x̂T

k δHx̂ j/( ˆ̄ω j − ˆ̄ωk )
]
x̂k . (3)

Equation (2) and (3) apply for any mode of the disordered
lattice. In particular, for the zero-frequency mode, Eq. (2) im-
plies that x̂T

mδHx̂m = 0. Since xm �= 0 and δH is not a rotation
matrix, we conclude that xm has to belong to the null-space
of δH, namely, δHx̂m = 0, where 0 denotes the 1 × 3N zero
vector (see also Appendix C). Applying Eq. (3), we obtain that
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zero-frequency eigenvector is stationary under the influence of
disorder, i.e.,

xm = x̂m + O(δH2), (4)

as opposed to any other mode of the lattice. We should be
careful here and stress that this result is based on a first-order
derivation in δH, and therefore, as the perturbation increases
too much, the effect on the zero-frequency eigenvector will
increase as well. Yet, it is clear now that the zero-frequency
eigenvector is substantially less sensitive to lattice disorder
compare to any other mode—including the supported local-
ized edge modes.

B. Transmission with reduced sensitivity to disorder

Up to this point we have considered only the influence
of disorder over the modal properties of the lattice. In the
following we study the transmission through a disordered
trimerized lattice using the Green’s function approach. For
the transmission problem, the coupled mode equations for the
source-free system in Eq. (1) should be modified to include
the input and output ports. To that end, the equations for the
first and last resonators in the lattice are rewritten as

iȧ(1)
1 = (ω0 − iγ )a(1)

1 + κ1a(2)
1 + idSin, (5)

iȧ(3)
N = (ω0 − iγ )a(3)

N + κ2a(2)
N , (6)

where γ is the decay rate induced by the coupling with the
input or output port [47], d = √

2γ is the coupling coefficient
between the resonator and the input or output port [50], and
Sin = S0 exp (−iωt ) is the input signal with amplitude S0 and
radial frequency ω. Since the excitation is time harmonic
and the system is linear and time invariant, the steady state
response will be also harmonic and at the same frequency.
Therefore, it is convenient to associate each time-harmonic
signal at frequency ω to a complex amplitude denoted by a
tilde. Thus, for the incoming signal we have S̃in = S0. Fol-
lowing this notation we use ã = [ã(1)

1 , ã(2)
1 , . . . , ã(2)

N , ã(3)
N ]T for

the complex amplitude of all the resonators in the lattice. We
moreover define the input signal vector as S̃in = S0W T

in, where
W T

in = [1, 0, 0, . . . , 0] is a 1 × 3N vector. Then, the resulting
complex mode amplitudes are found by solving the linear
system

(Iω̄ − iγU − H)ã = idS̃in. (7)

Here, U = diag{1, 0, 0, .., 0, 1} is a 3N × 3N diagonal matrix
that we use in order to include the complex resonance fre-
quencies at the first and last resonators. Once found, ã is used
to calculate the output signal S̃out = dã(3)

N and the complex
amplitude transmittance

T (ω̄) = S̃out/S̃in, (8)

from which the power transmittance T (ω̄) = |T (ω̄)|2 and the
group delay τg(ω̄) = d arg[T (ω)]/dω̄ are found. In order to
solve Eq. (7) for the complex amplitudes ã we first expand
the input vector S̃in in terms of the eigenvectors of H + iγU ,
denoted here with x j . Thus, S̃in = ∑

j (x
T
j S̃in )x j , and conse-

quently we may write

ã =
∑

j

[
id

(
xT

j S̃in
)
/(ω̄ − ω̄ j )

]
x j, (9)

where ω̄ j is the resonance frequency of the jth mode. The
resonance frequencies of the lattice with the two ports become
complex due to the out-coupling terms γ . They are given by
Eq. (2), with δH �→ δH − iγU , as

ω̄ j ≈ ˆ̄ω j + x̂T
j δHx̂ j − iγ x̂T

j U x̂ j, (10)

and similarly the eigenvectors are given by Eq. (3) as

x j ≈ x̂ j +
∑
k �= j

x̂T
k δHx̂ j

ˆ̄ω j − ˆ̄ωk
x̂k − iγ

∑
k �= j

x̂T
k U x̂ j

ˆ̄ω j − ˆ̄ωk
x̂k . (11)

The transmitted wave is given by S̃out = dã(3)
N = dW T

outã,
where W T

out = [0, 0, . . . , 0, 1] is a 1 × 3N vector. Substitution
in Eq. (8) yields the complex amplitude transmittance between
the two ports T (ω̄) = dW T

outã/S0. Using Eq. (9), near the jth
resonance we may approximate

T ≈ d2
(
xT

j W in
)(

W T
outx j

)
/(ω̄ − ω̄ j ), (12)

where ω j and x j are given in Eqs. (10) and (11). However,
specifically, near the resonance frequency of the zero-
frequency mode, and up to the first order in the disorder δH,
the transmission reads

T ≈ d2
(
x̂T

mW in
)(

W T
outx̂m

)
ω̄ − ˆ̄ωm − iγ x̂T

mU x̂m
, (13)

where ˆ̄ωm = 0 and x̂m is given by Eq. (4). Equation (13) is
a key result of this paper as it clearly shows that, as opposed
to any other frequency range within the passband, the disorder
effect on the transmission near ω̄ = 0 is not O(δH) but at least
O(δH2). Implying that the transmission at the narrow band
about the zero frequency is substantially persistent against
lattice disorder in the coupling coefficients.

C. Monte-Carlo study of transmission

In the following we validate our analytical conclusions and
explore their limitations. We consider a finite lattice with N =
19 trimerized unit cells. We use ω0 = 1 as the normalized
resonance frequency of each resonator, and κ̂1 = 0.1, κ̂2 =
0.08, and ν̂ = 0.09 for the intracell and intercell coupling
coefficients, respectively. As before the “over-hat” is used to
denote nominal values of the perfect lattice only. The lattice is
connected via two ports, input and output, as discussed above,
with γ = 0.01. See Fig. 2(a) for illustration. The excitation
is time harmonic with frequency ω and thus we solve Eq. (7)
and use Eq. (8) to derive the complex amplitude transmittance
T (ω̄) from which the power transmittance T (ω̄) and the group
delay τg(ω̄) are obtained as given after Eq. (8). Figure 2(b)
shows the power transmittance spectrum for the perfect lattice
case. In particular we zoom in around ω̄ = 0 to highlight
the zero-frequency transmission peak, marked by ω0, and the
next-neighbor peak marked by ω1. In the following we turn to
explore the transmittance behavior under the influence of dis-
order in the coupling coefficients. To be specific, we compare
between the performance about the zero-frequency ω0 peak
and about the next-neighbor peak ω1. The latter is selected
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Port 1

Port 2

(a)

-cells

(b)

(c) (d)

[%] [%]

FIG. 2. (a) Illustration of a finite, N-cell chain with input and
output ports, #1 and #2. (b) Typical transmission spectra with the
parameters for Fig. 1(b) and with γ = 0.01. Inset on the right: Zoom
in of the first few transmission peaks. (c) In the presence of disorder
to the coupling coefficients, the location of the zero frequency bulk
mode peak is persistent. As opposed to that, the mean and standard
deviation of the next transmission peak are shown to be strongly
affected. 2 × Rmax denotes the assumed tolerance on the coupling
elements. (d) Average and standard deviation of transmission at the
zero frequency and at the next peak. Illustrating substantial persis-
tence of the zero-frequency mode also in transmission.

as it provides a typical behavior outside the zero-frequency
narrow range. For this study, on top of the nominal coupling
coefficients of the perfect lattice, we introduce, for each unit
cell and at each coupling bond, some random amount of
disorder that is uniformly distributed. That is,

Cn = Ĉ(1 + RmaxU [−1, 1]), (14)

where C stands for either κ1, κ2 or ν at the unit-cell number
n, U [−1, 1] denotes a uniform distribution function between
−1 and 1, Rmax denotes the allowed tolerance, and “over-hat,”
as before, is used to denote nominal value. Recalling the
discussion preceding Eq. (2), the zero-frequency resonance
frequency is not affected by any level of disorder to the cou-
pling coefficients. As opposed to that, in Fig. 2(c) we see the
mean value and the standard deviation of the next peak ω1 as
a function of the tolerance Rmax. These statistics have been
obtained using repeated two million numerical experiments.
Comparison between the power transmittance, mean value
and standard deviation, is shown in Fig. 2(d). It is evident that
the transmittance mean value at the persistent zero-frequency
peak is much larger than the standard deviation, as well as
larger than the mean value at ω1 for tolerances below ∼±25%.
Nevertheless, one may argue that the mean value and standard
deviation are insufficient to predict the likelihood that the
transmittance will be above a certain quality. To address this

issue, in Fig. 3 we explore the probability density function
(PDF) of the power transmittance and the group delay for the
trimerized lattice at ω0 and ω1, and we compare to the trans-
mission performance of a topologically protected SSH edge
mode. As a reference, in Figs. 3(a) and 3(b) we show, for very
low tolerance, Rmax = 1%, the PDF of the power transmit-
tance and group delay at ω0 and ω1. Clearly, in the presence
of such a weak disorder, the transmission properties are nearly
identical at ω0 and ω1. However, as soon as the tolerance pa-
rameter Rmax increases to 5%, 10% and 20%, the performance
at the ω1 peak significantly deteriorates as demonstrated in
Figs. 3(c). Specifically, already with Rmax = 5% substantial
spread of the power transmittance PDF is evident. With mod-
erate (10%) and high (20%) tolerances, it becomes more
likely to have, at ω1, power transmission that is closer to
zero than to unity. In these cases, the group delay distribution
significantly deviates from the nearly perfect lattice case as
shown in Fig. 3(d). As opposed to that, as shown in Fig. 3(e),
the power transmittance at ω0 remains highly localized near
|T | = 1 for Rmax = 5% and 10% [compare with Fig. 3(a)], and
moderate deviation begins to take effect with Rmax = 20%.
Moreover, while the group delay PDFs experience moderate
spreading as shown in Fig. 3(f), they maintain their mean
value compared to Fig. 3(b) and remain localized compared
to Fig. 3(d). Interestingly, the persistence to disorder that is
demonstrated with the zero-frequency resonance in the one-
dimensional trimerized lattice reminds us of the robustness
of the topologically protected gap modes in the SSH model.
In order to enable a quantitative comparison, in Figs. 3(g)
and 3(h) we show the power transmittance and group delay
PDFs that are obtained at the edge mode resonance of a SSH
lattice ω = ωEM. To make a fair comparison, we use for the
calculation a SSH lattice with 56 resonators (as opposed to
57 in the trimerized case), each resonates at ω = ω0. The
resonators are bonded with intercell and intracell coupling
coefficients, κ = 0.1 and ν = 0.09, respectively. This choice
of parameters keeps similar the frequency spacing between
the resonances in the SSH model and in the trimerized lattice
model. Using these parameters the edge mode resonances
satisfy ωEM ≈ ω0. Moreover, due to “radiation loss” caused by
the lattice wave ports (γ = 0.01) the edge mode transmission
using the selected SSH model parameters and length is about
T = 0.65 in the perfect lattice. Figure 3(g) reveals that the
power transmittance distribution is significantly affected even
by the presence of low tolerance Rmax = 5%; as the tolerance
increases, the performance deteriorates further. Compare with
Fig. 3(e). Interestingly, however, the group delay performance
remains relatively stable as shown in Fig. 3(h).

III. CONCLUSIONS

In this paper we have explored the resonant transmission
based on the zero-frequency bulk mode in a periodic lattice
with odd length and showed its high persistency against dis-
order that is present in the lattice bonds. While the disorder
immunity shares similar characteristics with what is expected
by a topologically protected 1D lattice such as the SSH model
(see Fig. 3), the underlying physics is completely distinct. The
SSH lattice has been suggested recently for disorder immune
analog signal processing [40] and has been shown to be robust
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FIG. 3. Study of the probability density function (PDF) for the power transmission and group delays. (a) Power transmittance at ω0 and ω0

with low tolerance Rmax = 1%. (b) Same as in panel (a) but for the group delay. (c, d) Power transmittance and group delay for the trimerized
lattice at a typical bulk mode resonance ω = ω1. PDF curves are shown for moderate (5% and 10%) and for high (20%) tolerances. (e, f) Same
as in panels (c) and (d) but at the zero-frequency resonance ω = ω0. Substantial persistency is evident by the localization of the PDF curves.
(g, h) Same as in panels (c) and (d) but for a SSH lattice with parameters given in the text.

also in terms of input impedance [41]. Thus we suggest the
plausibility to have similar potential applications using, in-
stead, a topologically trivial bulk mode that exhibits disorder
immunity. Last, we point out that, in light of the generality
of the model discussed, this kind of disorder immune trans-
mission may be realizable in structures implemented using
electronic circuits [41], coupled acoustic resonators [40], and
photonic crystals [29].
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APPENDIX A: BAND STRUCTURE
TRIMERIZED LATTICE

Assuming Block-wave solution a( j)
n = einϕ , j = 1, 2, and 3,

in the coupled mode model Eq. (1), the following dispersion
relation is obtained,

ω̄3 − (
κ2

1 + κ2
2 + ν2

)
ω̄ − 2κ1κ2ν cos ϕ = 0. (A1)

Upon solving it, we get three solutions:

ω̄1 = A1/3
+ + A1/3

− , (A2)

ω̄2 = ω̄0,+A1/3
+ + ω̄0,−A1/3

− , (A3)

ω̄3 = ω̄0,−A1/3
+ + ω̄0,+A1/3

− , (A4)

where A± = −q/2 ± √
	, p = −(κ2

1 + κ2
2 + ν2),

q = −2κ1κ2ν cos ϕ, ω̄0,± = (−1 ± √
3i)/2, and 	 =

(q/2)2 + (p/3)3 is the discriminate of the solutions. If
	 > 0, there are one real solution and a pair of complex

conjugate solutions. If 	 < 0, there are three different real
solutions. If 	 = 0, there are three real solutions but at least
two of them are equal.

APPENDIX B: INVERSION SYMMETRIC
AND ASYMMETRIC TRIMERIZED LATTICE

The winding number is defined as

W = i

π

∫ π

−π

〈
uϕ

∣∣∣∣∂uϕ

∂ϕ

〉
dϕ mod 2, (B1)

where |uϕ〉 is the normalized Bloch state [43]. The wind-
ing number W is related to the Zak phase γ by W = γ /π .
From the calculation results, when κ1 = κ2 < ν, the winding
numbers for the upper, central, and lower bands are W = 1,
W = 0, and W = 1, respectively. While when κ1 = κ2 > ν,
the winding numbers for the three bands are all zero. The
winding number W for the general inversion asymmetric
chain case where κ1 �= κ2 �= ν is a fraction number and loses
its conventional topological meaning.

APPENDIX C: THE ZERO-FREQUENCY EIGENVECTOR

The eigenvector of the zero frequency mode is shown in
Fig. 4(a), it is a bulk mode that extends over the entire lattice.
Note that the horizontal axis is the resonator index and not
the unit-cell index. For example, resonator number 5 is the
second resonator of the second unit cell. This eigenvector
is denoted by xm in the main text. Clearly, in light of its
structure, δHxm = 0 as also explained between Eqs. (3) and
(4) above. For the comparison, the eigenvector of the next
eigenvalue ω̄m+1 = ω̄1 is shown in Fig. 4(b), clearly not sat-
isfying δHxm+1 = 0. This point leads later to the conclusion
that the zero-frequency eigenvector is stationary with respect
to the disorder Hamiltonian δH
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FIG. 4. Typical eigenvectors. (a) Zero-frequency mode. (b) Next mode at ω1.

[1] P. W. Anderson, Absence of diffusion in certain random lattices,
Phys. Rev. 109, 1492 (1958).

[2] M. Segev, Y. Silberberg, and D. Christodoulides, Anderson
localization of light, Nat. Photonics 7, 197 (2013).

[3] D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini,
Localization of light in a disordered medium, Nature (London)
390, 671 (1997).

[4] N. Garcia and A. Z. Genack, Anomalous Photon Diffusion at
the Threshold of the Anderson Localization Transition, Phys.
Rev. Lett. 66, 1850 (1991).

[5] C. Ferrari, F. Morichetti, and A. Melloni, Disorder in coupled-
resonator optical waveguides, J. Opt. Soc. Am. B 26, 858
(2009).

[6] L. Martin et al., Anderson localization in optical waveguide
arrays with off-diagonal coupling disorder, Opt. Express 19,
13636 (2011).

[7] S. Mookherjea and A. Oh, Effect of disorder on slow light
velocity in optical slow-wave structures, Opt. Lett. 32, 289
(2007).

[8] C. A. Condat and T. R. Kirkpatrick, Resonant scattering and
Anderson localization of acoustic waves, Phys. Rev. B 36, 6782
(1987).

[9] R. L. Weaver, Anderson localization of ultrasound, Wave
Motion 12, 129 (1990).

[10] J. C. Angel, J. C. Torres Guzman, and A. D. de Anda, Anderson
localization of flexural waves in disordered elastic beams, Sci.
Rep. 9, 3572 (2019).

[11] F. J. Dyson, The dynamics of disordered linear chain, Phys. Rev.
92, 1331 (1953).

[12] H. Schmidt, Disordered one-dimensional crystals, Phys. Rev.
105, 425 (1957).

[13] C. Domb, On one-dimensional vibrating systems, Proc. R. Soc.
Lond. A 276, 418 (1963).

[14] B. I. Halperin, Green’s functions for a particle in a
one-dimensional random potential, Phys. Rev. 139, A104
(1965).

[15] K. Ishii, Localization of eigenstates and transport phenomena
in the one-dimensional disordered system, Prog. Theor. Phys.
Suppl. 53, 77 (1973).

[16] S. Alexander, J. Bernasconi, W. R. Schneider, and R. Orbach,
Excitation dynamics in random one-dimensional systems, Rev.
Mod. Phys. 53, 175 (1981).

[17] H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R.
P. H. Chang Random Laser Action in Semiconductor Powder,
Phys. Rev. Lett. 82, 2278 (1999).

[18] B. Abaie, E. Mobini, S. Karbasi, T. Hawkins, J. Ballato, and
A. Mafi Random lasing in an Anderson localizing optical fiber,
Light Sci. Appl. 6, e17041 (2017).

[19] J. Li, R.-L. Chu, J. K. Jain, and S.-Q. Shen, Topological Ander-
son Insulator, Phys. Rev. Lett. 102, 136806 (2009).

[20] S. Stützer, Y. Plotnik, Y. Lumer, P. Titum, N. H. Lindner, M.
Segev, M. C. Rechtsman, and A. Szameit, Photonic topological
Anderson insulators, Nature (London) 560, 461 (2018).

[21] Z. Yu, G. Veronis, Z. Wang, and S. Fan, One-Way Electromag-
netic Waveguide Formed at the Interface between a Plasmonic
Metal under a Static Magnetic Field and a Photonic Crystal,
Phys. Rev. Lett. 100, 023902 (2008).

[22] Y. Hadad and B. Z. Steinberg, Magnetized Spiral Chains of
Plasmonic Ellipsoids for One-Way Optical Waveguides, Phys.
Rev. Lett. 105, 233904 (2010).

[23] Y. Mazor and B. Z. SteinbergLongitudinal chirality, enhanced
nonreciprocity, and nanoscale planar one-way plasmonic guid-
ing, Phys. Rev. B 86, 045120 (2012).

[24] D. L. Sounas, C. Caloz, and A. Alu, Giant non-reciprocity at the
subwavelength scale using angular momentum-biased metama-
terials, Nat. Commun. 4, 1 (2013).

[25] Y. Hadad, D. L. Sounas, and A. Alu, Space-time gradient meta-
surfaces, Phys. Rev. B 92, 100304(R) (2015).

[26] B. Z. Steinberg, Rotating photonic crystals: A medium for com-
pact optical gyroscopes, Phys. Rev. E 71, 056621 (2005).

[27] B. Z. Steinberg and A. Boag, Splitting of microcavity degen-
erate modes in rotating photonic crystals-the miniature optical
gyroscopes, J. Opt. Soc. Am. B 24, 142 (2007).

[28] M. Hafezi, E. A. Demler, M. D. Lukin, and J. M. Taylor, Robust
optical delay lines with topological protection, Nat. Phys. 7, 907
(2011).

[29] Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljačić,
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